首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
高寒草甸植被生产量年际变化及水分利用率状况   总被引:3,自引:3,他引:0  
分析了海北地区高寒草甸植被2001-2011年11 a耗水量、 生物现存量、 净初级生产量、 水分利用率及其相关性, 结果表明: 植物生长期5-9月耗水量416.30 mm, 植被地上净初级生产量(ANPP)、 地下净初级生产量(BNPP)以及总的净初级生产量(NPP=ANPP+BNPP)分别为393.07 g·m-2、 945.26 g·m-2、 1 338.33 g·m-2, BNPP与ANPP之比为2.404. 8月底植被现存生物量达3 422.92 g·m-2, 其中地上和地下现存量分别为411.07 g·m-2、 3 011.85 g·m-2, BNPP与ANPP之比高达7.327, 说明植被现存量巨大, 归还土壤碳能力强. NPP与5-9月植被耗水量相关性很差, 但与5-9月平均气温具有显著的正相关关系, 表明高寒草甸地区水分条件可满足植物生长的基本需求, 而同期温度是影响NPP提高的重要因素. 11 a来BNPP、 ANPP和NPP平均水分利用率分别为0.958 g·m-2·mm-1、 2.326 g·m-2·mm-1和3.284 g·m-2·mm-1, 表明高寒草甸植被净初级生产具有较高的水分利用率.  相似文献   

2.
青藏铁路建设中高寒草原植被恢复与再造技术的研究   总被引:4,自引:0,他引:4  
魏建方 《冰川冻土》2003,25(Z1):195-198
对青藏铁路高寒草原植被恢复与再造的试验研究工作进行了综述分析, 通过对青藏铁路建设中沱沱河试验段工程取土场的现场调查和植被恢复试验研究, 结果表明: 工程活动后取土场的土壤条件变化很大, 质量明显下降, 为做好青藏线建设过程中的植被恢复与重建, 应切实作好表土回填工作. 从现场试验结果来看, 披碱草、早熟禾等均能较好地适应高寒草原的取土场环境, 植物在生长季节能正常生长. 在植被恢复的时间选择上应尽量利用青藏高原雨热同季的特点, 可提高植被恢复的成功率.  相似文献   

3.
魏建方 《冰川冻土》2003,25(8):195-198
对青藏铁路高寒草原植被恢复与再造的试验研究工作进行了综述分析,通过对青藏铁路建设中沱沱河试验段工程取土场的现场调查和植被恢复试验研究,结果表明:工程活动后取土场的土壤条件变化很大,质量明显下降,为做好青藏线建设过程中的植被恢复与重建,应切实作好表土回填工作,从现场试验结果来看,披碱草、早熟禾等均能较好地适应高寒草原的取土场环境,植物在生长季节能正常生长,在植被恢复的时间选择上应尽量利用青藏高原雨热同季的特点,可提高植被恢复的成功率。  相似文献   

4.
多年冻土区植物根系的地下分布格局是其适应高寒、反复冻融作用等特殊环境条件的重要体现.针对目前青藏高原高寒植物根系研究不足的现状,对青藏铁路沿线高寒草甸植物群落根系的分布特征及多年冻土活动层地温变化等进行调查观测.研究高寒植物群落根系在活动层土壤中的垂直分布特征,重点探讨多年冻土活动层温度变化对于高寒植物根系分布和格局的影响,揭示植物根系对冻土环境变化的响应特征及其对逆境条件的适应策略.研究结果表明:活动层季节性冻融对于高寒植物和地下根系分布格局具有深刻的影响,多年冻土表层最先具备适宜根系生长的温度和水分条件,导致高寒草甸根系分布浅层化,生物量大量累积在土壤表层,并随深度增加而减少.高寒草甸地下平均总根量为3.38 kg·m-2,0~10 cm土层根量密度平均为21.41 kg·m-3,约占地下根系总量的63.4%.高寒草甸植物群落具极高的根茎比,活动层长期的低温环境增加了根系的干物质总量和高寒植物总的生物产量.活动层0℃以上积温是根系分布的主要影响因子.  相似文献   

