where D0 is in µm2/s, X is mole fraction of H2Ot on a single oxygen basis, T is temperature in K, and P is pressure in GPa.H2Ot diffusivities (DH2Ot, in µm2/s) can be calculated from H2Om diffusivity, or directly from the following expression:
At low H2Ot content (up to 2 wt.% if an error of a factor of 2 is allowed), H2Ot diffusivity is approximately proportional to H2Ot content:
where C is H2Ot content in wt.% and C0 is 1 wt.%. The new expressions for H2O diffusion not only reproduce our own data, but also match data in literature from different laboratories and using different methods, indicating good inter-laboratory and multi-method consistency. The new expressions cover a wide range of geological conditions, and can be applied to H2O diffusion in rhyolitic melts in various volcanic and magmatic processes.  相似文献   

18.
New data on equilibrium iron isotope fractionation among sulfides: Constraints on mechanisms of sulfide formation in hydrothermal and igneous systems   总被引:1,自引:0,他引:1  
Veniamin B. Polyakov  Dilshod M. Soultanov 《Geochimica et cosmochimica acta》2011,75(7):1957-6654
Fe, S, and Cu reduced partition function ratios (β-factors) allow calculation of equilibrium isotope fractionation factors. β-Factors for chalcopyrite are calculated from experimental and theoretical partial phonon densities of state states (Kobayashi et al., 2007). The Fe β-factors for mackinawite are calculated from Mössbauer spectroscopy data (Bertaut et al., 1965). Excellent agreement exists between Fe β-factors for chalcopyrite calculated from the experimental and theoretical 57Fe phonon densities of states, supporting the reliability of the Fe β-factors for chalcopyrite. The 34S β-factor for chalcopyrite is consistent with experimental data on equilibrium sulfur isotope fractionation factors among sulfides and theoretical 34S β-factors, except those recently calculated by a DFT approach.Up-to-date experimental isotope-exchange data on equilibrium Fe isotope fractionation factors between minerals and aqueous Fe were critically reevaluated in conjunction with Fe β-factors for minerals, and the following expressions for β-factors for aqueous Fe2+ and Fe3+ were obtained:
  相似文献   

19.
The solubility of FeSm, synthetic nanoparticulate mackinawite, in aqueous solution was measured at 23 °C from pH 3-10 using an in situ precipitation and dissolution procedure and the solution species was investigated voltammetrically. The solubility is described by a pH-dependent reaction and a pH-independent reaction. The pH-dependent dissolution reaction can be described by
FeSm+2H+→Fe2++H2S  相似文献   

20.
Dissolution and precipitation rates of brucite (Mg(OH)2) were measured at 25°C in a mixed-flow reactor as a function of pH (2.5 to 12), ionic strength (10−4 to 3 M), saturation index (−12 < log Ω < 0.4) and aqueous magnesium concentrations (10−6 to 5·10−4 M). Brucite surface charge and isoelectric point (pHIEP) were determined by surface titrations in a limited residence time reactor and electrophoretic measurements, respectively. The pH of zero charge and pHIEP were close to 11. A two-pK, one site surface speciation model which assumes a constant capacitance of the electric double layer (5 F/m2) and lack of dependence on ionic strength predicts the dominance of >MgOH2+ species at pH < 8 and their progressive replacement by >MgOH° and >MgO as pH increases to 10-12. Rates are proportional to the square of >MgOH2+ surface concentration at pH from 2.5 to 12. In accord with surface speciation predictions, dissolution rates do not depend on ionic strength at pH 6.5 to 11. Brucite dissolution and precipitation rates at close to equilibrium conditions obeyed TST-derived rate laws. At constant saturation indices, brucite precipitation rates were proportional to the square of >MgOH2+ concentration. The following rate equation, consistent with transition state theory, describes brucite dissolution and precipitation kinetics over a wide range of solution composition and chemical affinity:
  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model for the dissolution of chlorite has been developed based on fast ligand assisted proton attack of the alumina tetrahedra within the alumina-silica lattice followed by slower dissolution of the remnant silica lattice. While the rate determining step is within the silica dissolution regime, the rate is a function of the H+ and Al3+ concentrations and the dominant aqueous Al species. Individual rates may be described by a generic rate equation applicable across the spectrum of Al species:
  相似文献   

