首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ measurements of 60Fe-60Ni and 53Mn-53Cr isotopic systems with an ion microprobe have been carried out for sulfide assemblages from unequilibrated enstatite chondrites (UECs). Evidence for the initial presence of 60Fe has been observed in nine sulfide inclusions from three UECs: ALHA77295, MAC88136, and Qingzhen. The inferred initial (60Fe/56Fe) [(60Fe/56Fe)0] ratios show a large variation range, from ∼2 × 10−7 to ∼2 × 10−6. The sulfide inclusions with high Fe/Ni ratios yield (60Fe/56Fe)0 ratios of ∼(2-7) × 10−7, similar to most of the (60Fe/56Fe)0 values of troilite and pyroxene observed in unequilibrated ordinary chondrites (UOCs). Inclusions with high inferred (60Fe/56Fe)0 ratios (∼1-2 × 10−6) have low Fe/Ni ratios and the magnitude of the 60Ni excesses is similar in two MAC88136 assemblages in spite of a difference of a factor of two in their Fe/Ni ratios. The inferred high (60Fe/56Fe)0 ratios were probably the result of Fe-Ni re-distribution in the sulfides during later alteration processes.The 53Mn-53Cr system was measured in five of the sulfide assemblages that were examined for their 60Fe-60Ni systematics. The 53Mn-53Cr isochrons yielded variable initial (53Mn/55Mn) [(53Mn/55Mn)0] ratios from ∼(2-7) × 10−7. There is no obvious correlation between the (60Fe/56Fe)0 and (53Mn/55Mn)0 ratios. The variable 53Mn-53Cr isochrons probably also indicate later disturbance to the isotopic systems in these sulfides. Even though no chronological information can be extracted from the 60Fe-60Ni and 53Mn-53Cr systems in these UEC sulfides, our results indicate that 60Fe was present in the enstatite chondrite formation region of the early Solar System.  相似文献   

2.
We have conducted petrographic, chemical and in-situ oxygen isotopic studies of refractory forsterites from unequilibrated ordinary and carbonaceous chondrites as well as an unequilibrated R-chondrite. Refractory forsterites occur in all types of unequilibrated chondrites and all have very similar chemical composition with low FeO and high refractory lithophile element (RLE) contents. Refractory forsterites are typically enriched in 16O relative to ‘normal’ olivine independent of the bulk O-isotope ratios of the parent meteorites. Analyses of refractory forsterites spread along a Δ17O mixing line with Δ17O ranging from +2 to −10‰. Due to similarities in oxygen isotopes and chemical compositions, we conclude that refractory forsterites of various types of chondrites come from a single common reservoir. Implications of this hypothesis for the chemical and O-isotope evolution of silicates in the early solar nebular are discussed.  相似文献   

