首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
表层土剪切波速的不确定性对地表设计谱平台值的影响   总被引:2,自引:0,他引:2  
土层剪切波速对地表反应谱有重要的影响。选取构建了不同场地类别的235个场地地震反应模型,人工合成了12条强弱及频谱特性不同的加速度时程,运用一维土层地震反应的等效线性化波动方法,研究了不同地震动输入下表层土剪切波速的不确定性对设计谱平台值的影响,统计给出了表层土剪切波速的变异率与地表设计反应谱平台值间的经验公式。结果表明:地表设计反应谱平台值与表层土剪切波速的变异率呈负相关关系,即随表层土剪切波速变异率的增大而减小;不同地震波输入条件下各类场地类别地表设计谱平台高度与表层土剪切波速变异率的数学模型为一阶指数函数。  相似文献   

2.
上海软土场地三维非线性地震反应分析   总被引:1,自引:0,他引:1  
陈青生  高广运  何俊锋 《岩土力学》2011,32(11):3461-3467
考虑土的非线性,采用弹塑性边界面模型,对上海软土场地进行三维地震反应分析。利用多维地震动作用下的水平地层弹塑性动力反应分析程序,以具有水平和垂直三向完整加速度记录的Taft波作为地震输入,对比分析单向和多向地震输入场地水平和竖向地震反应特征,并分析不同强度地震动输入下竖向和水平加速度峰值比特征及地下水位变化对场地土层地震反应特征的影响。计算分析表明,竖向与水平向地震反应特征有较大差异;与水平单向地震输入相比,三向地震输入场地土层放大效应明显增大;地下水位上升对水平向和竖向峰值加速度的放大效应影响差异显著,地下水位上升,地表水平峰值加速度放大效应增大,竖向峰值加速度放大效应减小,研究结果对上海地区的工程抗震设计具有参考作用。  相似文献   

3.
本文研究确定设计地震动参数中涉及的若干问题,其中包括基岩水平加速度反应谱衰减关系的选择、震源深度对基岩水平加速度峰值及基岩反应谱曲线的影响、强度包络线函数及输入随机相位的选择、土体非线性特性参数和土层剪切波速值的选择、设计地震动反应谱的标定等问题。本文基于一个典型场地计算剖面,采用一维等效线性化模型并通过逐项变换某些研究参数的方法,研究了各种因素对设计地震动参数可能产生的影响及存在的误差和相应的规律。  相似文献   

4.
战吉艳  陈国兴  刘建达 《岩土力学》2011,32(Z1):507-0514
采用等效线性方法考虑土的动力非线性特性,利用一维波动模型分析了深软场地的地震反应特性,结果表明,与输入苏州人工地震波时的计算结果相比,大地震远场地震动作用时,深软场地的地表水平向峰值加速度明显增大,规准反应谱的特征周期值显著增大,地表设计地震动的水平地震影响系数值明显增大,且两者的差异随输入地震动峰值加速度的增大而增大;当土层剪切波速的变异性由+10%变化到-10%时,地表水平地震影响系数曲线平台值有降低的趋势,规准反应谱的特征周期略有增大,且-10%的变异性对水平地震影响系数的影响要比+10%的变异性的影响显著;土体动剪切模量比和阻尼比均有变异时对地表设计地震动参数的影响较大,且土的阻尼比由-2δ到+2δ变异时,地表水平向峰值加速度和地震影响系数平台值有减小趋势。  相似文献   

5.
建筑场地的不同类别反映不同场地条件对基岩地震震动的综合放大效应,建筑场地类别是根据土层等效剪切波速和覆盖层厚度进行划分的。这里介绍了单孔法波速测试在计算土层等效剪切波速度,划分建筑场地类别上的应用,以及通过对宿州市区40个建筑场地的201个土层等效剪切波速数据Vse20和场地类别划分结果进行统计分析、研究,得出该区域类似地层条件的土层等效剪切波速近似呈正态分布特征,估算范围在195.89m/s~222.46 m/s,推测建筑场地类别为Ⅲ类。  相似文献   

