首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
The Hongdonggou Pb-Zn polymetallic ore deposit,located in the southwestern part of the Luanchuan Mo-W-Pb-Zn-Ag polymetallic ore mineralization in Henan Province,China,is an important part of the East Qinling metallogenic belt.The orebodies in the deposit,which are vein,bedded and lenticular,are mainly hosted in the syenite porphyry,and formed within the carbonate and clastic rocks of the Yuku and Qiumugou formations partially.The genesis of the deposit has previously been argued to be of hydrothermal-vein type or of skarn-hydrothermal type.In this study,we report the results of Rb-Sr isotopic dating based on sphalerites from the main orebody of the Hongdonggou Pb-Zn polymetallic ore deposit,which yield an isochron age of 135.7 ± 3.2 Ma,constraining the timing of mineralization as early Cretaceous.The age is close to those reported for the Pb-Zn deposits in the Luanchuan ore belt.The(~(87)Sr/~(86)Sr),values of the sphalerites(0.71127 + 0.00010) are lower than that of terrigenous silicates(0.720) and higher than the mantle(0.707),suggesting that the metallogenic components were mainly derived through crust-mantle mixing.Combining the results from this study with those from previous work,we propose that the Hongdonggou Pb-Zn polymetallic ore deposit is a hydrothermal-vein deposit associated with the early Cretaceous tectonothermal event,and the mineralization is controlled by NWand near EW-trending faults in the Luanchuan Mo-W-Pb-Zn-Ag polymetallic ore concentration belt.  相似文献   

2.
Iron–nickel-laterite deposits in the Balkan Peninsula and Turkey, located in the Mirdita–Sub-Pelagonian and Pelagonian geotectonic zones, extending into the Anatolides zone are a major source of nickel. Repeated marine transgression and regression, and the multistage development of allochthonous laterite deposits by re-working and re-deposition in a shallow sea environment are demonstrated by the alternation of Fe–Ni-laterite layers within marine sequences.Geochemical study of these Fe–Ni laterite deposits shows that arsenic contents are generally low, ranging from less than 2 to a few tens of ppm. However, in the Aghios Ioannis deposit, Lokris, Central Greece As varies significantly and attains values up to 0.26 wt.% As and in the Gordes deposit of W. Turkey, the As content ranges from 0.004 to 1.07 wt.% As (average 0.34), reaching values up to 1.94 in the hematite zone. Investigation of the mineral chemistry (SEM-EDS) shows that goethite is the main host of As, ranging between 0.5 and 1.2 wt.% As2O3 in the Aghios Ioannis deposit, and between 1.2 to 6.9 wt.% As2O3 in the Gordes deposit, whereas, in co-existing calcite As was not detectable. Goethite occurs in fine-grained porous and concretionary, concentric textures. As values are higher in concretionary goethite. Positive correlation (r > 0.74) between As and Al2O3, TiO2 and ∑ REE contents in the laterite deposits of Greece, coupled with the As-enrichment only in certain laterite deposits points to post depositional As-enrichment.Assuming that high pH facilitates the adsorption of As by goethite, due to its high surface area and low values of the activation energy of adsorption (literature data) As-adsorption by goethite is considered to play an important role in its retention. Elevated As-contents in goethite (Fe-oxides) in Fe–Ni-laterites of Greece and Turkey, due to its absorption capacity, are considered to be of particular significance in the remediation of aquifer and soil contamination rather than being a source of environmental risk.  相似文献   

3.
Epidote-bearing porphyritic dikes (whole rock analysis: SiO2?=?55–65 wt. %, MgO <2.1 wt. %, K2O <2.5 wt. %, Al2O3 >17 wt. %, Na2O + K2O?=?5.7–9.4 wt. %) situated in the continental margin zone, the Middle Urals, Russian Federation have been dated using SHRIMP U-Pb zircon techniques and give a Middle Devonian age of 388?±?2 Ma and 389?±?6 Ma. The porphyries contain phenocrysts of magmatic epidote (Ps?=?17–25 %), Ca- and Mn-rich (CaO >9 wt. %; MnO >6 wt. %) almandine garnet, Al-rich (Al2O3?=?12–16 wt. %) amphibole, titanite, plagioclase, biotite, muscovite, apatite, and quartz. 60 to 70 % groundmass of the porphyritic dikes consists of fine-grained albite, quartz, and K-feldspar. A variety of thermobarometric estimations, plus comparison with published experimental data indicate that the phenocryst assemblage was stable between 5 and 11 kbar and 690 to 800 °C. Oxygen fugacity was close to or greater than logfo2 = Ni-NiO + 1. Later stage formation of the quartz-feldspar groundmass took place at hypabyssal conditions, corresponding to 1 to 2 kbar and 660 to 690 °C. The porphyritic dikes are metaluminous to slightly peraluminous (ACNK?=?0.7–1.17). They are enriched in REE and depleted Nb and Ti. They show features typical of subduction-related magmas. Chemical composition and isotopic ratios of 86Sr/87Sri?=?0.709–0.720 suggest that both mantle- and deep crustal-derived materials were involved in their petrogenesis.  相似文献   

