首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
苏-查萤石矿区钾长花岗岩锆石SHRIMP年龄 及其地质意义   总被引:3,自引:2,他引:1  
内蒙古苏-查萤石矿区是全球范围内最大的单一萤石矿区。萤石矿体大多呈似层状和透镜体状在下二叠统火山-沉积岩地层内产出, 并且与显生宙花岗岩类侵入岩体具有密切时空分布关系, 其中部分矿体直接出现在敖包吐花岗岩株中。本次研究主要对敖包吐岩株钾长花岗岩进行了锆石SHRIMP铀-铅同位素年龄测定, 所获同位素年龄值为(138±4)Ma, MSWD值为2.3, 属中生代燕山期。根据上述同位素年代学数值, 同时结合其他地质与地球化学证据, 可以推测, 中生代时期, 受古板块内部构造应力调整作用影响, 苏-查萤石矿区及东西两侧曾发生过强烈构造-岩浆活动, 并且形成有敖包吐花岗岩株及相关的萤石矿床。中生代燕山期花岗岩类岩浆活动不仅为萤石矿床的形成提供了物质、动力和热力来源, 而且是成矿流体对流循环的“发动机”。对比分析结果表明, 敖包吐岩体的形成时间与华北陆台中东段许多含矿花岗岩体的成岩时代大体相似, 它们很可能是地壳演化特定阶段混源(壳、幔源)岩浆活动的产物。  相似文献   

2.
The composition of accessory minerals from granites of the second phase, quartz-muscovite (+fluorite), and quartz-muscovite-topaz greisens from the Primorsky rapakivi granite complex, West Baikal region, were studied using backscattered scanning electron microscopy. Ilmenite from granites contains inclusions of cassiterite, titanocolumbite, fergusonite-(Y), polycrase-(Y), and betafite. Allanite-(Ce), bastnaesite-(Ce), xenotime-(Y), Y- and Zr-thorite, zircon, and cyrtolite have been identified in granites. Greisens contain cassiterite, ferrocolumbite (Ta/Nb = 0.02−0.06), pyrochlore-group minerals, ilmenorutile, rutile, wolframite, polycrase-(Y), monazite-(Ce), fluocerite-(Ce), bastnaesite-(Ce), cerphosphorhuttonite, thorite, and other minerals. The ferrocolumbite + ilmenorutile assemblage is typical of quartz-muscovite greisen, whereas the rutile + ilmenorutile + wolframite + W-columbite assemblage is contained in the quartzmuscovite-topaz greisen as a result of an increase in Eh and decrease in pH and potassium activity of solution in the back zone. The compositions of Th- and REE-bearing minerals indicate the important role of phosphate and fluorine complexes in the transport of these elements.  相似文献   

3.
铷是一种具有广泛用途的稀有金属。湖南桂东县小江地区曾于1958年地质预查确定为砂锡矿,但未见进一步工作的报道。本次工作系统采集了矿区的细粒二云母花岗岩、黑云母斑状花岗岩、粗粒黑云母花岗岩的岩石样品。精细测试表明,三者是同期花岗岩浆多阶段演化的产物,随着演化程度的增高,岩体内的稀有金属含量逐渐增高。细粒二云母花岗岩属于重稀土富集型花岗岩,稀土配分模式表现出岩浆晚期富挥发份组成而造成的四分组效应,其基岩中的Rb2O含量超过0.1%,达到花岗岩型铷矿床的工业品位;Nb的含量达到伴生矿的要求,具有全岩矿化的特征;风化壳中Y的含量达到许多离子吸附型矿床的钇含量。Rb元素主要赋存在二云母花岗岩的钾长石和黑云母中,Y主要赋存在萤石中。按照二云母花岗岩的厚度50m计算,Rb2O储量约为16万吨。除此之外,矿区还应该注意寻找伟晶岩型稀有金属矿脉,并重视矿区风化壳发生离子吸附型重稀土矿化的可能性。  相似文献   

