首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fractionation of heavy metals (HMs) in amended soils is needed to predict elemental mobility in soil and phytoavailability to plants. A study was conducted to determine the effects of different amendments on HMs availability and their redistribution among soil fractions. A contaminated soil was selected from around a Zn mine and amended with 0, 2, 4, and 6 g kg−1 of vermicompost (VC), zeolite (ZE), and di-ammonium phosphate (DP) and incubated at field moisture. The amounts of Cd, Pb, Zn, and Cu were determined from the soil after 6 months of incubation time using DTPA and sequential extraction procedures. The total concentrations of Cd, Pb, Zn, and Cu were 41, 3,099, 1,997, and 83 mg kg−1 of soil, respectively. All amendments decreased significantly [probability (p) ≤ 0.05] DTPA-extractable Cd, Pb, and Cu, but not Zn, in the soil. For instance, DTPA-extractable Cd, Pb, and Cu decreased by 40, 290, and 20%, respectively, and that of Zn increased by 18% with DP1 (2 g kg−1 of di-ammonium phosphate) application. The concentrations of Pb and Cd decreased mainly in the specifically sorbed (SS) but increased in the amorphous Fe oxide (AFeO) fraction with DP application, indicating redistribution of Pb and Cd in the fractions with less mobility. Lead immobilization by DP was mainly attributed to the P-induced formation of chloropyromorphite, which was identified in the DP treatment using X-ray diffraction technique. It was concluded that DP was the most effective amendment in immobilizing Pb and Cd, though it increased Zn mobility.  相似文献   

2.
Heavy metal pollution in vegetable-growing soils is of increasing concern due to the potential health risk via food chain. The present study aimed at assessing the potential ecological risk (RI) of heavy metals (HMs) in the vegetable-growing soils collected from Fujian Province, China, and identifying the potential sources with multivariable methods including correlation matrix and principal component analysis (PCA). The concentrations of HMs including Pb, Cd, Hg, Cr, As, Cu, Zn, and Ni in 160 soils collected from 25 sites of vegetable-growing land in Fujian Province, China, are measured with inductively coupled plasma mass spectrometry and hydrogen generation-atomic fluorescence spectrometer, respectively. Results show that most of the soil samples have been seriously contaminated with HMs, especially the metals of Hg, Cd, and Pb, compared with both of the background values of soils in Fujian Province and the limitation of total HMs in soil environmental quality for edible agricultural products set in China (HJ 332-2006). The indexes of RI indicate that only 8% of the 25 sites are environmentally safe, whereas according to the present study 28% of the sampling sites are heavily contaminated with HMs with 628–1,076 of the RI values. Based on PCA analysis, Zn, Cd, and Pb associated with PC1 are found to derive from anthropogenic sources, especially the local industrial activities, such as porcelain plants in Dehua, zinc metallurgical plants in Nan’an, and sewage irrigation from industrial estate in Taijiang. The concentrations of As, Ni, and Cu loaded in PC2 are found to be mainly controlled by natural factors (i.e., the lithogenic process of natural parent soils). Hg in PC3 is also found to originate from the anthropogenic sources, such as local coal combustion in Longhai and industrial activities in Cangshan. However, Cr in PC3 is mainly derived from the lithogenic sources.  相似文献   

3.
《Applied Geochemistry》2000,15(4):513-530
Soil samples taken from excavated pits on traverses across New Zealand’s Scott Base, Antarctica, were leached with water and 0.01 M HNO3 and the leachates analysed for Ag, Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. The soils had high conductivity and pH values generally increasing with depth and in the range 8.3–10.1. The water leachate generally contained most of the extractable metals except Mn and Cd, and As. Linear relationships were observed between some metals leached into alkaline solution and the Fe in those solutions. The ratios to Fe were comparable to those of the host basanite, and this observation is interpreted as showing that these metals are incorporated in fine mineral particulates derived directly from the rock mass. Outliers in leachable metal concentrations in the soils indicated appreciable contamination of the soil from anthropogenic sources with Ag, Cd, Cu, Pb and Zn as well as As. In some locations high concentrations of Ag and Cd correspond to specific sources and drainage channels. High concentrations of Pb were widely spread and in the top soil layers whereas the elevated concentrations of Zn were distributed throughout the soil profiles indicating atmospheric sources and different mobilities within the soils. Transport within the soils is evident for some metals, as is lateral movement over and through the soils.  相似文献   