2.
The processes that determine the rate of chalcopyrite leaching are central to understanding how chalcopyrite (CuFeS2) behaves under the environmentally adverse conditions of acid rock drainage. To this end the effect of the acid anion on chalcopyrite leach rates using a variety of acidic media (H2SO4, HClO4, HCl and H2SO4 with 0.25 M NaCl) under carefully controlled solution conditions (pH 1 and 2, Eh 750 mV (SHE) and 75 °C) has been examined. These conditions have been chosen to enable sufficient leach rates for accurate experimental determination and to compare to the previous mechanistic analysis carried out by Harmer et al. (2006).Extensive surface analysis of leach residues demonstrated that variations in the surface speciation could not be responsible for the observed variations in leach rate. The rate of Cu release, however, was found to be first order with respect to Fe3+ activity and inversely proportional with respect to H+ activity to the power of 0.7:
  相似文献   

3.
The rates of Sb(III) oxidation by O2 and H2O2 were determined in homogeneous aqueous solutions. Above pH 10, the oxidation reaction of Sb(III) with O2 was first order with respect to the Sb(III) concentration and inversely proportional to the H+ concentrations at a constant O2 content of 0.22 × 10−3 M. Pseudo-first-order rate coefficients, kobs, ranged from 3.5 × 10−8 s−1 to 2.5 × 10−6 s−1 at pH values between 10.9 and 12.9. The relationship between kobs and pH was:
  相似文献   

4.
In a recent study, sulphate-bearing green rust (GRSO4) was shown to incorporate Na+ in its structure (NaFeII6FeIII3(OH)18(SO4)2(s); GRNa,SO4). The compound was synthesised by aerial oxidation of Fe(OH)2(s) in the presence of NaOH. This paper reports on its free energy of formation .Freshly synthesised GRNa,SO4 was titrated with 0.5 M H2SO4 in an inert atmosphere at 25 °C, producing dissolved Fe2+ and magnetite or goethite. Solution concentrations, PHREEQC and the MINTEQ database were used to calculate reaction constants for the reactions:
  相似文献   

5.
6.
We measured the adsorption of Cu(II) onto kaolinite from pH 3-7 at constant ionic strength. EXAFS spectra show that Cu(II) adsorbs as (CuO4Hn)n−6 and binuclear (Cu2O6Hn)n−8 inner-sphere complexes on variable-charge ≡AlOH sites and as Cu2+ on ion exchangeable ≡X--H+ sites. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed at least up to pH 6.5. Inner-sphere complexes are bound to the kaolinite surface by corner-sharing with two or three edge-sharing Al(O,OH)6 polyhedra. Our interpretation of the EXAFS data are supported by ab initio (density functional theory) geometries of analog clusters simulating Cu complexes on the {110} and {010} crystal edges and at the ditrigonal cavity sites on the {001}. Having identified the bidentate (≡AlOH)2Cu(OH)20, tridentate (≡Al3O(OH)2)Cu2(OH)30 and ≡X--Cu2+ surface complexes, the experimental copper(II) adsorption data can be fit to the reactions
  相似文献   

7.
Solubility and dissolution rate of silica in acid fluoride solutions   总被引:1,自引:0,他引:1  
We performed 57 batch reactor experiments in acidic fluoride solutions to measure the dissolution rate of quartz. These rate data along with rate data from published studies were fit using multiple linear regression to produce the following non-unique rate law for quartz
where 10−5.13 < aHF < 101.60, −0.28 < pH < 7.18, and 298 < T < 373 K. Similarly, 97 amorphous silica dissolution rate data from published studies were fit by multiple linear regression to produce the following non-unique rate law for amorphous silica
where 10−2.37 < aHF < 101.61, −0.32 < pH < 4.76 and 296 < T < 343 K. Regression of the rates versus other combinations of solution species, e.g.  + H+, F + H+, HF + , HF + F, or  + F, produced equally good fits. Any of these rate laws can be interpreted to mean that the rate-determining step for silica dissolution in fluoride solutions involves a coordinated attack of a Lewis acid, on the bridging O atom and a Lewis base on the Si atom. This allows a redistribution of electrons from the Si–O bond to form a O–H group and a Si–FH group.  相似文献   