4.
A magmatic gap from 1.82 to 1.76 b.y. in the Lake Superior region represents the transition from synorogenic calc-alkaline igneous activity of the Penokean Orogeny to anorogenic potassic granophyric granite and ignimbrite. This paper deals with the petrogenetic evolution of 1.76 b.y. granites which represent a major change in source material and conceivably tectonic setting. Although perhaps related to a termination of the Penokean Orogeny by melting of a tectonically thickened crust during collision, these post-Penokean granites may represent the initial appearance of anorogenic, potentially rift-related igneous activity that was widespread throughout North America during late Precambrian time.These post-Penokean granites are too iron-rich and Al-poor to be considered calc-alkaline, a compositional feature shared with most anorogenic igneous activity of continental regions. Within this suite in central and northern Wisconsin, regional differences in composition indicate at least two different granite magma types: one a metaluminous suite of biotite and biotite-hornblende granite and a peraluminous suite of two-mica granite. The systematic compositional differences (Al, Fe/Mg, Ba/Sr, REE) in the two magma suites are likely the result of small differences in residue mineralogy and/or source composition. In general, the degree of fusion was small (10%) and probably of relatively young Penokean material. Both suites have a range of composition due to feldspar dominated fractional crystallization. Removal of the accessory minerals apatite, zircon, and allanite resulted in the REE depletion with differentiation of the two-mica granites.The granites intruded into the upper levels of the crust, and the appearance of primary celadonitic muscovite and subsolvus alkali feldspars (silicic members only) in the two mica granites indicate crystallization at depths of 10–11 km. The biotite granites contain both hypersolvus and subsolvus members and are intruded at depths less than 6 km with the more shallow members generating major volumes of ignimbrite. As a marked departure from the characteristics of most anorogenic granites, these melts crystallized at fairly oxidizing conditions (higher for the two-mica suite) as reflected in the composition of biotite, predominance of magnetite over ilmenite, and early appearance of the Fe-Ti oxides in the crystallization sequence.  相似文献   

5.
The Triassic (Indosinian) granites in the South China Block (SCB) have important tectonic significance for understanding the evolution of Eastern Asia. The Dengfuxian biotite granite in eastern Hunan Province, China, reported in this article, was recognized as Late Triassic (late Indosinian) weakly peraluminous A-type granite with a zircon laser ablation inductively coupled plasma mass spectrometry U–Pb age of 225.7 ± 1.6 Ma. It is enriched in F, Cs, Rb, Th, high field strength elements, and rare earth elements (REEs) and depleted in Ba, Sr, P, Ti, Nb, and Ta, with high Ga/Al ratios and zircon saturation temperatures. The Dengfuxian biotite granite shows high initial Sr isotope values (0.715932 to 0.716499) and negative ?Nd(t) (?10.46 to ?9.67) and ?Hf(t) (?9.92 to ?6.29) values, corresponding to the Nd model ages of 1.79 to 1.85 Ga and the Hf model ages of 1.65 to 1.88 Ga. It is proposed that the Dengfuxian biotite granite was derived from high-temperature partial melting of the Palaeoproterozoic lower crust undergoing granulitization. Some Late Triassic A-type granites were recently identified in the SCB with the ages between 202 and 232 Ma. These A-type granites have the same geochemical characteristics and petrogenesis as Dengfuxian A-type granite, and show A2-subtype granite affinity. The Late Triassic A-type granite formed a NE-trending granite belt, which is consistent with the main NE-trending faults in the SCB. The formation of these A-type granites was in response to the subduction of the palaeo-Pacific plate underneath the SCB, and indicates an extensional tectonic environment in the SCB. Combined with previous studies on tectonic evolution, we suggest that there may be a tectonic transition inside the SCB from compression to extension at least from 225 to 230 Ma.  相似文献   

6.
The Strzelin Massif in SW Poland (Central European Variscides) records a protracted igneous evolution, with three main magmatic stages: (1) tonalitic I, (2) granodioritic and (3) tonalitic II/granitic. In the northern part of this Massif, the Strzelin intrusion proper comprises three successively emplaced rock types: a medium-grained biotite granite (303 ± 2 Ma), a fine-grained biotite granite (283 ± 8 Ma) and a fine-grained biotite-muscovite granite; based on field evidence, the third variety postdates both types of the biotite granites. The structural data from the three granites, including their parallel, approximately E–W striking and steeply dipping lithological contacts and ENE–WSW trending subhorizontal magmatic lineations, suggest that the emplacement of all three successive granite varieties was controlled by an active, long-lived strike-slip fault, striking ESE–WNW, with a dextral sense of movement. After the emplacement of the youngest biotite-muscovite granite, the intrusion underwent brittle extension which produced “Q joints” striking NNW–SSE to N–S and dipping at 55–70° WSW to W, and showing evidence of broadly N–S directed sinistral displacements. The structural observations, supported by new geochronological data, indicate that the internal structure of the composite granitoid intrusion, including the faint magmatic foliation and lineation, formed in a long-lived strike-slip setting, different from the subsequent, post-emplacement extensional tectonics that controlled the development of brittle structures.  相似文献   