4.
In Korea, soils adjacent to abandoned mines are commonly contaminated by heavy metals present in mine tailings. Further, the disposal of oyster shell waste by oyster farm industries has been associated with serious environmental problems. In this study, we attempted to remediate cadmium (Cd)- and lead (Pb)-contaminated soils typical of those commonly found adjacent to abandoned mines using oyster shell waste as a soil stabilizer. Natural oyster shell powder (NOSP) and calcined oyster shell powder (COSP) were applied as soil amendments to immobilize Cd and Pb. The primary components of NOSP and COSP are calcium carbonate (CaCO3) and calcium oxide (CaO), respectively. X-ray diffraction, X-ray fluorescence and scanning electron microscope analyses conducted in this study revealed that the calcination of NOSP at 770°C converted the less reactive CaCO3 to the more reactive CaO. The calcination process also decreased the sodium content in COSP, indicating that it was advantageous to use COSP as a liming material in agricultural soil. After 30 days of incubation, we found that the 0.1 N HCl-extractable Cd and Pb contents in soil decreased significantly as a result of an increase in the soil pH and the formation of metal hydroxides. COSP was more effective in immobilizing Cd and Pb in the contaminated soil than NOSP. Overall, the results of this study suggest that oyster shell waste can be recycled into an effective soil ameliorant.  相似文献   

5.
Geochemical variations in stream sediments (n = 54) from the Mahaweli River of Sri Lanka have been evaluated from the viewpoints of lithological control, sorting, heavy mineral concentration, influence of climatic zonation (wet, intermediate, and dry zones), weathering, and downstream transport. Compositions of soils (n = 22) and basement rocks (n = 38) of the catchment and those of <180 μm and 180–2000 μm fractions of the stream sediments were also examined. The sediments, fractions, soils and basement rocks were analyzed by X-ray fluorescence to determine their As, Pb, Zn, Cu, Ni, Cr, V, Sr, Y, Nb, Zr, Th, Sc, Fe2O3, TiO2, MnO, CaO, P2O5 and total sulfur contents. Abundances of high field strength and ferromagnesian elements in the sediments indicate concentration of durable heavy minerals including zircon, tourmaline, rutile, monazite, garnet, pyriboles, and titanite, especially in <180 μm fractions. The sediments show strong correlation between Ti and Fe, further suggesting presence of heavy mineral phases containing both elements, such as ilmenite and magnetite. The basement rocks range from mafic through to felsic compositions, as do the soils. The river sediments lack ultrabasic components, and overall have intermediate to felsic compositions. Elemental spikes in the confluences of tributary rivers and high values in the <180 μm fractions indicate sporadic inputs of mafic detritus and/or heavy minerals to the main channel. Al2O3/(K2O + Na2O) and K2O/Na2O ratios of the sediments and LOI values of the soils correlate well with the climatic zones, suggesting intense weathering in the wet zone, lesser weathering in the intermediate zone, and least weathering in the dry zone. Low Sr and CaO contents and Cr/V ratios in stream sediments in the wet zone also suggest climatic influence. Fe-normalized enrichment factors (EFs) for As, Pb, Zn, Cu, Ni and Cr in stream sediments in the main channel are nearly all <1.5, indicating there is no significant environmental contamination. The chemistry of the sediments, rocks and the soils in the Mahaweli River are thus mainly controlled by source lithotype, weathering, sorting, and heavy mineral accumulation.  相似文献   