3.
EMP determinations of Fe, Co and Ni in the metal phases of ordinary chondrites confirm the report of Sears and Axon that kamacite Co contents show restricted, nonoverlapping ranges in the three groups; ranges are 3.3–4.8 mg/g in H, 6.7–8.2 mg/g in L and 15–110 mg/g in LL. Experimental data by Widge and Goldstein show that the Ni concentration of the α(α + γ) boundary increases with increasing Co concentration: unexpectedly, we find lower kamacite Ni concentrations in unequilibrated LL chondrites (44–55 mg/g) than in H and L chondrites (57–69 mg/g). We infer that, at temperatures below 550° C increasing Co causes a decrease in the equilibrium kamacite Ni concentration of an α-γ system. Although some evidence indicates that the equilibrated L chondrites Barratta, Knyahinya and Shaw have siderophile concentrations lower than the normal L-group range, they have kamacite and taenite Co concentrations in the L-group range.Metal-phase studies of petrologic type-3 ordinary chondrites having highly unequilibrated silicates showed a wide range in the degree of matrix kamacite equilibration ranging from nearly equilibrated in Mezö-Madaras to highly unequilibrated in Bishunpur, Ngawi and Semarkona. Kamacite in chondrule interiors is highly unequilibrated in all 9 chondrites, and in each setting taenite data are consistent with the expectation that it should be less equilibrated than kamacite. Our kamacite Co data confirm that Sharps is H and Hallingeberg. Khohar and Mezö-Madaras are L chondrites. Chainpur and Parnallee have kamacite Co concentrations between the L and LL ranges: we present evidence indicating that they are truly intermediate, i.e. neither L nor LL. Highly unequilibrated Ngawi is either LL or, less likely, still more oxidized. Bishunpur and Semarkona have mean kamacite Co concentrations in the H range but too unequilibrated to be used for classification. The highly heterogeneous compositions of the metal in Bishunpur, Ngawi and Semarkona indicate that their metal partially preserves properties established during nebular processes. Most of the taenite in these chondrites has high Ni contents (>470 mg/g) and is essentially unzoned; much of the kamacite is polycrystalline with crystals ?5μm across. Metamorphism causes tiny grains to disappear, increases the grain size of both kamacite and taenite, tends to equilibrate metallic minerals and, during cooling, can produce zoned taenite.A petrologic type-5 clast in the Ngawi LL3 chondrite has 3 coexisting metal phases, clear taenite (540 mg/g Ni, 21 mg/g Co), kamacite (30 mg/g Ni, 120 mg/g Co) and a phase tentatively identified as ordered FeCo (8.5 mg/g Ni, 370 mg/g Co).  相似文献   

4.
The concentrations of P, V, Cr, Fe, Co, Ni, Cu, Ga, Ge, As, Mo, Ru, Rh, Pd, W, Re, Os, Ir, Pt, and Au in the group IVB iron meteorites Cape of Good Hope, Hoba, Skookum, Santa Clara, Tawallah Valley, Tlacotepec, and Warburton Range have been measured by laser ablation inductively coupled plasma mass spectrometry. The data were fitted to a model of fractional crystallization of the IVB parent body core, from which the composition of the parent melt and metal/melt distribution coefficients for each element in the system were determined, for a chosen value of D(Ni). Relative to Ni and chondritic abundances, the parent melt was enriched in refractory siderophiles, with greatest enrichment of 5× chondritic in the most refractory elements, and was strongly volatile-depleted, down to 0.00014× chondritic in Ge. Comparison to an equilibrium condensation sequence from a gas of solar composition indicates that no single temperature satisfactorily explains the volatility trend in the IVB parent melt; a small (<1%) complement of ultrarefractory components added to metal that is volatile-depleted but otherwise has nearly chondritic abundances (for Fe, Co and Ni) best explains the volatility trend. In addition to this volatility processing, which probably occurred in a nebular setting, there was substantial oxidation of the metal in the IVB parent body, leading to loss of Fe and other moderately siderophile elements such as Cr, Ga, and W, and producing the high Ni contents that are observed in the IVB irons. By assuming that the entire IVB parent body underwent a similar chemical history as its core, the composition of the silicate that is complementary to the IVB parent melt was also estimated, and appears to be similar to that of the angrite parent.  相似文献   

