首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Depositional models that use heterogeneity in mud‐dominated successions to distinguish and diagnose environments within the offshore realm are still in their infancy, despite significant recent advances in understanding the complex and dynamic processes of mud deposition. Six cored intervals of the main body of the Mancos Shale, the lower Blue Gate Member, Uinta Basin, were examined sedimentologically, stratigraphically and geochemically in order to evaluate facies heterogeneity and depositional mechanisms. Unique sedimentological and geochemical features are used to identify three offshore environments of deposition: the prodelta, the mudbelt and the sediment‐starved shelf. Prodelta deposits consist of interlaminated siltstone and sandstone and exhibit variable and stressed trace fossil assemblages, and indicators of high sedimentation rates. The prodelta was dominated by river‐fed hyperpycnal flow. Mudbelt deposits consist of interlaminated siltstone and sandstone and are characterized by higher bioturbation indices and more diverse trace fossil assemblages. Ripples, scours, truncations and normally graded laminations are abundant in prodelta and mudbelt deposits indicating dynamic current conditions. Mudbelt sediment dispersal was achieved by both combined flow above storm wave base and current‐enhanced and wave‐enhanced sediment gravity flows below storm wave base. Sediment‐starved shelf deposits are dominantly siltstone to claystone with the highest calcite and organic content. Bioturbation is limited to absent. Sediment‐starved shelf deposits were the result of a combination of shelfal currents and hypopycnal settling of sediment. Despite representing the smallest volume, sediment‐starved shelf deposits are the most prospective for shale hydrocarbon resource development, due to elevated organic and carbonate content. Sediment‐starved shelf deposits are found in either retrogradational to aggradational parasequence sets or early distal aggradational to progradational parasequence sets, bounding the maximum flooding surface. An improved framework classification of offshore mudstone depositional processes based on diagnostic sedimentary criteria advances our predictive ability in complex and dynamic mud‐dominated environments and informs resource prospectivity.  相似文献   

2.
The dominance of isotropic hummocky cross‐stratification, recording deposition solely by oscillatory flows, in many ancient storm‐dominated shoreface–shelf successions is enigmatic. Based on conventional sedimentological investigations, this study shows that storm deposits in three different and stratigraphically separated siliciclastic sediment wedges within the Lower Cretaceous succession in Svalbard record various depositional processes and principally contrasting sequence stratigraphic architectures. The lower wedge is characterized by low, but comparatively steeper, depositional dips than the middle and upper wedges, and records a change from storm‐dominated offshore transition – lower shoreface to storm‐dominated prodelta – distal delta front deposits. The occurrence of anisotropic hummocky cross‐stratification sandstone beds, scour‐and‐fill features of possible hyperpycnal‐flow origin, and wave‐modified turbidites within this part of the wedge suggests that the proximity to a fluvio‐deltaic system influenced the observed storm‐bed variability. The mudstone‐dominated part of the lower wedge records offshore shelf deposition below storm‐wave base. In the middle wedge, scours, gutter casts and anisotropic hummocky cross‐stratified storm beds occur in inferred distal settings in association with bathymetric steps situated across the platform break of retrogradationally stacked parasequences. These steps gave rise to localized, steeper‐gradient depositional dips which promoted the generation of basinward‐directed flows that occasionally scoured into the underlying seafloor. Storm‐wave and tidal current interaction promoted the development and migration of large‐scale, compound bedforms and smaller‐scale hummocky bedforms preserved as anisotropic hummocky cross‐stratification. The upper wedge consists of thick, seaward‐stepping successions of isotropic hummocky cross‐stratification‐bearing sandstone beds attributed to progradation across a shallow, gently dipping ramp‐type shelf. The associated distal facies are characterized by abundant lenticular, wave ripple cross‐laminated sandstone, suggesting that the basin floor was predominantly positioned above, but near, storm‐wave base. Consequently, shelf morphology and physiography, and the nature of the feeder system (for example, proximity to deltaic systems) are inferred to exert some control on storm‐bed variability and the resulting stratigraphic architecture.  相似文献   