6.
针对新型核电工程结构AP1000核岛结构设计地基中的5类非坚硬岩场地,即硬岩场地、软岩场地、上限软-中等土场地、软-中等土场地和软土场地,采用一维土层场地模型开展场地土和计算基底条件对设计地震动影响计算分析。分析中,场地模型的计算基底剪切波速分别取为700、1 100、2 438 m/s,计算基底输入地震动分别选择基于核电建设相关技术文件和规范规定的反应谱RG1.60谱、AP1000谱和HAD101/01谱(5个阻尼比)合成的人工地震动时程。计算分析表明:非坚硬岩场地会导致场地地震动峰值加速度及频谱特性显著变化,场地越软影响程度越显著;除软土场地外,场地对地震动峰值加速度和反应谱的影响均为放大作用,软土场地对地震动较低频段反应谱有放大作用,但对峰值加速度和较高频段反应谱具有强烈的减小作用;对于各类场地,计算基底及其剪切波速的变化均会导致地表地震动峰值及频谱特性明显甚至显著变化,其影响程度与计算基底剪切波速成正比;随着场地由硬变软,计算基底剪切波速的变化对场地地震动的影响程度大为减小,至软土场地几乎不产生影响。考虑到场地类型及计算基底选取对场地地震动的显著影响,我国核电厂建设引用AP1000标准设计时应合理分析场地的适宜性。  相似文献   

7.
刚度和阻尼频率相关的等效线性化方法   总被引:4,自引:0,他引:4  
王伟  刘必灯  周正华  王玉石  赵纪生 《岩土力学》2010,31(12):3928-3933
在实际工程中发现,在强地震动作用下等效线性化方法低估了地表地震动的峰值加速度反应。通过与场地效应竖向台阵观测记录的对比分析证实了这一现象,其主要原因是等效剪应变水平的取值高于高频段实际剪应变水平,从而抑制了土层地震反应中的高频成份。若干分析表明,动力反应过程中土体的剪应变是随频率而变化的,且试验表明土体的刚度和阻尼是与剪应变相关的,据此假设土体刚度和阻尼是与频率相关的。基于这一假设,对传统等效剪应变的选取如何使得土层对基底地震动输入中的高频成分产生滤波效应的原理进行探讨,且通过频率相关的等效线性化方法对该原理进行证明。将该方法应用于Port Island场地效应竖向台阵的分析,并与实际地震动记录进行了对比,结果表明,较之传统等效线性化方法,能更加合理地考虑地震动输入中的高频成分。  相似文献   

8.
剪切波速是建筑场地类别判定的重要依据.剪切波速Vs在岩土工程设计中应用广泛,如划分建筑场地土类型和场地类别、液化判别、建(构)筑物地基地震反应分析等.《建筑抗震设计规范》(GB 50011—2010)中明确提出"建筑的场地类别,应根据土层等效剪切波速和场地覆盖层厚度划分为四类."准确地得到土体剪切波速才能够准确地进行建...  相似文献   

9.
陈学良  金星  陶夏新 《岩土力学》2006,27(Z1):1021-1026
国内外规范中推荐或强制规定竖向地震动取为剪切反应谱的1/2~2/3,但该规定如何改进使其更合理已成为一重要课题。首先,对其研究现状简单总结,给出了可处理辐射阻尼、地震动相位特性、计算高效的二维波动显式有限元等效线性化程序ELPSV编制的必要性,然后进行了分析。初步研究表明,竖向地震动强度对周期在0.3 s以下的地表剪切反应谱有一定的影响,而高于0.3 s部分影响轻微。竖向地震动强度对斜坡场地的竖向地震反应及地表竖向反应谱影响显著,按规范的取值将偏于不安全。受地形条件影响,坡顶剪切地震反应会比坡脚反应要大,而竖向地震反应并不明显。土层边界面的地震反应要比周围反应要低,交界面效应明显。软斜坡场地地震反应特性除场地竖向地震反应自下而上先增加后减小的规律外,其他情形与硬斜坡场地的规律基本一致。该结果定量反映了竖向地震动的影响程度,为斜坡场地上考虑竖向地震动的建(构)筑结构的抗震设计提供了有益的基础。  相似文献   