8.
Comparative concentrations of carbonate and hydroxide complexes in natural solutions can be expressed in terms of reactions with bicarbonate that have no explicit pH dependence (). Stability constants for this reaction with n = 1 were determined using conventional formation constant data expressed in terms of hydroxide and carbonate. Available data indicate that stability constants appropriate to seawater at 25 °C expressed in the form are on the order of 104.2 for a wide range of cations (Mz+) with z = +1, +2 and +3. Φ1 is sufficiently large that species appear to substantially dominate MOHz−1 species in seawater. Evaluations of comparative stepwise carbonate and hydroxide stability constant behavior leading to the formation of n = 2 and n = 3 complexes suggest that carbonate complexes generally dominate hydroxide complexes in seawater, even for cations whose inorganic speciation schemes in seawater are currently presumed to be strongly dominated by hydrolyzed forms (). Calculated stability constants, and , indicate that the importance of carbonate complexation is sufficiently large that carbonate and hydroxide complexes would be generally comparable even if calculated Φ2 and Φ3 values are overestimated by two or more orders of magnitude. Inclusion of mixed ligand species in carbonate-hydroxide speciation models allows cation complexation intensities (MT/[Mz+]) to be expressed in the following form:
  相似文献   

9.
10.
Polythionates (SxO62−) are important in redox transformations involving many sulfur compounds. Here we investigate the oxidation kinetics and mechanisms of trithionate and tetrathionate oxidation between pH 0.4 and pH 2 in the presence of Fe3+ and/or oxygen. In these solutions, Fe3+ plus oxygen oxidizes tetrathionate and trithionate at least an order of magnitude faster than oxygen alone. Kinetic measurements, coupled with density functional calculations, suggest that the rate-limiting step for tetrathionate oxidation involves Fe3+ attachment, followed by electron density shifts that result in formation of a sulfite radical and S3O30 derivatives. The overall reaction orders for trithionate and tetrathionate are fractional due to rearrangement reactions and side reactions between reactants and intermediate products. The pseudo-first order rate coefficients for tetrathionate range from 10−11 s−1 at 25°C to 10−8 s−1 at 70°C, compared to 2 × 10−7 s−1 at 35 °C for trithionate. The apparent activation energy (EA) for tetrathionate oxidation at pH 1.5 is 104.5 ± 4.13 kJ/mol. A rate law at pH 1.5 and 70°C between 0.5 and 5 millimolar [Fe3+] is of the form:
  相似文献   

11.
The stability of yttrium-acetate (Y-Ac) complexes in aqueous solution was determined potentiometrically at temperatures 25-175 °C (at Ps) and pressures 1-1000 bar (at 25 and 75 °C). Measurements were performed using glass H+-selective electrodes in potentiometric cells with a liquid junction. The species YAc2+ and were found to dominate yttrium aqueous speciation in experimental solutions at 25-100 °C (log [Ac] < −1.5, pH < 5.2), whereas at 125, 150 and 175 °C introduction of into the Y-Ac speciation model was necessary. The overall stability constants βn were determined for the reaction
  相似文献   

12.
13.
Solubility and solution mechanisms of H2O in depolymerized melts in the system Na2O-Al2O3-SiO2 were deduced from spectroscopic data of glasses quenched from melts at 1100 °C at 0.8-2.0 GPa. Data were obtained along a join with fixed nominal NBO/T = 0.5 of the anhydrous materials [Na2Si4O9-Na2(NaAl)4O9] with Al/(Al+Si) = 0.00-0.25. The H2O solubility was fitted to the expression, XH2O=0.20+0.0020fH2O-0.7XAl+0.9(XAl)2, where XH2O is the mole fraction of H2O (calculated with O = 1), fH2O the fugacity of H2O, and XAl = Al/(Al+Si). Partial molar volume of H2O in the melts, , calculated from the H2O-solulbility data assuming ideal mixing of melt-H2O solutions, is 12.5 cm3/mol for Al-free melts and decreases linearly to 8.9 cm3/mol for melts with Al/(Al+Si) ∼ 0.25. However, if recent suggestion that is composition-independent is applied to constrain activity-composition relations of the hydrous melts, the activity coefficient of H2O, , increases with Al/(Al+Si).Solution mechanisms of H2O were obtained by combining Raman and 29Si NMR spectroscopic data. Degree of melt depolymerization, NBO/T, increases with H2O content. The rate of NBO/T-change with H2O is negatively correlated with H2O and positively correlated with Al/(Al+Si). The main depolymerization reaction involves breakage of oxygen bridges in Q4-species to form Q2 species. Steric hindrance appears to restrict bonding of H+ with nonbridging oxygen in Q3 species. The presence of Al3+ does not affect the water solution mechanisms significantly.  相似文献   