3.
The Campanian Cliff House Formation represents a series of individually progradational shoreface tongues preserved in an overall landward-stepping system. In the Mancos Canyon area, the formation consists of four, 50- to 55-m-thick and 10- to 20-km-wide sandstone tongues, which pinch out landwards into lower coastal plain and lagoonal deposits of the Upper Menefee Formation and seawards into offshore shales of the Lewis Shale Formation. Photogrammetric mapping of lithofacies along the steep and well-exposed canyon walls was combined with sedimentary facies analysis and mapping of the detailed facies architecture. Two major facies associations have been identified, one comprising the mostly muddy and organic-rich facies of lagoonal and lower coastal plain origin and one comprising the sandstone-dominated facies of shoreface origin. Key stratigraphic surfaces were identified by combining the mapped geometry of the lithofacies units with the interpretation of depositional processes. The stratigraphic surfaces (master ravinement surface, shoreface/coastal plain contact, transgressive surface, maximum flooding surface and the sequence boundary) allow each major sandstone tongue to be divided into a simple sequence, consisting of a basal transgressive system tract (TST) overlain by a highstand system tract (HST). Within each sandstone tongue, a higher frequency cyclicity is evident. The high-frequency cycles show a complex stacking pattern development and are commonly truncated in the downdip direction by surfaces of regressive marine erosion. The complexities of the Cliff House sandstone tongues are believed to reflect changes in the rate of sea-level rise combined with the responses of the depositional system to these changes. Synsedimentary compaction, causing a thickness increase in the sandstone tongues above intervals of previously uncompacted lagoonal/coastal plain sediments, also played a role. This study of the facies architecture, geometry and sequence stratigraphy of the Cliff House Formation highlights the fact that there may be some problems in applying conventional sequence stratigraphical methods to landward-stepping systems in general. These difficulties stem from the fact that no single stratigraphic surface can easily be identified and followed from the non-marine to the fully marine realm (i.e. from the landward to the basinward pinch-out of the sandstone tongues). In addition, the effects of synsedimentary compaction and changes in the shoreface dynamics are not easily recognized in limited data sets such as from the subsurface.  相似文献   

4.
Holocene inner-shelf storm deposits preserved beneath the Sendai coastal plain facing the Pacific coast of north-eastern Japan were formed during a transgressive–regressive cycle. The evolution of the Holocene wave-dominated depositional system along the Sendai coast is reconstructed using 76 AMS (accelerator mass spectrometers) 14C ages and the origin of bed thickness variations in the inner-shelf storm deposits is explored. The Holocene succession is <30 m thick and overlies latest Pleistocene to early Holocene non-marine deposits above a transgressive ravinement surface. It comprises transgressive ravinement and inner-shelf deposits, and regressive inner shelf, shoreface, and coastal plain deposits. The inner-shelf deposits comprise alternating sand and mud layers interpreted as stacked storm beds. The average preservation interval of a single storm bed is shortest during the transgression (5·7–20·6 years), and then increases to a maximum during the early regression (83·3–250·0 years), decreasing to 7·7–31·3 years with shoreline progradation. Average accumulation rates decreased during the transgression and then increased during the regression, but the sand/mud ratio varies little, reflecting inefficient sediment segregation downdip on the inner shelf. The vertical pattern of sand-layer thicknesses also shows no relationship to position within the cycle, although small-scale intervals of upward thickening and thinning probably relate to lateral switching of river mouths and/or random storm processes. The average thickness of storm beds is the highest in the interval deposited during the period from maximum flooding to early regression. This is probably because of the low preservation potential of thin beds associated with frequent, low-magnitude storms during this period of low accumulation rates and extensive reworking. This preservation bias and the nature of the Sendai inner shelf resulted in an absence of characteristic bed thickness trends in the preserved storm deposits.  相似文献   