5.
The islands of New Caledonia are largely composed of ultrabasic rocks (peridotites). severily weathered, rich in Fe, Mn and Co, and where several ore deposits of Ni and Cr are extensively mined. Sediment cores from the bay of Dumbea, in the south of the main island, and from the northern part of the lagoon (Belep Islands), less affected by the mining activities, were analyzed for their mineral composition and metal concentrations. In the surficial sediments, oxides and silicates, including Fe serpentine and smectites, undergo rapid transformation or neoformation in a short time, in particular in the confined bay of Dumbea. Fe is largely present as goethite, and in deeper layers (60–100 cm) as hematite and magnetite. Chromite can be identified at each horizon. The metal concentrations decrease from the near shore areas, in particular the vicinity of the Dumbea river mouth to the open part of the lagoon. This trend is more important for Ni than for Fe or Cr. Fe ranges from 3.5 to 9% (dry weight), Ni from 200 to 2000 μg/g, Cr from 700 to 2000 μg/g, Co from 20 to 150 μg/g and Mn from 130 to 900 μg/g; yet the concentrations are lower than concentrations found in the ultrabasic rocks or laterites of the watershed. To try to understand the behavior of metals during the sedimentation-diagenesis events, we evaluated the sediment accumulation rate, and used different sequential leaching procedures. Fe, Mn, Ni, Cr and Co are mainly present as, or bound to, oxides or oxyhydroxides, even in the deeper layers ( > 100 cm) where the organic content is relatively high (about 6% of organic C). Metals are mainly transported from the land to the lagoon as oxides and dispersed in the lagoon sediments, where they are diluted with a large amount of carbonaceous sediment. During diagenesis, a significant part of Mn, Co and Ni are dissolved; but, unlike Mn and Co, which seem to coprecipitate with carbonate, most of the Ni is released into the waters of the lagoon. Apparently no horizon of the sediment has undergone significant in-situ metal enrichment.  相似文献   

6.
Superliquidus metal-silicate partitioning was investigated for a number of moderately siderophile (Mo, As, Ge, W, P, Ni, Co), slightly siderophile (Zn, Ga, Mn, V, Cr) and refractory lithophile (Nb, Ta) elements. To provide independent constrains on the effects of temperature, oxygen fugacity and silicate melt composition, isobaric (3 GPa) experiments were conducted in piston cylinder apparatus at temperature between 1600 and 2600 °C, relative oxygen fugacities of IW−1.5 to IW−3.5, and for silicate melt compositions ranging from basalt to peridotite. The effect of pressure was investigated through a combination of piston cylinder and multi-anvil isothermal experiments between 0.5 and 18 GPa at 1900 °C. Oxidation states of siderophile elements in the silicate melt as well as effect of carbon saturation on partitioning are also derived from these results. For some elements (e.g. Ga, Ge, W, V, Zn) the observed temperature dependence does not define trends parallel to those modeled using metal-metal oxide free energy data. We correct partitioning data for solute interactions in the metallic liquid and provide a parameterization utilized in extrapolating these results to the P-T-X conditions proposed by various core formation models. A single-stage core formation model reproduces the mantle abundances of several siderophile elements (Ni, Co, Cr, Mn, Mo, W, Zn) for core-mantle equilibration at pressures from 32 to 42 GPa along the solidus of a deep peridotitic magma ocean (∼3000 K for this pressure range) and oxygen fugacities relevant to the FeO content of the present-day mantle. However, these P-T-fO2 conditions cannot produce the observed concentrations of Ga, Ge, V, Nb, As and P. For more reducing conditions, the P-T solution domain for single stage core formation occurs at subsolidus conditions and still cannot account for the abundances of Ge, Nb and P. Continuous core formation at the base of a magma ocean at P-T conditions constrained by the peridotite liquidus and fixed fO2 yields concentrations matching observed values for Ni, Co, Cr, Zn, Mn and W but underestimates the core/mantle partitioning observed for other elements, notably V, which can be reconciled if accretion began under reducing conditions with progressive oxidation to fO2 conditions consistent with the current concentration of FeO in the mantle as proposed by Wade and Wood (2005). However, neither oxygen fugacity path is capable of accounting for the depletions of Ga and Ge in the Earth’s mantle. To better understand core formation, we need further tests integrating the currently poorly-known effects of light elements and more complex conditions of accretion and differentiation such as giant impacts and incomplete equilibration.  相似文献   