14.
The heat capacities of the international reference clay mineral chlorite CCa-2 from Flagstaff Hill, California, were measured by low temperature adiabatic calorimetry and differential scanning calorimetry, from 5 to 520 K (at 1 bar). The studied chlorite is a Fe-bearing trioctahedral chlorite with an intermediary composition between ideal clinochlore (Si3Al)(Mg5Al)O10(OH)8 and chamosite (Si3Al)(Fe5Al)O10(OH)8. Only few TiO2 impurities were detected in the natural chlorite sample CCa-2. Its structural formula, obtained after subtracting the remaining TiO2 impurities, is (Si2.633Al1.367)(Al1.116Mg2.952Mn0.012Ca0.011)O10(OH)8. From the heat capacity results, the entropy, standard entropy of formation and heat content of the chlorite were deduced. At 298.15 K, the heat capacity of the chlorite is 547.02 (±0.27) J mol−1 K−1 and the molar entropy is 469.4 (±2.9) J mol−1 K−1. The standard molar entropy of formation of the clay mineral from the elements is −2169.4 (±4.0) J mol−1 K−1.  相似文献   

15.
The formation constants of neodymium complexes in sulfate solutions have been determined spectrophotometrically at temperatures of 30-250 °C and a pressure of 100 bars. The dominant species in the solution are NdSO4+ and Nd(SO4)2, with the latter complex being more important at higher temperature. Equilibrium constants were calculated for the following reactions:
  相似文献   

16.
Thermal water samples from Yellowstone National Park (YNP) have a wide range of pH (1-10), temperature, and high concentrations of fluoride (up to 50 mg/l). High fluoride concentrations are found in waters with field pH higher than 6 (except those in Crater Hills) and temperatures higher than 50 °C based on data from more than 750 water samples covering most thermal areas in YNP from 1975 to 2008. In this study, more than 140 water samples from YNP collected in 2006-2009 were analyzed for free-fluoride activity by ion-selective electrode (ISE) method as an independent check on the reliability of fluoride speciation calculations. The free to total fluoride concentration ratio ranged from <1% at low pH values to >99% at high pH. The wide range in fluoride activity can be explained by strong complexing with H+ and Al3+ under acidic conditions and lack of complexing under basic conditions. Differences between the free-fluoride activities calculated with the WATEQ4F code and those measured by ISE were within 0.3-30% for more than 90% of samples at or above 10−6 molar, providing corroboration for chemical speciation models for a wide range of pH and chemistry of YNP thermal waters. Calculated speciation results show that free fluoride, F, and major complexes (, AlF2+, and ) account for more than 95% of total fluoride. Occasionally, some complex species like , FeF2+, , MgF+ and may comprise 1-10% when the concentrations of the appropriate components are high. According to the simulation results by PHREEQC and calculated results, the ratio of main fluoride species to total fluoride varies as a function of pH and the concentrations and ratios of F and Al.  相似文献   

17.
Huaiwei Ni  Youxue Zhang   《Chemical Geology》2008,250(1-4):68-78
Water diffusion in silicate melts is important for understanding bubble growth in magma, magma degassing and eruption dynamics of volcanos. Previous studies have made significant progress on water diffusion in silicate melts, especially rhyolitic melt. However, the pressure dependence of H2O diffusion is not constrained satisfactorily. We investigated H2O diffusion in rhyolitic melt at 0.95–1.9 GPa and 407–1629 °C, and 0.2–5.2 wt.% total water (H2Ot) content with the diffusion-couple method in a piston-cylinder apparatus. Compared to previous data at 0.1–500 MPa, H2O diffusivity is smaller at higher pressures, indicating a negative pressure effect. This pressure effect is more pronounced at low temperatures. Assuming H2O diffusion in rhyolitic melt is controlled by the mobility of molecular H2O (H2Om), the diffusivity of H2Om (DH2Om) at H2Ot ≤ 7.7 wt.%, 403–1629 °C, and ≤ 1.9 GPa is given by
DH2Om=D0exp(aX),
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号