5.
Integrated sedimentologic, macrofossil, trace fossil, and palynofacies data from Paleocene-Middle Eocene outcrops document a comprehensive sequence stratigraphy in the Anambra Basin/Afikpo Syncline complex of southeastern Nigeria. Four lithofacies associations occur: (1) lithofacies association I is characterized by fluvial channel and/or tidally influenced fluvial channel sediments; (2) lithofacies association II (Glossifungites and Skolithos ichnofacies) is estuarine and/or proximal lagoonal in origin; (3) lithofacies association III (Skolithos and Cruziana ichnofacies) is from the distal lagoon to shallow shelf; and (4) shoreface and foreshore sediments (Skolithos ichnofacies) comprise lithofacies association IV. Five depositional sequences, one in the Upper Nsukka Formation (Paleocene), two in the Imo Formation (Paleocene), and one each in the Ameki Group and Ogwashi-Asaba Formation (Eocene), are identified. Each sequence is bounded by a type-1 sequence boundary, and contains a basal fluvio-marine portion representing the transgressive systems tract, which is succeeded by shoreface and foreshore deposits of the highstand systems tract. In the study area, the outcropping Ogwashi-Asaba Formation is composed of non-marine/coastal aggradational deposits representing the early transgressive systems tract. The occurrence of the estuarine cycles in the Palaeogene succession is interpreted as evidence of significant relative sea level fluctuations, and the presence of type-1 sequence boundaries may well be the stratigraphic signature of major drops in relative sea level during the Paleocene and Eocene. Sequence architecture appears to have been tectono-eustatically controlled.  相似文献   

6.
青岛灵山岛下白垩统湖泊风暴沉积与风暴作用   总被引:1,自引:0,他引:1  
灵山岛背来石剖面发育了非常典型的湖泊风暴岩和风暴作用。非常典型的丘、洼状构造发育在火山岩底部的砂页岩中。丘状构造呈典型的丘状,规模不一,小者高数厘米,宽数十厘米;大者高2. 4m,宽12. 48m;具有典型的二元结构:底部为灰色或浅灰色的砂砾岩或砂岩;顶部为深灰色 黑色泥岩、页岩或薄层砂岩互层。砂砾岩分选磨圆均很差,砾石主要为片麻岩,直径多在数毫米到3~4cm,呈悬浮式胶结。砾岩底部为凹凸不平的侵蚀面,砾岩向丘状构造两翼变薄甚至尖灭,与下部侵蚀面呈典型的角度交切。丘状构造的上部的细粒层有四个要素:①上凸形态;②丘状交错层理;③下细上粗的二元结构;④底部具侵蚀面。洼状构造也具有典型的洼状,规模也不一,小者高数厘米,宽十余厘米;大者高2. 4m,宽18. 70m,具有下细上粗的(反)二元结构,但底部多为深灰 灰黑色、甚至黑色的泥岩、页岩或夹薄层砂岩,上部多为砂岩、砂砾岩或砾岩。完整的洼状构造也有四个要素:①下凹形态;②或有洼状交错层理;③下细上粗的(反)二元结构;④底部具侵蚀面。丘状构造与洼状构造在空间上相邻共生,但不是同时形成的,一个连续的完整序列是丘状构造形成在先,洼状构造形成在后,其间由一个粒度较细的薄层分隔开(风暴最高水位时的“静”水沉积)。基于实验和丘洼构造参数计算了风暴浪的相关参数。  相似文献   