7.
River water (Water of Luce, Scotland) is used in laboratory experiments designed to investigate physical and chemical properties of Fe. Mn, Cu, Ni, Co, Cd and humic acids in riverine and estuarine systems. Using NaCl, MgCl2 and CaCl2 as coagulating agents, coagulation of dissolved (0.4 μm filtered) Fe, Cu, Ni, Cd and humic acids increases in a similar matter with increasing salt molarily: Ca2+ is the most dominant coagulating agent. Removal by coagulation with Ca2+ at seawater concentrations ranges from large (Fe-80%. HA-60%, Cu-40%) to small (Ni, Cd-15%) to essentially nothing (Cd, Mn-3%). Destabilization of colloids is the indicated mechanism. Solubility-pH measurements show that between a pH of 3 and 9, Fe, Cu, Ni, Mn, Co and Cd are being held in the dissolved phase by naturally occurring organic substances. Between pH of 2.2 and 1.2 a large proportion of dissolved Fe, Cu. Ni and Cd (72, 35,44 and 36% respectively) is precipitated along with the humic acids; in contrast, Mn and Co show little precipitation (3%). Adsorption-pH experiments, using unfiltered river water spiked with Cu, indicate that adsorption of Cu onto suspended particles is inhibited to a large extent by the formation of dissolved Cu-organic complexes.The experimental results demonstrate that solubilities and adsorption properties of certain trace metals in freshwaters can be opposite to those observed with artificial solutions or predicted with chemical models. Interaction with organic substances is a critical factor.  相似文献   

8.
Laser ablation inductively coupled plasma mass spectrometry was used to measure abundances of P, Cr, Fe, Co, Ni, Cu, Ga, Ge, As, Mo, Ru, Rh, Pd, Sn, Sb, W, Re, Os, Ir, Pt, and Au in metal grains in the Bencubbin-like chondrites Bencubbin, Weatherford, and Gujba to determine the origin of large metal aggregates in bencubbinites. A strong volatility-controlled signature is observed among the metal grains. The refractory siderophiles Ru, Rh, Re, Os, Ir, and Pt are unfractionated from one another, and are present in approximately chondritic relative abundances. The less refractory elements Fe, Co, Ni, Pd, and Au are fractionated from the refractory siderophiles, with a chondritic Ni/Co ratio and a higher than chondritic Pd/Fe ratio. The moderately volatile siderophile elements Ga, Ge, As, Sn, and Sb are depleted in the metal, relative to chondritic abundances, by up to 3 orders of magnitude. The trace siderophile element data are inconsistent with the following proposed origins of Bencubbin-Weatherford-Gujba metal: (1) condensation from the canonical solar nebula, (2) oxidation of an initially chondritic metal composition, and (3) equilibration with a S-rich partial melt. A condensation model for metal-enriched (×107 CI) gas is developed. Formation by condensation or evaporation in such a high-density, metal-enriched gas is consistent with the trace element measurements. The proposed model for generating such a gas is protoplanetary impact involving a metal-rich body.  相似文献   

9.
91 biotites (53 from granites, 35 from highly metamorphic gneisses, 3 from redwitzites) were separated and analyzed for Fe, Mn, Zn, Cl, Sn, Ni, Co, Or, Cu, V, Mo, Pb. Biotites from gneisses contain much more Ni, Co, Cr, V but less Fe, Mn, Zn than those from granites. However, the distinction between biotites from gneisses and from granites on the basis of these elements is not certain. If a gneiss undergoes anatexis, the contents of Ni, Co, Cr, V, Zn and Sn of the preexistent biotite fractionate: Zn, Sn and Pe enter the anatectic melt readily while Ni, Co, Cr and V concentrate in the remaining matter (restite). Ni, Co, Cr and V are strongly positively correlated with one another but negatively with Fe and Zn, the latter being positively correlated with Pe. The chemical composition of biotites from granites depends not only on a potential degree of secondary decomposition into chlorite and muscovite but much more on the percentage of biotite in the rock: The more biotite, the higher the content of Ni, Co, Cr, V and the lower Fe, Zn and Sn in the biotite. Thus, it is possible to distinguish between normal and abnormal concentrations of an element in a biotite and in a rock. This might be useful in geochemical prospecting. Abnormal high concentrations of Sn and Zn were found in biotites from some granites which are connected with mineralizations of these elements. It is impossible hitherto to gain informations about the history and the parental material of a granitic magma from the minor elements in the rock or the biotite because their concentrations depend on how much biotite could be incorporated by the melt. The distribution coefficient of Cl between the lattice of 4 biotites and their fluid inclusions was determined to be 0,08.  相似文献   