10.
为获取西北地区典型河谷型城市的场地剪切波速分布特征,应用数理统计方法分析了天水市1 294组不同岩土体的剪切波速数据,比较分析了不同地貌单元的等效剪切波速。结果显示,不同岩土体的剪切波速均具有随深度变化或风化程度差异而引起的较大变化区间,其区间差值为467~982m/s不等;不同岩土体的剪切波速分布均呈现出正态分布特征,其峰值区间和优势区间的剪切波速值可以反映岩土体的物理性状;粉土、粉质粘土、卵石和圆砾等松散堆积体的剪切波速与深度具有很好的相关性和拟合函数,而泥岩、砂岩和砾岩等成岩体的剪切波速与深度相关性较差,其剪切波速大小主要受岩体的裂隙发育和风化程度影响;不同地貌单元结合部位较单一地貌单元的等效剪切波速为大;Ⅱ类场地等效剪切波速变化范围为152~319m/s,Ⅲ类场地等效剪切波速变化范围为122~228m/s。该场地不同岩土体的剪切波速分布特征具有普遍一致性,反映了典型河谷城市的地层分布及地层岩性。  相似文献   

11.
The influence of local geologic and soil conditions on the intensity of ground shaking is addressed in this study. The amplification of the ground motion due to local site effects resulted in severe damage to dwellings in the Bam area during the 2003 Bam Earthquake. A unique set of strong motion acceleration recordings was obtained at the Bam accelerograph station. Although the highest peak ground acceleration recorded was the vertical component (nearly 1 g), the longitudinal component (fault-parallel motion) clearly had the largest maximum velocity as well as maximum ground displacement. Subsurface geotechnical and geophysical (down-hole) data in two different sites have been obtained and used to estimate the local site condition on earthquake ground motion in the area. The ground response analyses have been conducted considering the nonlinear behavior of the soil deposits using both equivalent linear and nonlinear approaches. The fully nonlinear method embodied in FLAC was used to evaluate the nonlinear soil properties on earthquake wave propagation through the soil layer, and compare with the response from the equivalent linear approach. It is shown that thick alluvium deposits amplified the ground motion and resulted in significant damage in residential buildings in the earthquake stricken region. The comparison of results indicated similar response spectra of the motions for both equivalent and nonlinear analyses, showing peaks in the period range of 0.3–1.5 s. However, the amplification levels of nonlinear analysis were less than the equivalent linear method especially in long periods. The observed response spectra are shown to be above the NEHRP building code design requirements, especially at high frequencies.  相似文献   

12.
Seismic site effect has been a major issue in the field of earthquake engineering due to the large local amplification of the seismic motion. This paper presents the importance of an appropriate soil behavior model to simulate earthquake site response and gives an overview of the field of site response analysis. Some of the well-known site response analysis methods are discussed. The objective of this paper is to investigate the influences of nonlinearity on the site response analysis by means of a more precise numerical model. In this respect, site responses of four different types of one-layered soil deposit, based on various shear wave velocities with the assumption of linear and rigid base bedrock, were analyzed by using the equivalent linear and fully nonlinear approaches. Nonlinear analyses?? results were compared with those of the linear method, and both of the similarities and differences are discussed. It is concluded that in the case of nonlinearity of soil under strong ground motions, 1-D equivalent linear modeling overestimates the amplification patterns in terms of absolute amplification level, and cannot correctly account for resonant frequencies and hysteric soil behavior. Therefore, more practical and appropriate numerical techniques for ground response analysis should be surveyed.  相似文献   