5.
高寒湿地生态系统土壤有机物质补给及地-气CO2交换特征   总被引:1,自引:0,他引:1  
海北高寒湿地植物地上、地下生物现存量较高,2004年海北高寒湿地植物净初级生产力为1799.7 gC·m-2.由于家畜对湿地植物采食量低,每年将有大量的枯黄植物残留于地表,表现出地上、地下生物量以及苔鲜均成为土壤有机物质的补给源.由于区域温度低,积水严重,对植物残体分解缓慢,导致湿地土壤有机质含量很高,形成了厚达2 m左右的泥炭层.观测结果表明,海北高寒湿地净生态系统CO2交换量具有明显的季节变化,年内4月和10月存在两个CO2释放高峰期,夏季的7~8月为一个强吸收期,全年来看为一个巨大的碳源.2004年净生态系统年碳交换量为76.7 gC·m-2.计算结果表明,植被的呼吸消耗量每年为1199.8 gC·m-2,其植物总固碳量为2999.5 gC·m-2,而土壤呼吸为1876.4 gC·m-2.  相似文献   

6.
祁连山海北高寒湿地植物群落结构及生态特征   总被引:10,自引:3,他引:7  
海北高寒湿地系沼泽型和湖泊型湿地相并存.海北高寒湿地植物种类组成较少,从湿地中央到边缘植物优势种组成不同,群落结构变化明显.中部以帕米尔苔草为主要植物建群种的沼泽草甸,边缘地带以藏嵩草为主要建群种的沼泽化草甸,从中央到边缘地带主要有25种植物组成,隶属10科20属.高寒湿地植物有较高的地上生物量(349.373 g·m-2)和地下生物量(仅1~40 cm层次最高可达10769.301 g·m-2),而且地下部分远高于地上部分,地下生物量从表层到深层基本均匀下降,与矮嵩草草甸和金露梅灌丛草甸区的地下生物量分布截然不同.因湿地帕米尔苔草、藏嵩草、黑褐苔草、华扁穗草等为主的植物粗纤维高,牲畜利用率下降,不论地上还是地下对土壤有机物的补给均较高,多年的积累使其海北高寒湿地有深达2~3 m的泥炭层,使湿地形成一个非常重要的碳库.在气候变暖的条件下,这些未分解或半分解的土壤有机物质(或残体)将加速分解,对大气有更多的CO2、CH4等温室气体的排放.  相似文献   

7.
青南退化高寒草甸植被土壤固碳潜力   总被引:4,自引:1,他引:3  
李英年  徐世晓  赵亮  张法伟 《冰川冻土》2012,34(5):1157-1164
青南与青北高寒草甸植被、 土壤、 气候类型相似, 地植被、 土壤碳密度可比性强. 研究表明, 青南高寒草甸植被退化严重, 植被和土壤碳密度随退化程度的加剧而降低, 轻度、 中度、 重度和极度退化植被碳密度分别为921.281、 809.998、 237.974 gC·m-2和75.972 gC·m-2, 0~40 cm土壤碳密度分别为16.760、 16.145、 14.360 gC·m-2和12.945 kgC·m-2. 在青北未退化草甸植被和0~40 cm层次土壤碳密度分别为1 149.327 gC·m-2和20.305 kgC·m-2. 相对青北高寒草甸植被类型而言, 青南高寒草甸轻度、 中度、 重度、 极度退化的植被固碳密度分别增加228.046、 339.329、 911.354 gC·m-2和1073.355 gC·m-2, 而对应0~40 cm层次土壤固碳密度可分别增加3.545、 4.160、 5.946 gC·m-2和7.359 kgC·m-2. 以青南当地未退化草地而言, 轻度、 中度、 重度和极度退化的高寒草甸0~20 cm层次土壤固碳密度可达1.694、 2.087、 3.537 kgC·m-2和4.282 kgC·m-2, 表现出较大的固碳潜力.  相似文献   