10.
The concentrations of Sc, Ti, Fe, Mn, Co, Ni, Cu, La, Th and U have been measured in several Pacific pelagic clays having widely different accumulation rates, 0.4–9.0 mm/103 yr. The authigenic fractions and deposition rates of these elements have been estimated from the measured concentrations using various models. The results show that in Pacific clays about 90% Mn, 80% Co and Ni and 50% Cu are authigenic whereas the major fraction (?90%) of Sc, Ti, Fe, La, Th and U are of detrital origin.Anticorrelation between the clay accumulation rates and the concentrations of Mn, Co, Ni and Cu is observed. This suggests a uniform authigenic deposition of these elements superimposed on varying amounts of detrital materials. The concentrations of Sc, Ti and Th are almost independent of sedimentation rates, indicating that their authigenic deposition is small compared to their detrital contribution.Comparison of the authigenic deposition and river input rates shows that Mn, Co and Ni are accumulating in excess of their supply by factors of 2–10, whereas the converse is true for Cu and U. Additional sources to account for the budgetary discrepancies of Mn, Co and Ni are discussed, with particular reference to in situ leaching of detrital phases transported to the oceans via rivers.  相似文献   

11.
The bulk of particulate transition metals transported by Patagonian rivers shows an upper crustal composition. Riverine particulate 0.5 N HCl leachable trace metal concentrations are mainly controlled by Fe-oxides. Complexation of Fe by dissolved organic carbon (DOC) appears to be an important determinant of the phases transporting trace metals in Patagonian rivers. In contrast, aeolian trace elements have a combined crustal and anthropogenic origin. Aeolian materials have Fe, Mn, and Al contents similar to that found in regional topsoils. However, seasonal concentrations of some metals (e.g., Co, Pb, Cu, and Zn) are much higher than expected from normal crustal weathering and are likely pollutant derived.We estimate that Patagonian sediments are supplied to the South Atlantic shelf in approximately equivalent amounts from the atmosphere (∼30 × 106 T yr−1) and coastal erosion (∼40 × 106 T yr−1) with much less coming from the rivers (∼2.0 × 106 T yr−1). Low trace metal riverine fluxes are linked to the low suspended particulate load of Patagonian rivers, inasmuch most of it is retained in pro-glacial lakes as well as in downstream reservoirs. Based on our estimation of aeolian dust fluxes at the Patagonian coastline, the high nutrient-low chlorophyll sub Antarctic South Atlantic could receive 1.0 to 4.0 mg m−2 yr−1 of leachable (0.5 N HCl) Fe. Past and present volcanic activity in the southern Andes—through the ejection of tephra—must be highlighted as another important source of Fe to the South Atlantic Ocean. Based on the 1991 Hudson volcano eruption, it appears that volcanic events can contribute several thousand-fold the mass of “leachable” Fe to the ocean as is introduced by annual Patagonian dust fallout.  相似文献   