7.
The crystallization age of Zhaunkar granites (829 ± 10 Ma) was determined by U–Pb zircon dating. Taking into account the data obtained earlier on the granite age (791 ± 7 Ma) in the Aktas Complex and the syenite age (673 ± 2 Ma) in the Karsakpai Complex, the Ulutau sialic massif is assumed to be composed of three igneous complexes formed during the Tonian–Cryogenian periods of the Neoproterozoic.  相似文献   

8.
对乌拉特中旗德尔斯地区黑云母二长花岗岩岩相学、锆石SHRIMP U-Pb年代学和岩石地球化学进行了研究,并讨论了岩石成因及研究区晚海西期构造演化。黑云母二长花岗岩发育两期:早期为中粗粒斑状黑云母二长花岗岩,晚期为中细粒黑云二长花岗岩。岩石中的锆石大部分具核-边结构:边部震荡环带发育,Th/U值为0.16~0.50,反映了岩浆成因;核部呈浑圆状,多数具岩浆环带,个别弱分带-无分带,Th/U值为0.06~0.44,表明核部大部分属岩浆型残留锆石,个别为变质型残留锆石。测年结果显示:边部锆石加权平均年龄为早、中二叠世((279±3) Ma、(266±3) Ma),代表黑云母二长花岗岩形成时代;核部残留锆石加权平均年龄为(1 972±63) Ma 、(1 962±43) Ma,代表源岩的形成时代。岩石属于亚碱性系列,REE配分形式呈右倾型,LREE/HREE为5.86~22.81,明显亏损高场强元素Nb,富集大离子亲石元素Rb、Ba,显示活动大陆边缘火成岩的地球化学特征。黑云母二长花岗岩地球化学属性反映了早、中二叠世古亚洲洋向华北板块北缘的俯冲作用及古亚洲洋消亡的演化历史。  相似文献   

9.
New geological, petrochemical, mineralogical, and geochemical data are presented on the Uspensky granitoid massif in Southern Primorye. The massif consists of the rocks of two associations: (1) the early association (103.3 ± 2.4 Ma) consisting of garnet-bearing biotite and two-mica granite-leucogranites and (2) the late association (99 ± 2 Ma) represented by biotite (±amphibole) granodiorites, melanogranites, and granites. The granitoids of both associations have moderate potassic alkalinity and elevated alumina contents but differ in the proportions of alumina, calcium, and alkalis. The garnet-bearing granite-leucogranites are characterized by the highest Rb, Th, and U contents and the lowest Sr, Ba, Hf, and Zr contents. The REE distribution patterns have a quasi-symmetric shape and deep Eu minimums. The melanogranites show higher Sr and Ba contents and, as granites, are characterized by asymmetric REE spectrums with an insignificant negative Eu anomaly. The porphyraceous granodiorites and granites are peculiar in their lowered Sr and Ba contents, while the granodiorites have lowered contents of K, REE, Zr, Hf, Th, and U; elevated Nb contents; and a distinctive Eu minimum.  相似文献   

10.
皖南及邻区早白垩世中—晚期酸性岩浆岩产于扬子陆块江南古隆起东段,岩体类型为花岗岩、碱长花岗岩及钾长花岗岩。岩体含有丰富的锆石、富F的萤石及富含稀土的磷钇矿、独居石、褐帘石等矿物。主量元素具较高含量的SiO2和K2O,较低含量的TiO2、MgO、CaO,高(Na2O+K2O)/Al2O3值,高FeOT/MgO比;富集REE(Eu亏损),HREE亏损不严重,稀土配分模式表现为海鸥型;明显富集Zr、Nb、Rb、Ta、Y、Yb,显著亏损Cr、Co、Ni、V、Ba、Sr。地化特征分析认为早白垩世中—晚期花岗岩为A2型花岗岩,产生于造山后的伸展环境,是正常安山质地壳在皖南印支期加厚地壳熔融结束之后继续受地幔物质底侵部分熔融所形成。  相似文献   