4.
A new picromerite-group mineral, nickelpicromerite, K2Ni(SO4)2?·?6H2O (IMA 2012–053), was found at the Vein #169 of the Ufaley quartz deposit, near the town of Slyudorudnik, Kyshtym District, Chelyabinsk area, South Urals, Russia. It is a supergene mineral that occurs, with gypsum and goethite, in the fractures of slightly weathered actinolite-talc schist containing partially vermiculitized biotite and partially altered sulfides: pyrrhotite, pentlandite, millerite, pyrite and marcasite. Nickelpicromerite forms equant to short prismatic or tabular crystals up to 0.07 mm in size and anhedral grains up to 0.5 mm across, their clusters or crusts up to 1 mm. Nickelpicromerite is light greenish blue. Lustre is vitreous. Mohs hardness is 2–2½. Cleavage is distinct, parallel to {10–2}. D meas is 2.20(2), D calc is 2.22 g cm?3. Nickelpicromerite is optically biaxial (+), α?=?1.486(2), β?=?1.489(2), γ?=?1.494(2), 2Vmeas =75(10)°, 2Vcalc =76°. The chemical composition (wt.%, electron-microprobe data) is: K2O 20.93, MgO 0.38, FeO 0.07, NiO 16.76, SO3 37.20, H2O (calc.) 24.66, total 100.00. The empirical formula, calculated based on 14 O, is: K1.93Mg0.04Ni0.98S2.02O8.05(H2O)5.95. Nickelpicromerite is monoclinic, P21/c, a?=?6.1310(7), b?=?12.1863(14), c?=?9.0076(10) Å, β?=?105.045(2)°, V?=?649.9(1) Å3, Z?=?2. Eight strongest reflections of the powder XRD pattern are [d,Å-I(hkl)]: 5.386–34(110); 4.312–46(002); 4.240–33(120); 4.085–100(012, 10–2); 3.685–85(031), 3.041–45(040, 112), 2.808–31(013, 20–2, 122), 2.368–34(13–3, 21–3, 033). Nickelpicromerite (single-crystal X-ray data, R?=?0.028) is isostructural to other picromerite-group minerals and synthetic Tutton’s salts. Its crystal structure consists of [Ni(H2O)6]2+ octahedra linked to (SO4)2? tetrahedra via hydrogen bonds. K+ cations are coordinated by eight anions. Nickelpicromerite is the product of alteration of primary sulfide minerals and the reaction of the acid Ni-sulfate solutions with biotite.  相似文献   

5.
The black shale-hosted selenide vein-type deposit at Tilkerode, eastern Harz, Germany, has specular hematite enclosed in clausthalite (PbSe). The specular hematite has Ti and V in amounts of up to ~1 wt.% TiO2 and ~3 wt.% V2O5, and subordinate, but important, contents of Mo (22–372 ppm) and B (up to 68 ppm). The Tilkerode hematite serves as a reference for hydrothermal hematite formed at relatively low temperatures (<150 °C). The composition of the Tilkerode hematite is compared with that of two generations of specular hematite from itabirite-hosted iron-ore deposits in the Quadrilátero Ferrífero of Minas Gerais, Brazil. The first generation of specular hematite represents an early tectonic hematitisation of dolomitic itabirite at Águas Claras and occurs as fine-grained crystals. Reconnaissance data indicate that the Águas Claras hematite is poorer in Ti and V, relative to the Tilkerode hematite, but has ~5–10 ppm B and ~7–11 ppm Li. The second generation of specular hematite defines the pervasive tectonic foliation of the Gongo Soco iron ore. This hematite has Ti contents of up to ~2 wt.% TiO2 and subordinate amounts of V (62–367 ppm); its B and Li concentrations are mostly below <2 ppm B and <1 ppm Li. The presence of Ti and B in the Tilkerode hematite can be explained by highly saline, B-bearing fluids that were capable of mobilising otherwise immobile Ti. The Mo signature of the Tilkerode hematite suggests that Mo was derived from the host black shale. In Minas Gerais, B and Li were incorporated into the early tectonic hematite from saline fluids at relatively low temperatures (Águas Claras) and then released during metamorphic hematite growth at higher temperatures, as suggested by the foliation-defining hematite without B–Li signature (Gongo Soco).  相似文献   