8.
封育是推广范围最广的草地恢复措施之一. 为研究不同封育年限高寒草甸植被、土壤碳密度变化, 对1 a、6 a和16 a不同封育年限样地监测结果进行分析.结果表明: 不同封育年限高寒草甸植被现存碳密度表现出封育16 a>封育1 a>封育6 a, 分别为1 522.57 gC·m-2、1 323.12 gC·m-2和1 148.17 gC·m-2, 但不同封育年限之间植被现存碳密度差异不显著(P>0.05). 土壤碳密度垂直分布明显, 0~5 cm和5~10 cm土层有机碳密度较高, 随土层深度增加土壤有机碳密度明显下降, 土壤容重上升;不同封育年限之间0~40 cm层次土壤碳密度和土壤容重差异性均不显著, 但仍可表现出土壤碳密度封育1 a>封育6 a>封育16 a, 分别为28 636.32 gC·m-2、26 570.92 gC·m-2和26 060.71 gC·m-2;同时, 土壤容重随封育时间延长而下降. 对7月下旬到10月上旬净生态系统CO2交换率(NEE)监测来看, 封育1 a植被土壤碳吸收速率显著高于封育16 a(P<0.05);而排放率与封育16 a样地接近, 差异不显著(P>0.05).  相似文献   

9.
青藏高原多年冻土区典型高寒草地生物量对气候变化的响应   总被引:15,自引:3,他引:12  
多年冻土区冻土生态系统对气候变化极其敏感,利用在长江黄河源区实测的高寒草甸和高寒草原植被生物量数据以及青藏高原降水、气温以及地温等的空间分布规律,建立了长江黄河源区高寒草甸与高寒草原等主要高寒生态系统地上与地下现存生物量对气候要素变化的多元回归模型.预测分析表明:如果未来10 a气温增加0.44℃·(10a)-1,在降水量不变的情况下,高寒草甸和高寒草原地上生物量分别递减2.7%和2.4%,如果同时降水量小幅度增加8 mm·(10a)-1,则地上生物量可基本保持现状水平略有减少;在气温增加2.2℃·(10a)-1,在降水量不变的情况下,高寒草甸和高寒草原地上生物量年分别平均减少达6.8%和4.6%,如果同期降水量增加12 mm·(10a)-1,高寒草甸地上生物量可基本维持现状水平略有增加,而高寒草原地上生物量则递增5.2%.高寒草原植被地上生物量对气候增暖的响应幅度显著小于高寒草甸,而对降水增加的响应程度大于高寒草甸.明确高寒草地植被生物量随气候变化的演变趋势,对于青藏高原生态环境保护和研究气候变化对青藏高原生态系统碳循环和河源区水循环的影响具有重要意义.  相似文献   

10.
通过监测三江源玛沁县高寒草甸2017年度植被特征及土壤呼吸通量, 探讨了不同退化阶段植被群落、 土壤呼吸特征及其协同关系, 并分析了土壤呼吸的温度敏感性。结果表明: 随着高寒草甸退化程度加剧, 禾本科植物重要值降低, 毒杂草显著增加(P<0.05); 植被盖度、 物种数、 多样性指数显著下降(P<0.05), 重度退化阶段的地上生物量比轻度、 中度退化阶段降低了25.36%、 22.37%(P<0.05); 在中度退化条件下, 均匀度指数和地下生物量显著增多(P<0.05)。在各退化阶段, 土壤呼吸年内均呈单峰式变化过程, 表现出生长季高、 非生长季低的特征, 植物生长旺季(7 - 8月)最高, 且与5 cm深度处土壤温度之间呈显著指数关系(P<0.05); 2017年轻度退化、 中度退化和重度退化阶段的土壤呼吸碳排放总量分别为626.89 gC·m-2、 386.66 gC·m-2、 393.81 gC·m-2; 同时, 土壤呼吸与植被群落演替具有显著的协同性, 随着退化程度加剧土壤呼吸速率下降。轻度退化、 中度退化、 重度退化阶段土壤呼吸的温度敏感性系数(Q10)分别为2.82、 3.54和2.35, 表明中度退化条件下的温度敏感性最强, 重度退化条件下最弱。  相似文献   