7.
Sequence stratigraphic analysis of four widely spaced outcrops of middle Cenomanian to middle Turonian strata deposited in the Western Interior foreland basin in southern New Mexico, USA, defines ten sequence boundaries in a marine shale‐rich interval ca 200 m thick. The majority of sequence boundaries are based on basinward shifts in lithofacies characterized by either a non‐Waltherian contact between distal‐bar or lower shoreface sandstone and underlying lower offshore shale, or an erosional contact between distal‐bar or lower shoreface sandstone and underlying upper offshore shale. The sequence boundaries commonly correlate basinward to packages of storm‐deposited sandstone and to beds of sandy grainstone composed of winnowed inoceramid shell fragments. In several cases, however, the sequence boundaries pass basinward into presumably conformable successions of lower offshore shale. Maximum flooding surfaces within the sequences are represented by one or more beds of locally phosphatized globiginerid wackestone and packstone or exist within a conformable succession of lower offshore shale. Following initial south/south‐westward transgression into the study area, the regional trend of palaeoeshorelines was north‐west to south‐east, although isopach data indicate that lobes of sandstone periodically spread south‐eastward across the study area. The ten sequences in the study area are arranged into a third‐order composite megasequence that is characterized by overall upward‐deepening followed by upward‐shallowing of sequences. The composite megasequence is similar but not identical to the previously established T‐1 transgression and R‐1 regression in New Mexico. Based on radioisotopic dates of bentonites, the average frequency of the sequences within the study area was ca 327 kyr, which is consistent with fourth‐order cycles of ca 400 kyr interpreted in coeval marine strata elsewhere in the world.  相似文献   

8.
Pot casts and gutter casts are described for the first time in the lower part of the Majanillos Formation, a Middle Triassic carbonate unit located in the External Zones of the Betic Cordillera (southern Spain). Their identification, as well as their relation to tempestites, enables the better interpretation of the depositional environments and the shoreline-to-offshore facies transition on the Anisian muddy carbonate ramp of the southern Iberian Massif. The Majanillos Formation contains three members, which become progressively more marly towards the top. Well-preserved pot and gutter casts and thin intercalations of calcarenite, which are interpreted as tempestites, are abundant in the lowest member. Above the pot and gutter casts, thicker calcarenite beds, which locally contain hummocky cross-stratification, predominate. Bioturbated nodular limestones are prevalent at the top of the member. The remaining succession, which records a long-term Triassic transgressive cycle, consists mostly of fine-grained limestones deposited in very shallow-marine environments. Calcarenitic sediments only accumulated within potholes and gutters in the nearshore. They developed during storms when strong currents transported sediment to the outer shelf, where it was deposited as tempestite beds. Pot and gutter casts characterize sedimentation in the bypass zone. It is concluded that storm deposits provide important constraints for the interpretation of palaeobathymetry; it is proposed that gutter casts display a trend of increasing width/thickness ratios towards the outer shelf. The identification of these structures in marine successions elsewhere should prove useful in the interpretation of depositional environments.  相似文献   

9.
风暴岩对于古地理和古环境具有良好的指相意义。东海盆地西湖凹陷天台区始新世平湖组发育典型的风暴岩。通过详细的岩心观察,发育的风暴沉积标志主要有冲刷-充填构造、风暴撕扯构造和丘状-洼状交错层理构造等。根据风暴岩垂向上的组合特征及沉积构造差异,识别出了近源和远源两种风暴沉积类型,分别指示了不同的沉积背景:近源风暴岩表现为不完整的风暴岩垂向沉积序列,呈风暴砾屑层段(A)+泥岩段(E)叠加,为潮坪潮下带沉积;远源风暴岩具完整和不完整的风暴岩垂向沉积序列,以粒序段(B)+平行层理段(C)+丘状(洼状)层理段(D)叠加为特征,属浅海陆棚沉积。风暴层序自下而上沉积环境为浅海陆棚→潮坪,风暴岩的分布差异表明形成环境向上变浅的沉积特征。该发现为本区古环境的演变提供了重要依据。  相似文献   

10.
珠江口盆地荔湾3-1气田珠江组深水扇沉积相分析   总被引:7,自引:1,他引:6  
根据已钻井取芯段岩相分析,从荔湾3-1气田珠江组深水扇沉积体系中划分出巨厚层和厚层块状砂岩相、厚层正粒序砂岩相、厚层逆粒序砂岩相、平行—板状斜层理砂岩相、滑塌变形砂岩相、薄层砂岩夹层相、薄层(粉)砂岩与泥岩互层相、厚层粉砂岩相、厚层泥岩相和层状深水灰岩相等10种岩相类型和识别出砂岩相组合、泥岩相组合、(粉)砂岩与泥岩互...  相似文献   