6.
The geochemistry of major and trace elements (including heavy metals and rare earth elements) of the fresh and weathered black shales, and the soils derived from black shales in the Ganziping mine area in western Hunan province (China) were studied using the following techniques: X-ray fluorescence (XRF), inductively coupled plasma mass spectrometer (ICP-MS) and X-ray diffraction (XRD). The results show that the black-shale soils are significantly enriched with Al2O3 and Fe2O3, and depleted of mobile elements CaO, Na2O and K2O. The soils are also highly enriched with heavy metals U, V, Ni, Ba, Cu, Zn and Pb, that may cause potential heavy-metal contamination of the soils. Composition of the soils is homogeneous compared to the weathered black shales, for which the concentrations of major elements except CaO and Na2O, and trace elements except heavy metals (U, V, Ni, Ba, Cu, Zn and Pb) as well as the mobile Sr, show lower variations than in the weathered black shales. Ratios of Zr/Hf, Ta/Nb, Y/Ho, Nd/Sm, and Ti/(Ti + Zr), of the soils are also less variable, with values constantly similar to that of the fresh and weathered black shales correspondingly. Thus, components of the soils are believed to be contributed from the parent black shales through weathering and pedogenesis. It is concluded that the soils were formed by at least two stages of geochemical processes: the early stage of chemical differentiation and the later stage of chemical homogenization. The chemical differentiation that was taken during black-shale weathering might have caused the depletion of CaO and Na2O, and the enrichment of Al2O3 and Fe2O3; while the chemical homogenization that was taken during pedogenesis led to the depletion of SiO2 and K2O, and to the further enrichment of Al2O3 and Fe2O3. The heavy-metal enrichment (contamination) of the soils was then genetically related to the enrichment of Al2O3 and Fe2O3 in the soils.  相似文献   

7.
This study highlights the heavy metals (HMs) distribution in soils and their uptake by wild plants grown in the soils derived from the mafic and ultramafic terrains. Plant and soil samples were analyzed for Cu, Pb, Zn, Cr, Ni and Cd using atomic absorption spectrophotometer. The data indicate that almost all the HMs in the soil samples collected from the study area exceeded the reference and normal agricultural soils. Greater variability was noticed in the uptake of HMs by various plants grown on the studied soils. High concentrations of Cu and Zn in Cannabis sativa L. (seft hemp), Pb in Ailanthus altissima (Mill.) (Ailanto), Ni and Cr in Indigofrra gerardiana Wall. ex Baker (sage), and Saccharum griffihii Munro ex Boiss. (plume grass) were noticed among the studied plants. The multifold enrichments of Cr and Ni in the Indigofrra gerardiana and Saccharum griffihii as compared to the other plants of the study area suggested that these plants have the ability to uptake and translocate high concentrations of Cr and Ni. The excessive concentrations of Cr and Ni in these plants can be used for mineral prospecting but their main concern could be of serious environmental problems and health risks in the inhabitants of the study areas.  相似文献   

8.
Due to the rapid urbanization and industrialization that has occurred in China over the last few decades, metals have been continuously emitted into the urban environment and now pose a serious threat to human health. Indeed, there is a growing concern over the potential for pollution of urban soils with heavy metals. Therefore, an extensive soil survey was conducted in urban areas of Changchun, China, to evaluate the current status of heavy metal contamination in soils and to evaluate its potential sources. A total of 352 samples of urban soils were collected from urban areas of Changchun using a systematic sampling strategy in which one sample per km2 was taken (0 ~ 20 cm). The levels of Cu, Pb, Zn and the major elements (Mn, Al2O3, CaO, Fe2O3, MgO, SiO2, K2O and NaO) were then determined by X-Ray fluorescence spectrometry (XRF), while the level of Cd was determined by graphite furnace atomic absorption spectrometry (GF-AAS), and the Hg and As concentrations were determined by atomic fluorescence spectroscopy (AFS). The results indicated that, when compared with the background values of topsoil in the Changchun region, the topsoil in urban areas were enriched with metals, particularly Cu, Cd, Zn, Pb and Hg. The results of correlation coefficient analysis showed that Hg, As, Cd, Cu, Pb and Zn were significantly positive correlated with each other, while Cr and Mn formed another group. Moreover, significantly positive correlations were observed between pH and Zn, Pb, Cu, Cd, As and Hg, indicating that pH influences the distributions of these metals in urban soils in Changchun. Principal component analysis (PCA) was conducted to identify sources of heavy metals and the results revealed distinctly different associations among the trace metals and the major elements in the urban soils. The concentration of Cr appeared to be controlled by the parent material (natural sources), while Cu, Pb and Zn were mainly from vehicle emissions, with Zn primarily coming from vehicle tires. Additionally, Hg and As primarily originated from coal combustion, while Cd was mainly associated with industrial sources. According to the pollution index (PI) of each metal, the overall levels of metal pollution were not especially high, but there were clearly contaminated sites concentrated in the central and northeast portion of the studied region. The Nemerow integrated pollution index (NIPI) of the seven metals also indicated that urban soils in Changchun city were classified as having low level of pollution.  相似文献   