6.
The medium-tonnage Sarsuk polymetallic Au deposit is located in the Devonian volcanic–sedimentary Ashele Basin of the south Altay Orogenic Belt (AOB), Northwest China. Within the deposit, the rhyolite porphyries and diabases are widespread, emplaced into strata. The orebodies are hosted by the rhyolite porphyries. We studied the petrography, geochemistry, and Sr–Nd–Hf isotopes of the rhyolite porphyries and diabases, in order to understand the petrogenesis of these rocks and their tectonic significance. They display typical bimodality in geochemistry compositions. The diabases are characterized by SiO2 contents of 44.84–59.77 wt.%, high Mg# values (43–69), enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), depletion in Nb and Ta, low (87Sr/86Sr)i (0.706687–0.707613) values, positive εNd(t) (4.8–6.8) values, and positive and high εHf(t) (7.15–15.19) values, suggesting a depleted lithosphere mantle source that might have been metasomatized by subduction-related components. The rhyolite porphyries show affinity to sanukitoid magmas contents [high SiO2 (78.6–81.82 wt.%) and MgO (3.38–5.94 wt.%, one sample at 0.61 wt.%), and enrichments in LILE and LREE], they were derived from the equilibrium reactions between a mantle source and subducted oceanic crust materials. Those characteristics together with the positive εNd(t) (4.1–8.4) and εHf(t) (2.88–15.17) values indicate that the diabases and rhyolite porphyries were generated from the same mantle peridotite source. But the rhyolite porphyries underwent fractional crystallization of Fe–Ti oxides, plagioclase, and apatite due to their negative Eu (δEu = 0.21–0.28) and P anomalies. According to the geochemical and isotopic data, the Sarsuk Middle Devonian igneous rocks are considered to be the products of the juvenile crustal growth in an island arc setting. The Sarsuk polymetallic Au deposit formed slightly later than the Ashele Cu–Zn deposit in the Ashele Basin, but they have the same tectonic setting, belonging to the trench–arc–basin system during extensional process in the south AOB.  相似文献   

7.
We investigate the geology of Altar North (Cu–Au) and Quebrada de la Mina (Au) porphyry deposits located in San Juan Province (Argentina), close to the large Altar porphyry copper deposit (995 Mt, 0.35% Cu, 0.083 g/t Au), to present constraints on the magmatic processes that occurred in the parental magma chambers of these magmatic-hydrothermal systems. Altar North deposit comprises a plagioclase-amphibole-phyric dacite intrusion (Altar North barren porphyry) and a plagioclase-amphibole-biotite-phyric dacite stock (Altar North mineralized porphyry, 11.98 ± 0.19 Ma). In Quebrada de la Mina, a plagioclase-amphibole-biotite-quartz-phyric dacite stock (QDM porphyry, 11.91 ± 0.33 Ma) crops out. High Sr/Y ratios (92–142) and amphibole compositions of Altar North barren and QDM porphyries reflect high magmatic oxidation states (fO2 = NNO +1.1 to +1.6) and high fH2O conditions in their magmas. Zones and rims enriched in anorthite (An37–48), SrO (0.22–0.33 wt.%) and FeO (0.21–0.37 wt.%) in plagioclase phenocrysts are evidences of magmatic recharge processes in the magma chambers. Altar North and Quebrada de la Mina intrusions have relatively homogeneous isotopic compositions (87Sr/86Sr(t) = 0.70450–0.70466, εNd(t) = +0.2 to +1.2) consistent with mixed mantle and crust contributions in their magmas. Higher Pb isotopes ratios (207Pb/204Pb = 15.6276–15.6294) of these intrusions compared to other porphyries of the district, reflect an increase in the assimilation of high radiogenic Pb components in the magmas. Ages of zircon xenocrysts (297, 210, 204, 69 Ma) revealed that the magmas have experienced assimilation of Miocene, Cretaceous, Triassic and Carboniferous crustal rocks.Fluids that precipitated sulfides in the Altar deposit may have remobilized Pb from the host rocks, as indicated by the ore minerals being more radiogenic (207Pb/204Pb = 15.6243–15.6269) than their host intrusions. Au/Cu ratio in Altar porphyries (average Au/Cu ratio of 0.14 × 10?4 by weight in Altar Central) is higher than in the giant Miocene porphyry deposits located to the south: Los Pelambres, Río Blanco and Los Bronces (Chile) and Pachón (Argentina). We suggest that the increase in Au content in the porphyries of this region could be linked to the assimilation of high radiogenic Pb components in the magmas within these long-lived maturation systems.  相似文献   