11.
The Baerzhe alkaline granite pluton hosts one of the largest rare metal (Zr, rare earth elements, and Nb) deposits in Asia. It contains a geological resource of about 100 Mt at 1.84 % ZrO2, 0.30 % Ce2O3, and 0.26 % Nb2O5. Zirconium, rare earth elements (REE), and Nb are primarily hosted by zircon, yttroceberysite, fergusonite, ferrocolumbite, and pyrochlore. Three types of zircon can be identified in the deposit: magmatic, metamict, and hydrothermal. Primary magmatic zircon grains occur in the barren hypersolvus granite and are commonly prismatic, with oscillatory zones and abundant melt and mineral inclusions. The occurrence of aegirine and fluorite in the recrystallized melt inclusions hosted in the magmatic zircon indicates that the parental magma of the Baerzhe pluton is alkali- and F-rich. Metamict zircon grains occur in the mineralized subsolvus granite and are commonly prismatic and murky with cracks, pores, and mineral inclusions. They commonly show dissolution textures, indicating a magmatic origin with later metamictization due to deuteric hydrothermal alteration. Hydrothermal zircon grains occur in mineralized subsolvus granite and are dipyramidal with quartz inclusions, with murky CL images. They have 608 to 2,502 ppm light REE and 787 to 2,521 ppm Nb, much higher than magmatic zircon. The texture and composition of the three types of zircon indicate that they experienced remobilization and recrystallization during the transition from a magmatic to a hydrothermal system. Large amounts of Zr, REE, and Nb were enriched and precipitated during the transitional period to form the giant low-grade Baerzhe Zr–REE–Nb deposit.  相似文献   

12.
The paper discusses the chemical composition and parageneses of fluorides and fluorcarbonates in rocks of the Katugin Complex, with which a unique deposit of REE–Nb–Ta ore with cryolite is associated. In mineralogy and chemical composition, the rocks correspond to biotite, biotite–amphibole, arfvedsonite, and aegirine–arfvedsonite granites, which were regarded in earlier publications as granite-like metasomatic rocks. Aegirine–arfvedsonite granite contains a cryolite–gagarinite assemblage, which reflects depletion of Ca in the mineral-forming medium and enrichment in Na and F. Arfvedsonite granite is characterized by intergrowth of yttrofluorite with fluocerite and gagarinite, which indicates a relative enrichment in Ca and low CO2 content. Biotite granite is characterized by an assemblage of fluorite with titanite, apatite, and monazite as evidence for an elevated Ca concentration along with moderate F and P contents in the system. Neighborite, coulsellite, gagarinite, fluocerite, and tveitite-(Y) appear in biotite–amphibole granite along with replacement of annite with riebeckite and development of albite after microcline. All this indicates that a moderately alkaline Na-fluoride solution with a low Ca concentration affects biotite granite.  相似文献   

13.
对大兴安岭中部五岔沟镇蛤蟆沟林场花岗岩体研究结果表明,蛤蟆沟林场花岗岩体主要岩性组合为碱长花岗岩、黑云母正长花岗岩、黑云母二长花岗岩和花岗斑岩,其LA-ICP-MS锆石U-Pb测年结果为136.97±0.99Ma、135.85±0.78Ma、126.04±0.48Ma和135.87±0.49Ma,表明其形成时代为早白垩世。岩石主量元素具有富硅、富钾的特征,A/CNK值介于0.997~1.05之间,稀土元素相对富集轻稀土元素、亏损重稀土元素,并具有较为明显的Eu负异常,微量元素相对富集大离子亲石元素和高场强元素,贫Ba、Sr、Ti、P,这些特征表明蛤蟆沟林场花岗岩为铝质A型花岗岩,是中下地壳岩石部分熔融的产物,形成于大陆裂谷或板内构造环境(A1型花岗岩),代表了伸展的大地构造背景,可能是受到古太平洋俯冲和蒙古鄂霍次克洋闭合的双重影响。  相似文献   