9.
The levels and depth distributions of As, Cd, Cu, Zn, Pb, Hg, Fe and Mn in two sediment cores DY2 and DY4 collected from the "Cattle Pond" of Dongdao Island, South China Sea, were determined and analyzed with the main objective to identify the sources of these elements and evaluate the corresponding sedimentological and geochemical processes. Lithological characters and sedimentary parameters such as LOI950℃, CaO, LOI550℃ and TOC indicate that the depth of 96 cm and 87 cm are the critical points for DY2 and DY4 cores, respectively. As, Cd, Cu, Zn, Hg and P are remarkably enriched in the ornithogenic sediments above the critical depth points; their concentration-versus-depth profiles are similar to those of TOC and LOI550℃; the ratios of As, Cd, Cu, Zn, Hg over Ca are significantly correlated with P/Ca. Statistical and comparative analyses of these elements' levels in the ornithogenic sediments of DY2 and DY4 strongly suggest that seabird droppings are the main source of these elements. Additionally, for the upper sediment layers of DY2 and DY4 cores, Fe oxide sorption mechanism, like organic matter, may also play an important role in the abundances of heavy metals. Heavy metal Pb has geochemical characteristics distinctly different from those of As, Cd, Cu, Zn, Hg and P, and its isotope composition indicates an origin of anthropogenic emissions from the surrounding countries. These geochemical characteristics in the orinithogenic sediments of Xisha Islands are compared with the studies in the remote Antarctic and Arctic regions.  相似文献   

10.
Heavy grazing is recognized as one of the main causes of vegetation and soil degradation and desertification in the semiarid Horqin sandy grassland of northern China. Soil physical and chemical properties were examined under continuous grazing and exclusion of livestock for 8 years in a representative desertified sandy grassland. Exclosure increased the mean soil organic C, total N, fine sand and silt + clay contents, inorganic C (CaCO3), electrical conductivity, and mineral contents (including Al2O3, K2O, Na2O, Fe2O3, CaO, MgO, TiO2, MnO), microelements (Fe, Mn, Zn, B, Cu, Mo), and heavy metals (Pb, Cr, Ni, As, Hg, Cd, Se), and decreased the coarse sand content, bulk density, and SiO2 in the top 100 cm of the soil. Livestock exclusion also improved available N, P, K, Fe, Mn, and Cu, exchangeable K+, and the cation exchange capacity, but decreased pH, exchangeable Na+, and available S, Zn, and Mo in the top 20 cm of the soil. The greatest change in soil properties was observed in the topsoil. The results confirm that the desertified grassland is recovering after removal of the livestock disturbance, but that recovery is a slow process.  相似文献   

11.
Various extraction procedures were employed for measuring extractable concentrations of potential toxic elements in soil. The extractability of Cd, Cu, Pb and Zn in four contaminated and four non-contaminated soils of Japan, was compared by single extraction (CaCl2, DTPA, NH4Cl, 0.1 M HCl and 1 M HCl ) and sequential extraction procedures [(six operationally defined chemical phases, viz. water soluble (Fl), exchangeable (F2), carbonate (F3), oxide (F4), organic (F5) and residual (F6) fractions)]. Extractability of metals from soils samples varied depending on metals and/or extradants used. Among the extradants, 1 M HCl extracted the largest proportion of Cd (79 to 96% of total), Cu (61 to 83%), Pb (51 to 99%) and Zn (23 to 52%) from soils followed by 0.1 M HCl, NH4Cl, DTPA and CaCl2. In all the extradants, the proportion of extractability of metals was higher in the contaminated soils than the non-contaminated soils. Regardless of soils and extradants, relative extractability was higher for Cd as compared to other three metals. The use of 1 M HCl may be recommended for first-level screening of soil contamination with heavy metals. The other four weak extradants are believed to provide a better assessment of bioavailable/mobile metals content in soils than 1 M HCl extradant. However, 0.1 M HCl mobilized all four metals irrespective of soil types, therefore, might be the best choice if only one extradant is to be used. The sequential extraction procedures showed 22 to 64% of total Cd was in the mobile fraction (sum of Fl to F3), while the corresponding values for Cu, Pb and Zn in this fractions were 2 to 23% suggesting higher mobility of Cd than other three metals. The single extraction procedures are simple and easy to perform and obtained results are comparable with sequential extraction procedure.  相似文献   