8.
The Yuchiling Mo deposit is a recently discovered giant porphyry system in the East Qinling Mo belt, China. Its apparent causative intrusion, i.e., the Yuchiling granite porphyry, is the youngest intrusion (phase 4) of the Heyu multiphase granite batholith, which was emplaced between 143 and 135 Ma. New robust constraints on the formation of the Yuchiling porphyry Mo system are provided by combined zircon U–Pb, biotite 40Ar/39Ar, and molybdenite Re–Os dating. Zircon grains from the Mo-mineralized granite porphyry yield weighted 206Pb/238U age of 134.0?±?1.4 Ma (n?=?19, 2σ error, MSWD?=?0.30). Magmatic biotite from the same sample yield a 40Ar/39Ar plateau age of 135.1?±?1.4 Ma (2σ error), and an inverse isochron age of 135.6?±?2.0 Ma (n?=?7, 2σ error, MSWD?=?10.8), which are effectively coincident with the zircon U–Pb age within analytical error. Three pulses of mineralization can be deduced from the molybdenite Re–Os ages, namely: ~141, ~137, and ~134 Ma, which agree well with the zircon U–Pb ages of granitic phases 1, 2, and the Yuchiling porphyry (phase 4), respectively. These well-constrained temporal correlations indicate that Mo mineralization was caused by pulses of granitic magmatism, and that the ore-forming magmatic-hydrothermal activity responsible for the Yuchiling porphyry Mo system lasted about 8 Ma. The Yuchiling Mo deposit represents a unique style of porphyry Mo system formed in a post-collision setting, and associated with F-rich, high-K calc-alkaline intrusions, which differ from convergent margin-associated porphyry Mo deposits.  相似文献   

9.
Babingtonite, Ca2Fe2+Fe3+[Si5O14(OH)] (Z?=?2, space group $ P\overline{1} $ ) from Yakuki mine (Japan), Grönsjöberget (Sweden), Kandivali Quarry (India), Baveno Quarry (Italy), Bråstad Mine (Norway), and Kouragahana (Japan), and manganbabingtonite, Ca2(Mn2+, Fe2+)Fe3+[Si5O14(OH)], from Iron Cap mine (USA) were studied using electron-microprobe analysis (EMPA), 57Fe Mössbauer analysis and single-crystal X-ray diffraction methods to determine the cation distribution at M1 and M2 and to analyze its effect on the crystal structure of babingtonite. Although all studied babingtonite crystals are relatively homogeneous, chemical zonation due to mainly Fe ? Mn substitution is observed in manganbabingtonite. Mössbauer spectra consist of two doublets with isomer shift (I.S.)?=?1.16–1.22 mm/s and quadrupole splitting (Q.S.)?=?2.33–2.50 mm/s and with I.S.?=?0.38–0.42 mm/s and Q.S.?=?0.82–0.90 mm/s, assigned to Fe2+ and Fe3+ at the M1 and M2 octahedral sites, respectively. The determined ratio of Fe2+/total Fe in manganbabingtonite (0.26) was smaller than that in the others (0.35–0.44) because of high Mn2+ content instead of Fe2+. The unit-cell parameters of babingtonite are a?=?7.466–7.478, b?=?11.624–11.642, c?=?6.681–6.690 Å, α?=?91.53–91.59, β?=?93.86–93.94, γ?=?104.20–104.34º, and V?=?560.2–562.3 Å3, and those of manganbabingtonite are a?=?7.4967(3), b?=?11.6632(4), c?=?6.7014(2) Å, α?=?91.602(2), β?=?93.989(2), γ?=?104.574(3)º, and V =565.09(5) Å3. Structural refinements converged to R 1 values of 1.64–3.16 %. The <M1-O> distance was lengthened due to the substitution of large octahedral cations such as Mn2+ for Fe2+. The increase of the M1-O8, M1-O8’ and M1-O13 lengths with mean ionic radii is slightly more pronounced than of the other M1-Oi lengths. The lengthened M1-O13 distance leads the positive correlation between Si5-O15-Si1 angle and M1-O13 distance. The increase of Si2-O3-Si1 and Si5-O12-Si4 angles due to the increase of mean ionic radius of M2 is also observed.  相似文献   

10.
The Lanping basin is a significant Pb–Zn–Cu–Ag mineralization belt in the Sanjiang Tethyan metallogenic province. A series of sediment-hosted Himalayan Cu–Ag–Pb–Zn polymetallic deposits have been discovered in the western part of the basin, controlled by a thrust–nappe system. In the thrust–nappe system, the Cu orebodies mainly occur in the western and relatively deep part of the mineralization system (the root zone), whereas the Pb–Zn–Ag (± Cu) orebodies occur in the eastern and relatively shallow part of the system (the front zone), both as vein-type mineralization.In this paper we present new data, combined with existing data on fluid inclusions, isotopes and geologic characteristics of representative deposits, to provide the first study that contrasts mineralizing fluids in the Cu–Ag (Mo) and Pb–Zn–Ag (Cu) polymetallic deposits.Fluid inclusion and isotope studies show that the Cu–Ag (Mo) mineralization in the root zone formed predominantly from deep crustal fluids, with the participation of basinal brines. The deep crustal fluids are marked by high CO2 content, relatively high temperatures (280 to 340 °C) and low salinities (1 to 4 wt.% NaCl equivalent), whereas the basinal brine shows relatively low temperatures (160 °C to 220 °C) and high salinities (12 to 22 wt.% NaCl equivalent), containing almost no CO2. In comparison, hydrothermal activity associated with the Pb–Zn–Ag (± Cu) deposits in the front zone is characterized by basinal brine, with relatively low temperatures (130 °C to 180 °C), high salinities (9 to 24 wt.% NaCl equivalent), and low CO2 concentrations. Although evolved meteoric waters have predominantly been proposed as the source for deep crustal fluids, magmatic and metamorphic components cannot be completely excluded. The basinal brine was predominantly derived from meteoric water.The δ34S values of sulfides from the Cu–Ag (Mo) deposits and Pb–Zn–Ag (± Cu) deposits range from − 17.9 to 16.3‰ and from 2.5 to 11.2‰, respectively. These ranges may relate to variations in physicochemical conditions or compositional variation of the sources. Lead isotope compositions indicate that the ore-forming metals were predominantly derived from sedimentary rocks of the Lanping basin.  相似文献   