14.
内蒙古赵井沟大型铌钽矿床地质特征及成因   总被引:8,自引:2,他引:6  
内蒙古武川县赵井沟矿床是近年来在内蒙古中部地区找到的一处大型铌钽矿床.铌钽氧化物储量为8000余吨(钽氧化物含量大于50%),其中,ω(Nb2O5)和ω(Ta2O5)的平均含量为0.011%和0.012%.铌钽矿化主要在早二叠世碱长花岗岩类侵入杂岩体内,呈浸染状和条带状产出,并且构成似层状、脉状和透镜状矿体.研究表明,碱长花岗岩、碱长花岗细晶岩和碱长花岗伟晶岩锆石U-Pb同位素年龄值分别为(277.14±0.82) Ma、(277.0±2.1) Ma和(276.6±2.1) Ma.鉴于铌钽矿化呈浸染状在含矿侵入杂岩体内产出,推测赵井沟矿床的成矿作用与海西期构造-岩浆活动有关.古大陆块体伸展构造条件下,富钠质钙-碱性岩浆作用为铌钽矿床的形成提供了动力和物质来源,而断裂构造为成矿物质沉淀聚集创造了空间条件.赵井沟矿床属富钠的过铝质花岗岩型铌钽矿床.  相似文献   

15.
张鲲 《地质与勘探》2018,54(1):102-111
本文对广西梧州思委银矿区思委岩体中细粒黑云母二长花岗岩进行了系统的锆石U-Pb年代学、岩石地球化学和Hf同位素分析研究,以深入探讨其岩石成因。LA-ICP-MS锆石U-Pb定年获得了思委岩体黑云母二长花岗岩成岩年龄为165±1Ma。思委岩体黑云母二长花岗岩为一套弱过铝质高钾钙碱性系列花岗岩,富集U、K、Pb等元素,亏损Nb、Ta、P、Ti等元素;球粒陨石标准化REE配分模式为右倾斜配分模式,轻重稀土元素分异强烈,富集轻稀土元素,重稀土元素平坦分布。锆石Hf同位素分析花岗岩锆石ε_(Hf)(t)值分布在-15.9~8.7之间,Hf同位素二阶段模式年龄(t2DM)在652~2255Ma之间,表明岩浆源区既有直接源于亏损地幔分异的新生地壳的迅速重熔,也有不同比例的古老地壳的混合作用。花岗岩成岩可能是受古太平洋板块持续俯冲作用影响,焊接板片开裂形成的岩浆上侵。  相似文献   

16.
Mineralization with ion adsorption rare earth elements (REEs) in the weathering profile of granitoid rocks from Nanling region of Southeast China is an important REE resource, especially for heavy REE (HREE) and Y. However, the Jurassic granites in Zhaibei which host the ion adsorption light REE (LREE) ores are rare. It is of peraluminous and high K calc-alkaline composition, which has similar geochemical features of high K2O + Na2O and Zr + Nb + Ce + Y contents and Ga/Al ratio to A-type granite. Based on the chemical discrimination criteria of Eby [Geology 20 (1992) 641], the Zhaibei granite belongs to A1-type and has similar source to ocean island basalts. The rock is enriched in LREE and contains abundant REE minerals including LREE-phosphates and halides. Minor LREE was also determined in the feldspar and biotite, which shows negligible and negative Eu anomalies, respectively. This indicates that the Zhaibei granite was generated by extreme differentiation of basaltic parent magmas. In contrast, granites associated with ion adsorption HREE ores contain amounts of HREE minerals, and show similar geochemical characteristics with fractionated felsic granites. Note that most Jurassic granitoids in the Nanling region contain no REE minerals and cannot produce REE mineralization. They belong to unfractionated M-, I- and S-type granites. Therefore, accumulation of REE in the weathering profile is controlled by primary REE mineral compositions in the granitoids. Intense fractional crystallization plays a role on REE enrichment in the Nanling granitoid rocks.  相似文献   