12.
Based on multidimensional statistical models that connect the levels of contents of heavy metals and metalloids in the soils of the Eastern Administrative Okrug of Moscow with landscape and anthropogenic factors, a comparative estimation of the capacity of the complex geochemical barriers in the surface layers of urban and background soils is carried out. The share of heavy metals fixed in the urban soils due to the technogenous transformation of their physical and chemical properties, which amounted to 40–50% of the total content for Bi, Pb, Cd, Sb, As, and up to 26–30% for Zn and Cu, is calculated. The growth in the content of Bi, Sb, As, Cu, Pb, and Zn in urban soils is caused by an increase in the quantity of iron and manganese oxides. The increase in the content of Sb, As, and Pb is related to organic matter; and the rise in Bi, Cd, and Cu has resulted from the increasing amounts of the silt and clay particles in the soils, which indicates the leading role of sorption geochemical barriers. Cu, Zn, and Cd also accumulate on alkaline barriers.  相似文献   

13.
为了解包头市典型工业企业对其所在地土壤中重金属含量的影响及污染现状,利用相关性系数对其表层土壤中7种重金属(Cu、Zn、Pb、Cr、Cd、Mn、Ni)来源进行研究,并采用内梅罗综合污染指数法和潜在生态危害指数对其污染状况进行评价。结果表明,7种重金属含量平均值均高于内蒙古土壤背景值,其中Cd、Mn、Ni超标率已达100%,而Cu、Pb、Zn的超标率分别为97%、93%和93%,只有Cr超标率较低(53%),污染程度依次为CdPbCuNiZnMnCr,其中Pb和Cd为重度污染,Cu、Zn、Ni为中度污染,Cr、Mn为轻度污染;Cu、Zn、Cr、Mn、Ni可能同时来自工业生产和交通运输两个源,而Pb和Cd除上述来源外,燃煤烟气的排放有较大贡献。潜在生态危害依次为CdPbCuNiCrZnMn,其中Cd的潜在生态风险最大,应予以高度重视,其他金属的风险均为轻微。  相似文献   

14.
烂泥塘矿床是云南香格里拉地区典型的斑岩型铜矿床,主矿体产于在地表以下300~500米,地表矿化带仅见脉状铜矿体和铜矿化体.为研究云南香格里拉烂泥塘斑岩铜矿床的原生晕异常结构,本文以异常结构模式理论和方法为基础,对矿床地表和坑道岩矿石样品开展了元素组合、异常特征和水平分带规律研究.结果表明,烂泥塘铜矿床地球化学系统的结构...  相似文献   