11.
祁连山森林草原带为典型的山地森林和草原镶嵌景观,带内植被呈显著的斑块状分布格局,与地形因子密切相关。探究森林草原带内地形因子与土壤和植被的关系,对该区生态恢复具有重要意义。采用样地-样方调查法,研究了祁连山森林草原带土壤属性和植被生物量随坡向(南、西南、西和北)和坡位(山顶、上坡、中坡、下坡和山谷)的变化特征及其与水热因子的关系。结果表明:坡向梯度上,北坡土壤有机碳含量为50.79 g·kg-1,全氮含量为2.82 g·kg-1,土壤含水量为32.86%,地上和地下生物量为5.09和6.39 kg C·m-2,分别为南坡的2.54、3.97、2.07、24.62和149.30倍。坡位梯度上,土壤有机碳、全氮、全磷、土壤含水量在山谷最大,分别为50.23 g·kg-1、3.47 g·kg-1、0.80 g·kg-1和32.01%,是山顶的1.73、1.69、1.56和1.30倍,山坡的1.92、2.85、1.74和1.46倍。回归分析显示,土壤含水量是限制祁连山森林草原带土壤碳氮含量和草地生物量分布的主要环境因子,复相关系数在0.74~0.93之间。  相似文献   

12.
张涛  王根绪  杨燕  毛天旭 《冰川冻土》2018,40(6):1255-1264
研究多年冻土区不同草地类型及季节生态系统呼吸,对理解青藏高原碳源汇关系及其对气候变化响应具有重要意义。在青藏高原风火山选取高寒草甸和沼泽草甸对生长季和非生长季生态系统呼吸进行观测。结果表明:生态系统呼吸呈明显的日变化和季节变化,高寒草甸日变异系数(0.30~0.92)高于沼泽草甸(0.12~0.29),高寒草甸非生长季生态系统呼吸白天/晚上比高于生长季,而沼泽草甸季节变化较小;季节变化与5 cm地温变化一致。高寒草甸和沼泽草甸非生长季生态系统呼吸平均速率分别为0.31和0.36 μmol·m-2·s-1,生长季分别为1.99和2.85 μmol·m-2·s-1。沼泽草甸生态系统呼吸年排放总量为1 419.01 gCO2·m-2,显著高于高寒草甸(1 042.99 gCO2·m-2),其中非生长季高27%,生长季高39%。高寒草甸和沼泽草甸非生长季生态系统呼吸总量分别为268.13和340.40 gCO2·m-2,分别占全年的25.71%和23.99%。两种草地类型生态系统呼吸与气温、5 cm和20 cm地温均显著相关,可解释37%~73%的季节变异,除生长季沼泽草甸外,生态系统呼吸与5 cm地温相关性最高。非生长季5 cm地温对应Q10为4.34~5.02,高于生长季(2.35~2.75),且沼泽草甸高于高寒草甸。生长季生态系统呼吸与土壤水分无显著关系,而非生长季生态系统呼吸受土壤水分显著影响(R2:0.21~0.40),随土壤水分增加而增加。  相似文献   

13.
川藏铁路工程是国家重大基础设施建设项目,保障铁路的顺利建设和后期安全运营十分重要。铁路沿线发育广泛、危害严重的大型滑坡已成为全线的关键控制性问题,关乎工程建设的成败。以川藏铁路工程沿线大型滑坡作为主要研究对象,采用历史数据分析、实地调查、遥感解译的研究方法,基于ArcGIS平台,采用贡献率权重模型对铁路沿线区域进行了大型滑坡危险性评价,并利用自然断点法对危险性评价结果进行分区及统计分析。研究结果表明:川藏铁路沿线共发育大型、特大型滑坡共147处,其中大型滑坡106处,特大型滑坡41处,主要分布于白玉至江达段、昌都至八宿段、朗县至加查段等区段;铁路沿线处于高中低度三个等级危险区的面积分别为35918.5 km2、95484.3 km2和12039.7 km2,高度危险区大型滑坡分布密度为0.00199处/km?2,约为中度或低度危险区的2倍,高度危险区主要集中在邦达—八宿段、古乡—拉月段、白玉—江达段。根据贡献率权重模型求得的川藏铁路沿线大型滑坡危险度等级与野外实地调查的大型滑坡分布密度是一致的。相关研究成果可以为川藏铁路工程建设提供科学参考与依据。  相似文献   