13.
The structural response of buildings subjected to seismic loads is affected by local site conditions and the interaction between the structure and the supporting soil media. Seismic centrifuge model tests were conducted on two layered clay soil profiles at 80 g field to investigate soil-structure interaction and dynamic response of foundation. Several earthquake-like shaking events were applied to the models using an electro-hydraulic shaking table to simulate linear and nonlinear soil behavior. Results showed that the foundation input motion was significantly amplified in both models, especially for weak earthquake motions. Seismic soil-structure interaction was found to have an important effect on structure response by increasing the amplification of foundation input motion. A 3D finite difference numerical model was also developed to simulate the response of centrifuge model tests and study the parameters that affect the characteristics of earthquake at the base of the structure. The results indicated that the stiffness and stratification of the soil profiles had a significant effect on modifying the foundation input motion.  相似文献   

14.
Early Estimation of Seismic Hazard for Strong Earthquakes in Taiwan   总被引:1,自引:0,他引:1  
A shakemap system providing rapid estimates of strong ground shaking could be useful for emergency response providers in a damaging earthquake. A hybrid procedure, which combines site-dependent ground motion prediction models and the limited observations of the Real-Time Digital stream output system (RTD system operated by Central Weather Bureau, CWB), was set up to provide a high-resolution shakemap in a near-real-time manner after damaging earthquakes in Taiwan. One of the main factors that affect the result of ground motion prediction analysis is the existence of site effects. The purpose of this paper is to investigate the local site effects and their influence in the ground shaking and then establish an early estimation procedure of potential hazard for damaging earthquakes. Based on the attenuation law, the site effects of each TSMIP station are discussed in terms of a bias function that is site and intensity-level dependent function. The standard deviation of the site-dependent ground motion prediction model can be significantly reduced. The nonlinear behavior of ground soil is automatically taken into account in the intensity-level dependent bias function. Both the PGA and the spectral acceleration are studied in this study. Based on the RTD data, event correctors are calculated and applied to precisely estimate the shakemap of damaging earthquakes for emergency response.  相似文献   

15.
Observations from earthquakes over the past several decades have highlighted the importance of local site conditions on propagated ground motions. Downhole arrays are deployed to measure motions at the ground surface and within the soil profile, and also to record the pore pressure response within the soft soil profiles during excitation. The degradation of soil stiffness as excess pore pressures are generated during earthquake events has also been observed. An inverse analysis framework is developed and demonstrated to directly extract soil material behavior including pore water pressure (PWP) generation from downhole array measurements that can then be readily used in 1D nonlinear site response analysis. The self‐learning simulations (SelfSim) inverse analysis framework, previously developed for total stress site response analysis, is extended to extract PWP generation behavior of the soil in addition to cyclic response during ground shaking. A Neural Network based constitutive model is introduced to represent PWP generation during cyclic loading. A new analysis scheme is introduced that can use data from co‐located piezometer and accelerometer sensors. The successful performance of the proposed framework is demonstrated using four synthetic vertical array recordings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
液化自由场地震响应大型振动台模型试验分析   总被引:1,自引:0,他引:1  
许成顺  豆鹏飞  杜修力  陈苏  韩俊艳 《岩土力学》2019,40(10):3767-3777
开展了含上部黏土层、饱和砂土层、密实砂土层的可液化自由场地在水平地震动激励下的大型振动台模型试验研究,分析了地震动激励时饱和砂土液化后场地加速度、位移、孔压比时空响应等动力响应。试验结果表明:在小震激励时,场地动力反应较小,加速度反应自下而上不断放大,各深度处孔压比均较小,模型地基整体处于弹性反应阶段;0.3g汶川地震卧龙台地震记录输入时,孔压积累迅速,可液化土体最上部土层孔压比达到1,饱和土体液化,模型地基表现出明显的非线性反应特征,加速度反应在饱和砂土层中未有明显放大,土体卓越周期对应的反应加速度自下而上有不断增大趋势。该研究是土-群桩-上部结构体系大型振动台系列试验中可液化自由场动力反应部分,可供今后做对比分析和验证数值模拟参考。  相似文献   