15.
Geochemical works were conducted on anthropogenically effective lithologic unit exposing along the Susanoglu coast in Mersin, Turkey. For this purpose, beach sand sediments from 33 stations were collected and heavy metal and oxide concentrations were analyzed. To determine the source of heavy metals (natural and anthropogenic), simple and multivariate statistical analyses were applied. According to factor analysis, three factors were determined. The first factor consists of SiO2, Al2O3, Na2O, K2O, TiO2, Cr, Ni, Cu and Mo and total variance is explained with 27.502% and expressed as “natural process factor”. These elements (Cr, Ni, Cu, Mo) are closely associated with geogenic materials and came from same sources of ultrabasic rocks (ophiolite). The second factor consists of CaO, MgO, TiO2, MnO, Ni, Pb, Zn and W and total variance is explained with 21.505% and expressed as “anthropogenic factor”. These elements (Pb, Zn, Cd, V, W) are anthropogenic and are mainly due to the effluent or industrial input/activities and came from different sources of pollution in the study area. The third factor consists of Pb, Cd and Sb and total variance is explained with 9.748% and expressed as “intermediate factor”. The factor analysis and the cluster analysis are in support of each other. Cr, Ni, Co, Cd, Hg and Mo concentrations are greater than Turkish acceptable values and they show toxic effect. Al, Cu, Pb, Cd and Mo concentrations in beach sand deposits in the Susanoglu coast are found as 1.44, 1.26, 1.21, 1.02 and 1.04 mg/kg and higher than those in Kızkalesi beach sands. However, all other heavy metal contents are determined in low concentrations.  相似文献   

16.
Irrigation by treated wastewater (TWW) can pollute the soil by different organic and inorganic compounds. The pollution level can depend on the irrigation period, soil nature, and wastewater characteristics. Since 1989, the Zaouit Sousse area (central Tunisian) has been irrigated by treated wastewater. The irrigation period and the mineralogy of soil composition change from one locality to another in Zaouit Sousse area. In this work, we are interested in organic compounds, polycyclic aromatic hydrocarbons (PAHs), and heavy metals (HMs) evolution. One control soil (S1) and four irrigated areas soil (S2, S3, S4, and S5) were chosen. The soil samples differ by the irrigation period and soil characteristics. Total PAHs content in control soil was 66.2 ng?g?1 and in irrigated areas were between 46.23 and 129.51 ng?g?1. The PAHs content in irrigated soil, except S5 which has been irrigated with wastewater for 20 years and contains the highest clay fraction percent, decreased with the irrigation period (from 0 to 20 years). The microbial degradation may decrease the PAHs concentrations in the soil thanks to bacterium brought by TWW and the important soil permeability. Concentration of heavy metals ranged from 24 to 1,320 μg?L?1. The HMs (Cu, Cr, Zn, Fe, Ni, Pb, and Cd) contents decreased with the irrigation period (from 10 to 20 years). So, following the PAHs aerobic bio-degradation, this organic compound discharges their absorbed heavy metals which leached to deeper levels. The Cr, Cu, Al, Zn, and Cd mobility depend on the clay yield too. However, the PAHs and Pb mobility are also related to humic substance quantities. Cr and Cu have affinities both to clay and humic substance quantities.  相似文献   

17.
All varieties of base metal sulphide deposits may be classified using base metal ratios viz. Copper Ratio (CR=100Cu/{Cu+Zn}), Zinc Ratio (ZR=100Zn/{Zn+Pb}) and Lead Ratio (PR=100Pb/{Pb+Cu}). Based on this ore group classification an attempt has been made to identify ore groups present in the late Archaean volcanic associated Ingaldhal Sulphide Deposit (ISD) of Karnataka Craton. Using base metal ratios (CR, ZR and PR) five distinct fields are suggested: Cu, Cu-Zn, Cu-Zn-Pb, Zn-Cu and Zn-Cu-Pb/Zn-Pb-Cu with their associated geological and geochemical characteristics. A transitional change in the ore groups is observed from the North Block (Cu rich groups; CR>50) to South Block (Zn and Pb dominated groups; CR<50) and the Main Block is represented by all the five ore groups.This classification may be useful as a pointer in the exploration of polymetallic base metal deposits. Copper rich groups (Cu, Cu-Zn and Cu-Zn-Pb) exhibit high concentration of Bi and Co, and low CaO and Cd whereas the Zn rich groups (Zn-Cu and Zn-Cu-Pb/Zn-Pb-Cu) show high CaO and Cd, and low Bi and Co. The CR of most of the ore groups exhibit a sympathetic relation with Co and Ag. A preliminary attempt has been made for better understanding of ore group genesis of ISD by integrating ore group characteristics with deduced geothermometry.  相似文献   