14.
刘志云  黄川  于晖  钟振涛  崔福庆 《冰川冻土》2021,43(5):1458-1467
为探究青藏工程走廊沿线多年冻土区活动层厚度分布情况,结合青藏公路、青藏铁路沿线300个钻孔点的活动层厚度监测数据,基于年平均地表温度、平均植被指数、等效纬度、纬度、高程和含冰量等参数建立了活动层厚度的经验公式、随机森林和径向基函数(radial basis function, RBF)神经网络预测模型。各预测模型结果表明,活动层厚度与各预测因子间具有极强的非线性关系;RBF神经网络预测模型具有最高的预测精确度,拟合优度R2达到0.84。运用RBF神经网络预测模型和高精度遥感数据绘制活动层厚度分布图,分布图显示研究区内活动层厚度主要为2~4 m,总面积为5 468.3 km2,面积占比为47.27%,主要分布于楚玛尔平原至北麓河盆地和唐古拉山区南部至头二九山区;活动层厚度大于4 m次之,总面积为3 382.3 km2,面积占比为29.24%,整体分布偏向南部地区,主要分布于布曲河谷地至头二九山区。并对研究区活动层厚度与含冰量、地温关系进行了研究,结果表明活动层厚度随含冰量增加而减小、随地温升高而增加。  相似文献   

15.
青藏铁路多年冻土工程的研究与实践   总被引:29,自引:11,他引:18  
孙永福 《冰川冻土》2005,27(2):153-162
青藏铁路建设需穿越高原多年冻土区, 在探明沿线多年冻土分布特征的基础上, 合理确定了青藏铁路线路的走向方案.在多年的冻土研究和工程实践的指导下, 有针对性地开展了 5 个不同类型冻土工程试验研究, 取得重要科研成果, 指导设计和施工.全面总结4 a来青藏铁路多年冻土工程的研究与实践, 提出了“主动降温, 冷却地基, 保护冻土”的设计思想, 制定了路基、桥涵、隧道成套工程技术措施和先进施工工艺, 对确保多年冻土工程质量发挥了重要作用.  相似文献   

16.
植被与多年冻土共同维系着大兴安岭地区的冷湿环境。随着全球气候变暖,大兴安岭多年冻土已发生严重退化,植被的生长也受到影响。在大兴安岭北部多年冻土区设置55个采样点,每个采样点采集多年冻土活动层厚度、林下灌木生物量和落叶松胸径树龄等指标,同时借助增强型植被指数(EVI)在区域尺度比较大片多年冻土区和岛状融区多年冻土区的植被生长状况。结果表明:黑龙江呼中国家级自然保护区(简称呼中保护区)活动层厚度的平均值为(0.47±0.14) m,保护区周边为(0.83±0.38) m,呼中保护区周边的活动层厚度大于保护区内。大片多年冻土区的活动层厚度平均值为(1.04±0.47) m,小于岛状融区多年冻土区的(1.40±0.41) m。呼中保护区和周边灌木生物量的平均值分别为(201.75±71.70) g·m-2和(259.10±111.14) g·m-2,胸径与树龄比值的平均值分别为(0.20±0.08)和(0.26±0.14)。大片多年冻土区和岛状融区多年冻土区林下灌木生物量的平均值分别为(128.31±63.33) g·m-2和(199.04±66.13) g·m-2,胸径树龄比的平均值分别为(0.30±0.13)和(0.59±0.21)。活动层厚度大的区域,灌木的生物量以及落叶松胸径树龄比都大于活动层厚度小的区域,表明活动层厚度增加对灌木和乔木的生长有一定的促进作用。EVI的结果显示岛状融区多年冻土区植被的生长状况以及植被覆盖情况好于大片多年冻土区,从区域尺度证明了多年冻土对植被生长存在限制作用。研究结果对于深入理解多年冻土变化及其环境效应具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号