12.
The technique of diffusive gradients in thin films (DGT) was applied to obtain high-resolution vertical profiles of trace metals in sediment porewater of a eutrophic lake, Lake Chaohu. All sampling sediments were under anaerobic conditions with Eh values below 0, the redox potential profile in M4 was relatively stable, and higher Eh values in M4 than that in M1 were observed due to hydrodynamic effects. Fe, Mn and As exhibited closely corresponding profiles due to the co-release of Fe and Mn oxides and the reduction of As. Higher Fe and Mn concentrations and lower As concentrations were observed in M1 of the western half-lake than those in M4 of the eastern half-lake due to different sources and metal contamination levels in the two regions. Cu and Zn showed increasing concentrations similar to Mn and Fe at 1–2 cm depth of sediments, while DGT measured Co, Ni, Cd and Pb concentrations decreased down to 3–4 cm in the profiles. Co, Ni, Cu, Zn, Cd and Pb showed insignificant regional concentration variances in the western and eastern half-lakes. According to the R(C DGT/C centrifugation) values, the rank order of metal labilities decrease as follows: Fe (>1) > Cu, Pb, Zn (>0.9) > Co, Ni, Cd (>0.3) > Mn, As (>0.1).  相似文献   

13.
Manganese oxides from deposits in west-central Arkansas were analyzed by X-ray diffraction for mineralogy and by atomic absorption spectroscopy for Mn, Fe, Co, Cu, Ni, Zn, V, Al, Li, Na, K, Mg, Ca, Sr and Ba. We report on 42 samples from 25 sites with more than 25 wt.% Mn and less than 7 wt.% Fe. Most samples were mixtures of two or more of the following minerals, many with concentric deposition: cryptomelane, lithiophorite, psilomelane and pyrolusite. In the purer samples of single minerals, lithiophorite contained the higher concentrations of total base metals (Co + Cu + Ni + Zn) than other minerals. In atom % of Mn these concentrations were: 9.51% in lithiophorite; 0.432% in psilomelane; and 0.275% in cryptomelane. The relative concentration of base metals in the pure minerals, proceeding from highest to lowest concentration, were: lithiophorite (Co = Cu > Ni > Zn); psilomelane (Co > Cu > Zn > Ni) and cryptomelane (Zn > Co = Cu > Ni).The concentration of Li correlates with the metals Al, Co, Cu, Ni and Zn, in the mineral samples containing measurable Li. Correlation coefficients (?) for Li with the various metals and sum of the base metals were: Al (? = 0.976); Co (? = 0.44); Ni (? = 0.954); Cu (? = 0.918); Zn (? = 0.875); and (Co + Cu + Ni + Zn) (? = 0.979). Li is believed to be a measure of lithiophorite. Correlation was found between Al content and base metal contents for all samples: Co (? = 0.354); Ni (? = 0.749); Cu (? = 0.808); Zn (? = 0.632); and (Co + Cu + Ni + Zn) (? = 0.884). The Al correlation extended to published values for these and the minerals hollandite and todorokite, except for Zn. Zn correlated with K in published analyses and in the eastern half of the study area where cryptomelane predominated.A mechanism is proposed to explain the enhancement by Al of base metal incorporation into manganese oxide minerals. The mechanism involves the isomorphous substitution of Al3+ for Mn4+ with charge neutralization by bivalent base metal ions.  相似文献   

14.
Layered ferromanganese crusts collected by dredge from a water depth range of 2770 to 2200 m on Mendeleev Ridge, Arctic Ocean, were analyzed for mineralogical and chemical compositions and dated using the excess 230Th technique. Comparison with crusts from other oceans reveals that Fe-Mn deposits of Mendeleev Ridge have the highest Fe/Mn ratios, are depleted in Mn, Co, and Ni, and enriched in Si and Al as well as some minor elements, Li, Th, Sc, As and V. However, the upper layer of the crusts shows Mn, Co, and Ni contents comparable to crusts from the Atlantic and Indian Oceans. Growth rates vary from 3.03 to 3.97 mm/Myr measured on the uppermost 2 mm. Mn and Fe oxyhydroxides (vernadite, ferroxyhyte, birnessite, todorokite and goethite) and nonmetalliferous detrital minerals characterize the Arctic crusts. Temporal changes in crust composition reflect changes in the depositional environment. Crust formation was dominated by three main processes: precipitation of Fe-Mn oxyhydroxides from ambient ocean water, sorption of metals by those Fe and Mn phases, and fluctuating but large inputs of terrigenous debris.  相似文献   