18.
通过采集南宁市郊农田中玉米、蔬菜、水稻可食部分及其根系土150组,研究重金属元素在不同土壤-农作物系统中迁移特征及其影响因素,结果表明:根系土中Hg、Cd、Cr、Cu、Ni、Pb、Zn平均含量分别为0.116、0.202、56.76、22.12、14.49、25.18和56.28 mg·kg-1。农作物对应平均含量分别为0.001 1、0.037、0.054、1.153、0.205、0.011和9.37 mg·kg-1。根系土富集因子表明Cd受到不同程度人为活动影响,Cr和Ni主要受地质背景控制;不同作物系统元素富集因子表明Pb在土壤-农作物系统中迁移能力最低,Zn迁移能力最强。Cd、Cr、Cu、Ni、Pb和Zn在土壤-水稻系统重迁移能力显著高于蔬菜和玉米。根系土中pH、CaO、有机质、Fe2O3、K2O、MgO与重金生物富集系数呈显著性负相关,但在土壤-叶类蔬菜系统中根系土中K2O、MgO与Hg生物富集系数呈显著正相关。   相似文献   

19.
多壁碳纳米管固相萃取快速检测水样中铅镉铜铁   总被引:1,自引:1,他引:0  
传统的固相萃取填料应用于环境样品的重金属处理过程中,存在pH不稳定和不同极性萃取物共同萃取较为困难等方面的不足,因此寻找新型固相萃取填料显得尤为重要。本文采用多壁碳纳米管填充固相萃取柱,萃取水中金属元素铅、镉、铜和铁,采用石墨炉原子吸收光谱法测定铅和镉,电感耦合等离子体发射光谱法测定铜和铁。实验考察了多壁碳纳米管的性质、溶液pH值、洗脱溶液、样品流速以及基体效应对测定结果的影响。结果显示:溶液pH=9,1 mol/L硝酸为洗脱溶液,样品流速为2 mL/min时,外径8 nm未修饰的多壁碳纳米管有较好的萃取效率,对溶液中铅、镉、铜和铁的最大吸附容量分别为44.91、42.31、54.68和49.07 mg/g,四种元素的吸附容量均衡;钾、钠、钙、镁离子以及苯和甲苯等基质对四种金属元素的萃取影响不大。方法回收率为95.3%~99.5%,精密度(RSD,n=7)为1.2%~3.2%。本方法采用外径8 nm的多壁碳纳米管固相萃取,与传统萃取方法相比,富集效果好、回收率较高,而且操作简便、准确度高;与前人采用外径20~30 nm的多壁碳纳米管的性能相比,镉和铜的吸附容量更高,还可实现对铁的吸附,且铅、镉、铜和铁四种元素的吸附容量均衡,更适合用于检测水样中的金属元素。  相似文献   

20.
浙北地区土壤元素有效量及其影响因素研究   总被引:7,自引:0,他引:7       下载免费PDF全文
浙江省北部地区调查研究表明,受成土母质来源、土壤类型及其理化性质等因素的影响,土壤元素全量、有效量及其有效度表现为:1)低山丘陵岗地土壤中As,Cd,Mo,Pb和Se全量较高,As,Cd,Fe,Pb,Se和Zn有效量较高;而山前平原区土壤中Hg,Pb和Zn元素全量较高,由地表向深部的下降递度较小,显示为原始沉积成因特点。2)中酸性、富含有机质的红壤和水稻土中As,Cd,Cu,Fe,Mn,Pb,Se,Zn等元素有效度较高,水稻土Hg有效度最低;弱碱性或碱性、贫有机质的潮土和滨海盐砂土中As,Cd,Cu,Fe,Mn,Pb,Se,Zn等元素有效量较低,但B有效量及有效度均较高。3)统计分析表明,土壤中Mn,Cu,Zn,Mo,Cd,Pb,Se等元素全量与有效量间具显著正相关性,表明全量是有效量的重要影响控制因素;有机质含量与Fe,Cu,Zn,Cd,As和Pb有效度间为显著正相关,说明有机质较高有利于土壤元素活化;Fe,Cu,Zn,Cd,As,Pb和Se有效度与pH值为显著负相关,表明土壤酸性增强(酸化)会增加这类元素的生物有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号