11.
The 2.6 Ga Keskarrah Formation, located in the central Slave Province, Northwest Territories, Canada, is a late-orogenic, tectonically controlled sedimentary sequence that developed under unusual climatic and depositional conditions. The formation is adjacent to the crustal-scale, north-trending Beniah Lake Fault and overlies the 3.15 Ga Augustus Granite, the 2.69–2.7 Ga mafic volcanic Peltier Formation and the turbiditic Contwoyto Formation unconformably. Principal lithofacies in the Keskarrah Formation include conglomerate, sandstone and siltstone–sandstone. The conglomerate lithofacies represents coalescing gravelly streamflow-dominated fan deltas adjacent to topographic highs. Up-section quartz-rich arenites and quartz arenites of the sandstone lithofacies are interpreted to be shallow-water shoreface deposits influenced by wave action and tides. The overlying feldspathic litharenites of the siltstone–sandstone lithofacies are consistent with a lower shoreface to proximal offshore environment dominated by wave and tide interaction. Tidal influence in both sandstone-dominated lithofacies is inferred from the presence of mudstone laminae between bedforms and on foresets of cross-beds, as well as from abundant reactivation surfaces with local mudstone drapes. Intense chemical weathering during the Archaean, resulting from elevated atmospheric levels, higher temperatures and moist climatic conditions, played an important role in the development of quartz-rich arenites that appear to be first-cycle deposits. Few lithic fragments and feldspar grains are preserved due to in-situ host rock weathering, chemical weathering during transport and wave and tide action. Hydraulic sorting and abrasion in the shoreface environment contributed to the continued breakdown and transport of labile minerals. Increased proportions of lithic fragments in sandstone beds of the conglomerate lithofacies are the result of shorter transport distances from source areas to the depositional environment. Abundant conglomerate with up to 4-m large granitic boulders derived from the adjacent Augustus Granite and mafic clasts from the Peltier Formation indicate high relief and fault-related uplift and subsidence. The intimate association of fan deltas and wave- and tide-influenced shallow-marine deposits in association with quartz-rich sandstones forming in a high-relief area make the Keskarrah Formation remarkable in the rock record.  相似文献   

12.
Facies, geometry and key internal stratigraphic surfaces from eight Cretaceous and Eocene clastic shoreline tongues have been documented. The regressive parts of all the studied tongues represent storm‐wave influenced strandplains, deltas or fan‐deltas, and the regressive shoreline trajectories varied from descending to ascending. The transgressive parts of the tongues are dominated by either estuarine or coastal‐plain deposits. The distance from the coeval, up‐dip non‐marine deposits to the basinward pinchout of amalgamated shoreface sandstones, measured along depositional dip, is here termed the sand pinchout distance. The study shows that the angle of regressive‐to‐transgressive turnaround (defined by the angle between the regressive and subsequent transgressive shoreline trajectories) and the process regime during turnaround largely control the sand‐pinchout distance. The amount of transgressive erosion can also partly control the pinchout distance, but this parameter was comparable for the different examples presented here. If the type of depositional system at turnaround and the depth of transgressive erosion are constant, small angles of turnaround are associated with large pinchout distances, whereas larger angles of turnaround result in smaller pinchout distances. The model developed allows sand‐pinchout distance to be predicted, using data for the landward parts of shoreline tongues. The dataset also shows that steeply rising (aggrading) shoreline trajectories tend to produce more heterolithic sandstone tongues than those formed by lower‐angle trajectories.  相似文献   