15.
Two glassy refractory Al-rich chondrules in Semarkona (LL3.0), the most primitive unequilibrated ordinary chondrite, provide direct evidence for condensation of Si and Mg on melt droplets during cooling. The chondrules are completely rounded, rich in Ca and Al, and poor in Fe and alkalis. They have extraordinarily abundant glass (70-80 vol%) with a subordinate amount of forsterite as the only crystalline phase that occurs mostly rimming the chondrule edge. The groundmass glass is concentrically zoned in terms of Si with an outward increase, which is overlapped with local heterogeneity of Mg and Al induced by crystallization of forsterite. The outward increase of Si, mostly compensated by Al, cannot be formed solely by crystallization of forsterite from a homogeneous melt in a closed system. Combined with skeletal or dendritic morphology and sector zoning of forsterite, it is suggested that Si condensed onto totally molten droplets (“initial melts”) accompanied by nucleation and rapid growth of forsterite with lowering temperature. The “initial melts”, the compositions of which were estimated from the Ca contents of the first crystallized forsterite, are very similar to Type C CAI but are notably poorer in Mg and Si than the bulk chondrules, indicating condensation of Mg in addition to Si with an atomic ratio of Mg:Si ∼ 3:2. The condensation after the nucleation of forsterite took place below ∼1300 °C under cooling at ∼70 °C/h and amounted to 30 wt% of the current chondrule. This study suggests a model that a short-time and local shock heating event induced melting of Type C CAI and concomitant evaporation of dusts, ferromagnesian chondrules of earlier generation, and their fragments to generate Mg and Si-rich gas, which condensed onto the melt droplets upon cooling accompanying condensation of Type I chondrules.  相似文献   

16.
Selenium and heavy metals content in some Mediterranean soils   总被引:1,自引:0,他引:1  
The study of metal contents in industrial, agricultural or/and polluted soils compared with natural or unpolluted soils is currently necessary to obtain reference values and to assess soil contamination. Nonetheless, very few works published appear in international journals on elements like Se, Li and Sr in Spanish soils. This study determines the total levels of Se, Li, Sr, As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, Fe, Mn and Ba in 14 natural (unpolluted) soils (Gypsisols, Leptosols, Arenosols and Acrisols), 14 agricultural soils (Anthrosols, Fluvisols and Luvisols), and 4 industrial–urban affected-surface soil horizons (Anthrosols and Fluvisols) of Eastern Spain. The geochemical baseline concentrations (GBC) and reference values (RV) have been established, and the relationships among elements and also between soil properties and elemental concentrations have been analysed. The RV obtained in this study were (mg kg−1): Se 2.68, Li 115, Sr 298, Cd 0.97, Co 35, Cr 217, Cu 46, Ni 50, Pb 137, V 120, Zn 246, Fe 124,472, Mn 2691, and Ba 743. The RV for Se and Li were used as a preliminary approach to assess soil contamination in Spanish soils. The results confirm human impact on Sr, As, Cd, Cr, Cu, Ni, Pb and Zn soil concentrations, but evidence no deviation from natural Se, Li, Co, V, Fe, Mn and Ba concentrations. The results obtained from the statistical analysis reveal significant correlations between some elements and clay and soil organic matter (SOM) contents, indicating that metal concentrations are controlled by soil composition. One particularly interesting finding is the high correlation coefficients obtained between SOM and Se, Cd, Cr, V, Fe, and Mn, and between clay and Cd, Zn, V, Fe and Mn. Once again, these facts confirm the role of SOM and clay minerals in soil functions and that soil is an ecosystem element responsible for maintaining environmental quality.  相似文献   