11.
A granite‐related scheelite deposit has been recently discovered in the Wuyi metallogenic belt of southeast China. The veinlet–disseminated scheelite occurs mainly in the inner and outer contact zones of the porphyritic biotite granite, spatially associated with potassic feldspathization and silicification. Re–Os dating of molybdenite intergrowths with scheelite yield a well‐constrained isochron age of 170.4 ± 1.2 Ma, coeval with the LA–MC–ICP–MS concordant zircon age of porphyritic biotite granite (167.6 ± 2.2 Ma), indicating that the Lunwei W deposit was formed in the Middle Jurassic (~170 Ma). We identify three stages of ore formation (from early to late): (I) the quartz–K‐feldspar–scheelite stage; (II) the quartz–polymetallic sulfide stage; and (III) the quartz–carbonate stage. Based on petrographic observations and microthermometric criteria, the fluid inclusions in the scheelite and quartz are determined to be mainly aqueous two‐phase (liquid‐rich and gas‐rich) fluid inclusions, with minor gas‐pure and CO2‐bearing fluid inclusions. Ore‐forming fluids in the Lunwei W deposit show a successive decrease in temperature and salinity from Stage I to Stage III. The homogenization temperature decreases from an average of 299 °C in Stage I, through 251 °C in Stage II, to 212 °C in Stage III, with a corresponding change in salinity from an average of 5.8 wt.%, through 5.2 wt.%, to 3.4 wt.%. The ore‐forming fluids have intermediate to low temperatures and low salinities, belonging to the H2O–NaCl ± CO2 system. The δ18OH2O values vary from 1.8‰ to 3.3‰, and the δDV‐SMOW values vary from –66‰ to –76‰, suggesting that the ore‐forming fluid was primarily of magmatic water mixed with various amounts of meteoric water. Sulfur isotope compositions of sulfides (δ34S ranging from –1.1‰ to +2.4‰) and Re contents in molybdenite (1.45–19.25 µg/g, mean of 8.97 µg/g) indicate that the ore‐forming materials originated mainly in the crust. The primary mechanism for mineral deposition in the Lunwei W deposit was a decrease in temperature and the mixing of magmatic and meteoric water. The Lunwei deposit can be classified as a porphyry‐type scheelite deposit and is a product of widespread tungsten mineralization in South China. We summarize the geological characteristics of typical W deposits (the Xingluokeng, Shangfang, and Lunwei deposits) in the Wuyi metallogenic belt and suggest that porphyry and skarn scheelite deposits should be considered the principal exploration targets in this area.  相似文献   

12.
The Tonggou Cu polymetallic deposit in the Bogda Orogenic Belt, Eastern Tianshan shows evidence for three stages of hydrothermal mineralization: early pyrite veins (Stage 1), polymetallic sulfide ± epidote–quartz (Stage 2), and late-stage pyrite–calcite veins (Stage 3). Fluid inclusion petrography and microthermometry analyses indicate that the liquid-rich aqueous inclusions (L), vapour-rich aqueous inclusions (V), and NaCl daughter mineral–bearing three phase inclusions (S) formed during the main stage of mineralization, and that the ore fluids represent high-temperature and high-salinity H2O-NaCl hydrothermal fluids that underwent boiling. Stable isotope (H, O) data indicate that the ore fluids of the Tonggou deposit were originally derived from magmatic water in Stage 2 and subsequently mixed with local meteoric water during Stage 3. Sulphur isotope compositions (6.7‰ to 10.9‰) are consistent with the δ34S values of pyrite from the Qijiaojing Formation sandstone, indicating the primary source of the sulphur ore. Furthermore, chalcopyrite grains separated from the chalcopyrite-rich ore samples yield an isochron age of 303 ± 12 Ma (MSWD = 1.2). These results indicate that the Tonggou deposit is a transition between high–sulfidation and porphyry deposits which formed in the Late Carboniferous. It also suggests an increased likelihood for the occurrence of Cu (Au, Mo) in the Bogda Orogenic Belt, especially at locations where the Cu-Zn deposits are thicker; further deep drilling and exploration are encouraged in these areas.  相似文献   