13.
川西北早志留世陆源碎屑──碳酸盐混积缓坡   总被引:10,自引:6,他引:10  
研究区位于扬子地块西北缘,由一套巨厚的页岩、泥岩层夹生物礁及透镜状和不规则层状风暴生屑灰岩、瘤状灰岩组成。根据区内特征的岩石类型及其组合、分布和相应的化石生态,作者认为本区兰多维列期至早温洛克期时为一典型的陆源碎屑--碳酸盐混积均斜缓坡,并且从浅到深划分为滨岸、浅缓坡、深缓坡及盆地等亚环境。滨岸区位于潮间带,以潮坪碳酸盐岩为代表;浅缓坡位于浪基面至风暴浪基面之间,岩性组合为A、B类风暴岩,A、B类瘤状灰岩、生物礁灰岩及粘结岩;深缓坡位于风暴浪基面至最大风暴浪基面之间,岩性以D、E类风暴岩、C类瘤状灰岩及泥页岩组合为特征;盆地处于最大风暴浪基面之下,为黑色泥页岩沉积。结合早志留世时全球冰川作用,文中讨论了海平面变化的原因及对环境的影响。  相似文献   

14.
The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east‐central Utah contains three 10‐ to 20‐m thick layers of tide‐deposited sandstone arranged in a forward‐ and then backward‐stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave‐influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide‐influenced river deltas during a time of fluctuating relative sea‐level. Shale‐dominated offshore marine deposits gradually shoal and become more sandstone‐rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea‐level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp‐based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic‐sandstone are exposed, a sharp‐based upward‐coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide‐eroded estuaries, formed during relative sea‐level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward‐stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward‐stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.  相似文献   

15.
Richly fossiliferous and disconformity-bounded facies successions, termed Mid-Cycle Condensed Shellbeds (MCS), occupy a mid-cycle position within depositional sequences in the Castlecliff section (mid-Pleistocene, Wanganui Basin, New Zealand). These shell-rich intervals (0.1–4.5 m thick) comprise the upper of two loci of shell accumulation in Castlecliff sequences. The lower disconformable contacts are sharp and variably burrowed, and are interpreted as submarine transgressive surfaces formed by storm or tidal current erosion at the feather-edge of contemporary transgressive systems tracts. Above (i.e. seaward) of this erosion surface, macrofossil remains (mainly bivalves and gastropods) accumulated, with little reworking, on the inner-shelf under conditions of reduced terrigenous sediment supply. The upper contacts are sharp transitions from shell-rich to relatively shell-poor lithofacies; parautochthonous shell accumulation was ‘quenched’by downlapping highstand systems tract shelf siltstones and muddy fine sandstones. Castlecliff MCS, together with the basal shell-rich part of overlying highstand systems tracts, occupy a stratigraphic position which corresponds to the condensed section that forms at the transgressive/highstand systems tract boundary in the sequence model of Haq et al. (1987). Palaeoenvironmental analysis indicates that Castlecliff MCS are substantially, if not entirely, transgressive deposits. This study therefore shows that the ‘condensation maximum’within a depositional sequence does not necessarily bracket the transgressive systems tract/highstand systems tract boundary.  相似文献   

16.
The Gongila Formation in the Hawal Basin displays lithological characteristics, textural variations and sedimentary structures that facilitate palaeoenvironmental reconstruction. The 41 m thick Gongila succession is divisible into: (i) a mudstone facies association (at the bottom) composed of fossiliferous limestone, clay shale, and sharp-based, graded and swaly-bedded shell debris; and (ii) a cross-stratified sandstone facies association that constitutes the uppermost 60% of the entire succession. The cross-stratified sandstone facies association is further subdivided, on the basis of sedimentary structures, into: (i) a lower interval represented by a coarsening upward fine- to medium-grained sandstone, siltstone and shale in which units characterised by parallel lamination and hummocky cross-stratification pass upward through a zone of small-scale low angle cross-stratification into units characterised by planar cross-stratification and sparse Teichichnus and Skolithos burrow traces; and (ii) an upper interval dominated by fine- to medium-grained sandstone and bioturbated siltstone characterised by erosive based, high angle tangential foresets, subhorizontal laminations and burrow structures belonging to the Thalassinoides, Ophiomorpha and Skolithos ichnogenera.The overall sequence of the Gongila Formation represents progradation on a wave influenced coast, passing from shelf mudstone at the base to lower and upper shoreface sandstones at the top. Each facies association displays an alternation between relatively high energy conditions when sediment was mainly deposited by decelerating suspension laden currents, and relatively low energy conditions when wave reworked fine-grained sediment as it was deposited from suspension. The influence of storms in these conditions is inferred from the associated lithofacies, textural characteristics and sedimentary structures.  相似文献   