17.
Natural processes and anthropogenic activities may result in the formation and/or introduction of perchlorate (ClO4) at elevated levels into the environment. Perchlorate in soil environments on Earth and potentially in Mars may modify the dynamics of metal release and their mobilization. Serpentine soils, known for their elevated metal concentrations, provide an opportunity to assess the extent that perchlorate may enhance metal release and availability in natural soil and regolith systems. Here, we assess the release rates and extractability of Ni, Mn, Co and Cr in processed Sri Lankan serpentine soils using a range of perchlorate concentrations (0.10–2.50 w/v ClO4) via kinetic and incubation experiments. Kinetic experiments revealed an increase of Ni, Mn, Co and Cr dissolution rates (1.33 × 10−11, 2.74 × 10−11, 3.05 × 10−12 and 5.35 × 10−13 mol m−2 s−1, respectively) with increasing perchlorate concentrations. Similarly, sequential and single extractions demonstrated that Ni, Mn, Co and Cr increased with increasing perchlorate concentrations compared to the control soil (i.e., considering all extractions: 1.3–6.2 (Ni), 1.2–126 (Mn), 1.4–34.6 (Co) and 1.2–6.4 (Cr) times greater than the control in all soils). Despite the oxidizing capability of perchlorate and the accelerated release of Cr, the dominant oxidation state of Cr in solution was Cr(III), potentially due to low pH (<2) and Cr(VI) instability. This implies that environmental remediation of perchlorate enriched sites must not only treat the direct hazard of perchlorate, but also the potential indirect hazard of related metal contamination.  相似文献   

18.
A radioisotope energy-dispersive X-ray (EDX) system has been used on board the German research vessel “Valdivia” during an exploration expedition in the northern equatorial Pacific in 1973. The instrumentation used consisted of an X-ray detection system incorporating a 30 mm2 effective-area Si (Li) detector with a measured energy resolution of 195 eV for Mn Kα X-rays, standard nuclear electronics, a 1024-channel analyser and a data read-out unit. The X-ray spectra in the manganese-nodule samples were excited by a 30-mCi 238Pu source.The six elements Mn, Fe, Co, Ni, Cu and Zn were analysed on board. Precision values for the analyses were less than 3% for Mn, Fe, Ni, Cu and Zn and about 5% for Co. A total amount of 350 analyses was carried out during a one-month cruise.Average contents of 190 analysed whole manganese-nodule samples from all the sampling sites of the covered area were 23.3% Mn, 6.7% Fe, 0.23% Co, 1.16% Ni, 0.94% Cu and 0.10% Zn. The average content of the base metals expressed as the sum of the Co, Ni, Cu and Zn contents was 2.48%. A linear relationship between Mn and Ni in all analysed samples, including whole manganese-nodule samples, zones of manganese nodules and manganese crusts, was observed. The Mn/Ni ratio calculated by regression analysis was 23.0. Zonal variations of the chemical contents of the six elements in the manganese nodules were found. A size classification of the manganese nodules has been suggested. Geochemical correlations of Cu and Ni versus Mn/Fe in the investigated samples are given.  相似文献   

19.
In the Hunan-Guizhou-Guangxi area there have developed very thick bedded siliceous rocks of the late Sinian. The rocks have a fairly pure composition, with an average content of siliceous minerals exceeding 95%. They are relatively rich in Fe and Mn, and poor in Al, Ti and Mg. The Fe/Ti, (Fe+Mn)/Ti, Al/(Al+Fe+Mn) and U/Th ratios and the Al-Fe-Mn and Fe-Mn-(Ni+Co+Cu)×10 triangle diagrams all show that they are hydrothermal sedimentary siliceous rocks. In the rocks the total amount of REEs is low, the δCe shows an obvious negative anomaly and the 8Eu a weak anomaly, and LREE>HREE, all indicating that they are products of hydrothermal processes. The δ30Si and δ18O values, as well as the formation temperature of the rocks all clearly show that the silica forming the rocks comes from hot water. Besides, analyses of the depositional environment of the rocks using the MnO/TiO2 ratio and the δCe and δ30Si values yield the same conclusion that they are formed in environments from continental marginal slope  相似文献   

20.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号