13.
The Zaozigou gold deposit lies in the West Qinling orogenic belt, Gansu Province, China. It is one of the largest gold deposits, and the orebodies are hosted in fine‐grained slates intercalated with limestone of the Middle‐Triassic Gulangdi Formation and varied dykes. The gold orebodies are strictly controlled by the NE‐, NW‐, and SN‐trending tensional and shearing faults with high dipping angle. The mineralogy and geochemistry of pyrite and arsenopyrite are measured by electron microprobe. Pyrite has up to 0.12 wt.% Au, and arsenopyrite contains up to 0.17 wt.% Au. The antithetic correlation between S and As indicates the substitution of As for S in pyrite, and arsenic occurs in anionic As1? state in the pyrite structure under the reduced conditions. Pyrite has relatively high Co (~364–2248 ppm) but relatively low Ni (~109–497 ppm) contents, with Co/Ni ratios ranging from ~1.63 to 10.50, indicating that the deposit originated from a volcanogenic fluid and remobilized by hydrothermal fluid. Au in arsenopyrite occurs as cationic Au in solid solution, whereas Au in pyrite is in solid solution and metal nanoparticles (Au0). The texture characteristics and trace element geochemistry among cores, transition zones, and rims of pyrites demonstrate that there are at least four pulses of fluid participating in the generation of pyrite in the deposit. The calculated formation temperatures of the Zaozigou deposit vary from 148°C to 304°C, with an average temperature of 213°C based on Au contents in pyrite. The Pb isotopic compositions of pyrite samples suggest that the metallogenic materials of the Zaozigou deposit were derived from the mantle and upper crust. All the characteristics above lead us to draw the conclusion that the Zaozigou gold deposit is classified as an epithermal deposit.  相似文献   

14.
Nuwaifa Formation is a part of sequence stratigraphy that belongs to the Jurassic system exposed in the western desert of Iraq. The Jurassic system consists of Ubaid, Hussainiyat, Amij, Muhaiwir, and Najmah formations. Each formation is composed of basal clastic unit overlain by upper carbonate unit. Nuwaifa karst bauxite was developed in fossil karsts within the Ubaid Formation in areas where maximum intersection of fractures and faults exist. This bauxitization process affected the upper surface of the Ubaid limestone formation, which directly underlies the Nuwaifa bauxite Formation. Nuwaifa Formation represents karst-filling deposit that consists of a mixture of allochthonous (sandstone, claystone, and mudstone) and autochthonous lithofacies (bauxite kaolinite, kaolinitic bauxite, iron-rich bauxite, and flint clay). Most bauxite bodies occur within the autochthonous lithofacies and are lenticular in shape with maximum thickness ranges from few meters to 35 m and in some place up to 100 m. Petrographically, the bauxite deposit exhibits collomorphic-fluidal, pisolitic, oolitic, nodular, brecciated, and skeletal textures indicative of authigenic origin. Mineralogy boehmite and gibbsite are the only bauxite minerals; the former is dominant in the upper parts of the bauxite profiles, whereas the latter is dominant throughout the lower and middle part of the bauxite. Kaolinite, hematite, goethite, calcite, and anatase occur to a lesser extent. The study bauxites are mainly composed of Al2O3 (33–69.6 wt.%), SiO2 (8.4–42 wt.%), Fe2O3 (0.5–15.9 wt.%), and TiO2 (0.7–6.1 wt.%) with LOI ranging from 13.5 to 19.1 wt.%. Geochemical investigations indicate that the immobile elements like Al2O3, TiO2, Cr, Zr, and Ni were obviously enriched, while SiO2, Fe2O3, CaO, MgO, Zn, Co, Ba, Mn, Cu, and Sr were depleted during bauxitization process. The results of this study strongly suggest that the bauxite deposits of the Nuwaifa Formation are derived from the kaolinite of the Lower Hussainiyat Formation.  相似文献   

15.
《International Geology Review》2012,54(14):1825-1842
The Longmala and Mengya’a deposits are two representative skarn Pb–Zn deposits of the Nyainqêntanglha Pb–Zn–(Cu–Mo–Ag) polymetallic belt in the Gangdese region, Tibet, China. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating of the mineralization-related biotite monzogranite from the Longmala deposit yielded a weighted mean age of 55.7 Ma, which can be interpreted as the emplacement age of the pluton. Re–Os dating of three molybdenite samples from the Longmala deposit yielded model ages of 51.8–54.3 Ma, with a weighted mean age of 53.3 Ma, which is interpreted as the mineralization age of the deposit and overlaps the age of the causative intrusion. The Re–Os dating of four molybdenite samples from the Mengya’a deposit yielded model ages of 60.4–65.8 Ma, with a weighted mean age of 63.6 Ma, which represents the mineralization age of this deposit. Our new precise age data for these two deposits are consistent with the existing ages of ca. 65–51 Ma for other skarn polymetallic deposits in the Nyainqêntanglha metallogenic belt. In addition, these new age data, combined with existing information on the geological evolution history of the Lhasa terrane, indicate that the belt of skarn deposits is closely related to initial collision between India and the Asian continents.  相似文献   