17.
On the basis of distinct lithologic features such as composition, grain size, bedding characteristics and sedimentary structures, six facies were identified in Callovian to Oxfordian rocks exposed southwest of Bhuj, Kachchh. They are interbedded calcareous shale-siltstone (ICSSF), limestone (LF), ferruginous sandstone (FerSF), felspathic sandstone (FelSF), grey shale (GSF) and oolitic limestone (OLF) facies. The rich and highly diversified trace fossils reveal a wide range of animal behaviours represented by dwelling, feeding, crawling and resting structures. Horizontal feeding structures are found abundantly in all lithofacies indicating low wave and current energy and deposition of poorly sorted muddy to sandy sediments. A few coarse layers containing Arenicolites, Ophiomorpha and Skolithos indicate the presence of opportunistic animals (due to their first appearance under harsh conditions) under -intermittently moderate wave and current energy or storm wave conditions (due to coarse grain size and dominance/presence of only vertical trace fossils) in the shoreface zone. Taenidium occurs mainly in the lower shoreface to transitional zone suggesting low to moderate energy conditions. Thalassinoides occurs in middle to lower shoreface settings under relatively low-energy conditions. Zoophycos represents offshore environment, where it occupies the deepest bioturbation levels.The characteristic lithofacies and assemblages of trace fossils in the rocks of the Chari/Jumara Formation indicate a depositional environment fluctuating from the upper shoreface to offshore zone.  相似文献   

18.
The Upper Cretaceous Twentymile Sandstone of the Mesaverde Group in NW Colorado, USA, has been analysed with respect to its pinch‐out style and the stratigraphic position of tidally influenced facies within the sandstone tongue. Detailed sedimentological analysis has revealed that the Twentymile Sandstone as a whole is a deltaic shoreface sandstone tongue up to 50 m thick proximally. Facies change character vertically from very fine‐grained, storm wave‐dominated shelf sandstones and mudstones to fine‐grained, wave‐dominated sandstones and, finally, to fine‐ to coarse‐grained tidally dominated sandstones. The pinch‐out style is characterized by a basinward splitting of the massive proximal sandbody into seven coarsening‐upward fourth‐order sequences consisting of a lower shaly part and an upper sandy part (sandstone tongue). These are stacked overall to reflect the regressive‐to‐transgressive development of the tongue. Each of the lower sandstone tongues 1–3 are gradationally based, very fine‐grained and dominated by hummocky cross‐stratification and were deposited on the lower to upper shoreface. Sandstone tongues 4 and 5 prograded further basinwards than the underlying tongues, are erosively based, fine‐ to coarse‐grained and mainly hummocky, herringbone and trough cross‐stratified. Especially in tongue 5, tidal indicators, such as bipolar foresets and double mud drapes, are common. These tongues were deposited as upper shoreface and tidal channel sandstones respectively. Sandstone tongues 6 and 7 retrograded in relation to tongue 5, are very fine‐ to fine‐grained and hummocky cross‐stratified. These tongues were deposited in lower shoreface to offshore transition environments. The two lower fourth‐order sequences were deposited during normal regressions during slowly rising or stable relative sea level and represent the highstand systems tract. The three succeeding fourth‐order sequences, which show succeedingly increasing evidence of tidal influence, were deposited during falling and lowstand of relative sea level and represent the falling stage (forced regressive) and lowstand systems tracts. The uppermost two fourth‐order sequences were deposited during rapidly rising sea level in the transgressive systems tract. The maximum tidal influence occurred during lowstand progradation, in contrast to most other published examples reporting maximum tidal influence during transgression.  相似文献   