17.
Significant insight into the dynamic local site response of a horizontally layered sediment deposit to seismic excitation can be gained from numerical simulations. In this paper we use a nonlinear local site response analysis code SPECTRA to estimate the coseismic sediment deformation at a seismically active site in Lotung, Taiwan. We address some basic issues relevant for interpreting the simulation results, including the impact of noise and baseline offsets present in the input ground motion. We also consider the sensitivity of the predicted deformation responses to statistical variations of sediment constitutive properties. Finally, we apply a suite of hypothetical strong ground motions to the base of the sediment deposit to better understand the pattern of inelastic deformation likely to result from strong seismic shaking.  相似文献   

18.
The capability of a bounding surface plasticity model with a vanishing elastic region to capture the multiaxial dynamic hysteretic responses of soil deposits under broadband (eg, earthquake) excitations is explored by using data from centrifuge tests. The said model was proposed by Borja and Amies in 1994 (J. Geotech. Eng., 120, 6, 1051‐1070), which is theoretically capable of representing nonlinear soil behavior in a multiaxial setting. This is an important capability that is required for exploring and quantifying site topography, soil stratigraphy, and kinematic effects in ground motion and soil‐structure interaction analyses. Results obtained herein indicate that the model can accurately predict key response data recorded during centrifuge tests on embedded specimens—including soil pressures and bending strains for structural walls, structures' racking displacements, and surface settlements—under both low‐ and high‐amplitude seismic input motions, which was achieved after performing only a basic material parameter calibration procedure. Comparisons are also made with results obtained using equivalent linear models and a well‐known pressure‐dependent multisurface plasticity model, which suggested that the present model is generally more accurate. The numerical convergence behavior of the model in nonlinear equilibrium iterations is also explored for a variety of numerical implementation and model parameter options. To facilitate broader use by researchers and practicing engineers alike, the model is implemented as a “user material” in ABAQUS Standard for implicit time stepping.  相似文献   

19.
Earthquakes in regions underlain by soft clay have amply demonstrated the detrimental effects of soil–structure interaction (SSI) in such settings. This paper describes a new three dimensional Finite Element model utilizing linear elastic single degree of freedom (SDOF) structure and a nonlinear elasto-plastic constitutive model for soil behavior in order to capture the nonlinear foundation–soil coupled response under seismic loadings. Results from an experimental SSI centrifuge test were used to verify the reliability of the numerical model followed by parametric studies to evaluate performance of linear elastic structures underlain by soft saturated clay. The results of parametric study demonstrate that rigid slender (tall) structures are highly susceptible to the SSI effects including alteration of natural frequency, foundation rocking and excessive base shear demand. Structure–foundation stiffness and aspect ratios were found to be crucial parameters controlling coupled foundation–structure performance in flexible-base structures. Furthermore, frequency content of input motion, site response and structure must be taken into account to avoid occurrence of resonance problem.  相似文献   

20.
This paper presents probabilistic seismic hazard analysis (PSHA) of Tehran, Iran, accounting the effect of nonlinear soil response. It is well-known that soil nonlinearity and its accurate prediction could play important role in seismic hazard study. For this purpose, two different approaches have been carried out for predicting the hazard curves by (1) applying site modifications to the ground motion prediction equation based on generic site classes and use of constant coefficients (2) using a close-form solution that modifies the hazard results at the rock level. Also, efficiency of the Monte Carlo method in modeling of amplification function for the six selected sites in the study area was examined. Results showed important effect of nonlinear soil response mainly for frequencies lower than 8?Hz, which should be considered properly in hazard estimation. As an interesting subject, influence of soil plasticity index (PI) on hazard estimation of clayey sites including the nonlinear soil response was evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号