16.
A mafic sill-like intrusion, ~5?×?30 m, exposed along the eastern shoreline of Kahoolawe Island, Hawaii, represents tholeiitic magma emplaced as diabase among caldera-filling lavas. It differentiated from ~7.8 wt.% MgO to yield low-MgO (2.9 wt.%) vesicular segregation veins. We examined the intrusion for whole-rock and mineral compositions for comparison to Kahoolawe caldera-fill lavas (some also diabasic), to the Uwekahuna laccolith (Kilauea), and to gabbros, diabases, and segregations and oozes of other tholeiitic shield volcanoes (e.g., Mauna Loa and Kilauea lava lakes). We also evaluate this extreme differentiation in terms of MELTS modeling, using parameters appropriate for Hawaiian crystallization environments. Kahoolawe intrusion diabase samples have major and trace element abundances and plagioclase, pyroxene, and olivine compositions in agreement with those in gabbros and diabases of other volcanoes. However, the intrusion samples are at the low-MgO end of the large MgO range formed by the collective comparative samples, as many of those have between 8 and 20 wt.% MgO. The intrusion’s segregation vein has SiO2 53.4 wt.%, TiO2 3.2 wt.%, FeO 13.5 wt.%, Zr 350 ppm, and La 16 ppm. It plots in compositional fields formed by other Hawaiian segregations and oozes that have MgO <5 wt.%—fields that show large variances, such as factor of ~2 differences for incompatible element abundances accompanying SiO2 from ~49 to 59 wt.%. Our MELTS modeling assesses the Kahoolawe intrusion as differentiating from ~8 wt.% MgO parent magma beginning along oxygen buffers equivalent to FMQ and FMQ-2, having magmatic H2O of 0.15 and 0.7 wt.% (plus traces of CO2 and S), and under 100 and 500 bars pressure. Within these parameters, MELTS calculates that <3 wt.% MgO occurs at ~1,086 to 1,060 °C after ~48 to 63 % crystallization, whereby the lesser crystallization percentages and lower temperatures equate to higher magmatic H2O, leading to high SiO2, ~56–58 wt.%. To contrast, greater crystallization is calculated for lower H2O, for which it achieves less SiO2, <55 wt.%. While MELTS reliably predicts SiO2 approaching 58 wt.% for differentiation beyond <4 wt.% MgO, and shows that Kahoolawe intrusion’s segregations and those of Kilauea and Mauna Loa are all reasonably accommodated by the modeled parameters and SiO2 differentiation curves, MELTS fails where it predicts that Fe enrichment is more robust under FMQ than FMQ-2 buffers. That failure not withstanding, MELTS differentiation from liquidus temperatures ~1,205–1,185 °C (depending on the various parameters) gradually increases fO2 (up to ~0.4 log units, as normalized to FMQ) until magnetite crystallizes at ~1,090–1,085 °C, which reduces absolute fO2 ~1 to 1.5 log units. The modeled Kahoolawe intrusion, then, exemplifies how tholeiitic magma differentiation can produce extreme SiO2 and incompatible element compositions, and how Hawaiian segregations from shallow intrusions and lava lakes can be generally modeled under compositional and physical parameters appropriate for Hawaiian tholeiitic magmatism.  相似文献   

17.
Cu ± Au ± Mo mineralization is found in multiple intrusive suites in the Gangdese belt of southern Tibet (GBST). However, the petrogenesis of these ore-bearing intrusive rocks remains controversial. Here, we report on mineralization-related Late Cretaceous-early Eocene intrusive rocks in the Chikang–Jirong area, southern Gangdese. Zircon U–Pb analyses indicate that the mainly granodioritic Chikang and Jirong plutons were generated in the Late Cretaceous (ca. 92 Ma) and early Eocene (ca. 53 Ma), respectively. They are high-K calc-alkaline suites with high SiO2 (64.8–68.3 wt.%) and Al2O3 (15.1–15.7 wt.%) contents. Chikang granodiorites are characterized by high Sr (835–957 ppm), Sr/Y (118–140), Mg# (58–60), Cr (21.8–36.6 ppm), and Ni (14.3–22.9 ppm), and low Y (6.0–8.1 ppm), Yb (0.54–0.68 ppm) values with negligible Eu anomalies, which are similar to those of typical slab-derived adakites. The Jirong granodiorites have high SiO2 (64.8–65.3 wt.%) and Na2O + K2O (7.19–7.59 wt.%), and low CaO (2.45–3.69 wt.%) contents, Mg# (47–53) and Sr/Y (14–16) values, along with negative Eu and Ba anomalies. Both Chikang and Jirong granodiorites have similar εHf(t) (7.6–13.1) values. The Chikang granodiorites were most probably produced by partial melting of subducted Neo-Tethyan oceanic crust, and the Jirong granodiorites were possibly generated by partial melting of Gangdese juvenile basaltic crust. In combination with the two peak ages (100–80 and 65–41 Ma) of Gangdese magmatism, we suggest that upwelling asthenosphere, triggered by the rollback and subsequent break-off of subducted Neo-Tethyan oceanic lithosphere, provided the heat for partial melting of subducted slab and arc juvenile crust. Taking into account the contemporaneous occurrence of Gangdese magmatism and Cu ± Au ± Mo mineralization, we conclude that the Late Cretaceous–early Eocene magmatic rocks in the GBST may have a significant potential for Cu ± Au ± Mo mineralization.  相似文献   