19.
The River Supersequence represents a 2nd‐order accommodation cycle of approximately 15 million years duration in the Isa Superbasin. The River Supersequence comprises eight 3rd‐order sequences that are well exposed on the central Lawn Hill Platform. They are intersected in drillholes and imaged by reflection seismic on the northern Lawn Hill Platform and crop out in the McArthur Basin of the Northern Territory. South of the Murphy Inlier the supersequence forms two south‐thickening depositional wedges on the Lawn Hill Platform. The northern wedge extends from the Murphy Inlier to the Elizabeth Creek Fault Zone and the southern wedge extends from Mt Caroline to the area south of Riversleigh Station. On the central Lawn Hill Platform the River Supersequence attains a maximum thickness of 3300 m. Facies are dominantly fine‐grained siliciclastics, but the lower part comprises a mixed carbonate‐siliciclastic succession. Interspersed within fine‐grained facies are sharp‐based sandstone and conglomeratic intervals interpreted as lowstand deposits. Such lowstand deposits represent a wide range of depositional systems and palaeoenvironments including fluvial channels, shallow‐marine shoreface settings, and deeper marine turbidites and sand‐rich submarine fans. Associated transgressive and highstand deposits comprise siltstone and shale deposited below storm wave‐base in relatively quiet, deep‐water settings similar to those found in a mid‐ to outer‐shelf setting. Seismic analysis shows significant fault offsets and thickness changes within the overall wedge geometry. Abrupt thickness changes across faults over small horizontal distances are documented at both the seismic‐ and outcrop‐scales. Synsedimentary fault movement, particularly along steeply north‐dipping, largely northeast‐trending normal faults, partitioned the depositional system into local sub‐basins. On the central Lawn Hill Platform, the nature of facies and their thickness change markedly within small fault blocks. Tilting and uplift of fault blocks affected accommodation cycles in these areas. Erosion and growth of fine‐grained parts of the section is localised within fault‐bounded depocentres. There are at least three stratigraphic levels within the River Supersequence associated with base‐metal mineralisation. Of the seven supersequences in the Isa Superbasin, the River Supersequence encompasses arguably the most dynamic period of basin partitioning, syndepositional faulting, facies change and associated Zn–Pb–Ag mineralisation.  相似文献   

20.
Across-shelf variations in thickness, grain size, and frequency of sandstone beds in a transgressive outer-shelf succession were investigated from the Middle Pleistocene (ca. 0.7 Ma) Kakinokidai Formation on the Boso Peninsula, Japan. The transgressive deposits are generally muddy and contain slumps and slump scars. The intercalated sandstone beds are interpreted to have been formed from turbidity currents as a response to erosion and resuspension of sandridge-complex deposits in the southwestern upslope area during storm events. Mapping of volcanic ash beds and a transgressive surface in the base of the formation permits detailed bed-by-bed correlation of the outer-shelf sandstone beds. Although, overall, thickness, grain size, and frequency of sandstone beds decrease in the downslope direction, some sandstone beds locally thin out and coarsen in association with slump scars in the surrounding muddy deposits. These sandstone beds subsequently thicken and fine, and finally thin out in the farther downslope area. In addition to the local thinning of sandstone beds, the frequency of sandstone beds first decreases and then increases in the farther offshore direction. From this evidence, we concluded that these non-uniform patterns of across-outer-shelf variations in thickness, grain size, and frequency of sandstone beds were caused by the local increases in flow speeds and subsequent expansion and reduced speeds of turbidity currents, along with a local increase in the seafloor gradient that was induced by the development of slump scars in the transgressive outer-shelf floor. These physiographic features in the outer shelf are interpreted not to have permitted monotonous downslope thinning and fining of sandstone beds, compared with the bed-shape models of depletive turbidity currents and with the proximality trend of shelf sandstones from modern and ancient highstand-stage shelf systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号