17.
The authors have studied the geology, geochemistry, petrology and mineralogy of the rare earth elements (REE) occurring in the Western Keivy peralkaline granite massif (Kola Peninsula, NW Russia) aged 2674 ± 6 Ma. The massif hosts Zr- and REE-rich areas with economic potential (e.g. the Yumperuaiv and Large Pedestal Zr-REE deposits), where 25% of ΣREE are represented by heavy REE (HREE). The main REE minerals are: chevkinite-(Ce), britholite-(Y) and products of their metamict decay, bastnäsite-(Ce), allanite-(Ce), fergusonite-(Y), monazite-(Ce), and others. The areas contain also significant quantities of zircon reaching potentially economic levels. We have discovered that behavior of REE and Zr is controlled by alkalinity of melt/solution, which, in turn, is controlled by crystallization of alkaline pyroxenes (predominantly aegirine) and amphiboles (predominantly arfvedsonite) at a late magmatic stage. Crystallization of mafic minerals leads to a sharp increase of K2O content and decrease of SiO2 content that cause a decrease of melt viscosity and REE and Zr solubility in the liquid. Therefore, REE and zirconium immediately precipitate as zircon and REE-minerals. There are numerous pod- and lens-like granitic pegmatites within the massif. Pegmatites in the REE-rich areas are also enriched in REE, but HREE prevails over light REE (LREE), about 88% of REE sum.  相似文献   

18.
The Burpala alkaline massif is a unique geological object. More than 50 Zr, Nb, Ti, Th, Be, and REE minerals have been identified in rare-metal syenite of this massif. Their contents often reach tens of percent, and concentrations of rare elements in rocks are as high as 3.6% REE, 4% Zr, 0.5% Y, 0.5% Nb, 0.5% Th, and 0.1% U. Geological and geochemical data show that all rocks in the Burpala massif are derivatives of alkaline magma initially enriched in rare elements. These rocks vary in composition from shonkinite, melanocratic syenite, nepheline and alkali syenites to alaskite and alkali granite. The extreme products of magma fractionation are rare-metal pegmatites, apatite-fluorite rocks, and carbonatites. The primary melts were related to the enriched EM-2 mantle source. The U-Pb zircon ages of pulaskite (main intrusive phase) and rare-metal syenite (vein phase) are estimated at 294 ± 1 and 283 ± 8 Ma, respectively. The massif was formed as a result of impact of the mantle plume on the active continental margin of the Siberian paleocontinent.  相似文献   

19.
北祁连金佛寺岩体地球化学特征及构造意义   总被引:1,自引:0,他引:1  
金佛寺岩体为北祁连华力西早期形成的一个较大的复式深成岩基,主要岩石类型为二长花岗岩、黑云二长花岗岩和正长花岗岩,为高钾钙碱性岩系,具高钾、高铝和低钛的特点;REE分布模式为弱Eu异常;在Peace的Rb-Y-Nb图解中位于后碰撞花岗岩类区。岩体的同位素锆石U-Pb年龄为345.0±75.0Ma,代表其形成时代为晚泥盆世...  相似文献   

20.
A new LA-ICP-MS crystallization age of 370?±?8 Ma is presented for monzogranite from the Achala batholith, the largest Devonian igneous body in the Sierras Pampeanas, confirming previous U-Pb zircon ages and indicating emplacement within a relatively short episode. Granitic rocks from the central area of the batholith display restricted high SiO2 contents (69.8–74.5 wt.%). Major element plots show ferroan and alkaline-calcic to calc-alkaline compositions with an A-type signature. High concentrations of the high field-strength elements such as Y, Nb, Ga, Ta, U, Th, and flat REE patterns with significant negative Eu anomalies, are also typical of A-type granites. The aluminium saturation index (1.10–1.37) indicates aluminous parent magmas which are further characterised by high FeO/MgO ratios (2.6–3.3) and F contents of igneous biotites (0.9–1.5 wt%), as well as relatively high AlIV (2.39–2.58 a.p.f.u.) in biotites and the occurrence of primary muscovite. Petrogenetic modelling supports a source enriched in plagioclase and progressive fractional crystallization of feldspar. The central area of the batholith displays small-scale bodies composed predominantly of biotite (80 %), muscovite (10 %) and apatite (10 %), yielding rock compositions with 2.3–5.4 wt. % P2O5, and 6–7 wt.% F, together with anomalous contents of U (88–1,866 ppm), Zr (1081–2,581 ppm), Nb (257–1,395 ppm) and ΣREE (1,443–4,492 ppm). Previous studies rule out an origin of these bodies as metasedimentary xenoliths and they have been interpreted as cumulates from the granitic magma. An alternative flow segregation process is discussed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号