18.
The newly discovered Jiaojiguan deposit, a medium-scale skarn iron-tin polymetallic deposit on the Sino-Burma boundary of Yunnan Province (SW China), is spatially associated with the biotite monzonitic granite. Here, we report new in situ zircon LA-MC-ICP-MS U–Pb ages, trace element and Hf isotope data from the granite, and U–Pb dating ages of cassiterite from the ore bodies. In this study, we obtain a weighted mean 206Pb/238U age of 124.1 ± 1.4 Ma for the zircon and a 207Pb/206Pb-238U/206Pb intercept age of 123.8 ± 2.2 Ma for the cassiterite. The granite crystallized during the Early Cretaceous, with zircons exhibiting εHf(t) values from ?5.8 to ?0.6 and two-stage Hf model ages (TDM2) of 1.21–1.54 Ga. The close temporal and spatial links between pluton emplacement and ore-forming events suggest that magmatic-hydrothermal events were the key factors that triggered the genesis of the iron-tin polymetallic deposits in the area. Regional geochronological data show that tin mineralization took place three times during the Cretaceous–Palaeogene in the Tengchong block due to re-melting of the underlying supposed Proterozoic (1.5 ± 0.5 Ga) Sn-rich strata/materials. Compared with those in the Bangong–Nujiang metallogenic belt (BNMB), we propose that the Cretaceous iron-tin polymetallic mineralization events in Tengchong–Baoshan closely resemble those of the Bangong–Nujiang belt in northern Tibet, both of which have experienced similar tectono-magmatic-metallogenic histories since the Mesozoic.  相似文献   

19.
《International Geology Review》2012,54(18):2276-2290
ABSTRACT

North Korea is host to world-class metallic mineral deposits, such as the Komdok Cu–Pb–Zn polymetallic mineral belt, but little is known about the resource. To better understand the genesis of the Cu mineralization around the China–North Korea border, we determined the U–Pb, Re-Os, and Rb–Sr ages of three deposits in the area. Sulfide samples from the Hyesan Cu deposit produced Rb–Sr isochron ages of 127.4 ± 4.5 Ma. The Wanbaoyuan Cu deposit yielded a molybdenite Re–Os isochron age of 127.5 ± 3.2 Ma, and a granodiorite sample from the Linjiang Cu deposit gave a zircon U–Pb age of 129.5 ± 0.8 Ma. Combined with geochronological data from previous studies, these new ages suggest that the Cu mineralization occurred mainly during the Cretaceous, and the rollback of the Paleo-Pacific Plate was responsible for the Cu mineralization in NE China–North Korea border.  相似文献   

20.
This paper presents detailed mineral chemical, element geochemical and Sr–Nd–Hf isotopic data for the Late Jurassic (155?±?4 Ma) lamprophyre dikes in the Liaodong Peninsula, NE China. The lamprophyres are shoshonitic and geochemically fall into three groups: Group I has relatively high SiO2 (52.5–57.0 wt.%), low MgO (5.5–8.3 wt.%) and compatible trace element (e.g. Cr?=?128–470 ppm) contents, high initial 87Sr/86Sr ratios (0.7093–0.7117), and low εNd (T) values (?9.6 to ?12.1); Group II has relatively low SiO2 (44.8–50.0 wt.%), high MgO (10.8–14.2 wt.%) and compatible trace element (e.g. Cr?=?456–1,041 ppm) contents, low initial 87Sr/86Sr ratios (0.7073–0.7087), and high εNd (T) values (?1.4 to ?2.9); Group III is transitional between the two in all elemental and isotopic compositions. Interpretation of the elemental and isotopic data suggests that the lamprophyric melts were derived by partial melting of subcontinental lithospheric mantle (SCLM) at a depth of 60–80 km (group I), decompression melting of upwelling asthenosphere at 60–100 km (group II), and mixing between the SCLM-derived and asthenosphere-derived melts (group III). It is assumed that the local SCLM was detached at a depth of 60–80 km by the 155 Ma ago. A continental arc-rifting related to the Palaeo-Pacific plate subduction is favored as a geodynamic force for such a cratonic lithosphere detachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号