首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Rapid urbanization has emerged as one of the most critical challenges to ecological sustainability in urban areas. In developing countries, the degradation of the ecosystem is more prominent due to the lack of urban planning. Thus, it has become urgent for researchers to identify the ecological efficiency (EE) changes imposed by urban expansion and promote sustainable land use planning. This study aims to develop a comprehensive urban ecological efficiency (UEE) framework in the Kolkata Metropolitan Area (KMA), India, from 2000 to 2020. Principal component analysis (PCA) was used to develop a remote sensing-based UEE index (UEEI) based on five effective ecological parameters (Greenness, Dryness, Heat, Wetness and vegetation health. A single sensitivity parameter was also calculated to determine the role of a single parameter based on which management strategies can be carried out. The findings showed that (i) there were substantial deteriorations of UEE in the last 20 years. In 2000 the areas with good EE were about 65.5% which declined to 53.72% in 2010 and 20.87% in 2020. The areas with good UEE decreased 68% and 61% from 2000 to 2020 and 2010 to 2020, respectively; (ii) the areas with good UEE were 52% in 2000, while 38% in 2010. Most urban centres (Bhadreshwar, Champdani, Srirampur, Bally, Howrah, Kamarhati, Baranagar, Dum Dum, South Dum Dum, Rajarhat, Bidhannagar) located around the Kolkata megacity are characterized by poor and very poor EE (ranges of 0.60–1.00). Thus, spatiotemporal pattern of UEE could assist to clarify the administrative responsibilities as well as obligations. In addition to this, the UEE framework can help for scientific guidance of urban ecosystem protection and restoration through comprehensive spatial landscape planning.  相似文献   

2.
Takashi Furumura 《Landslides》2016,13(6):1519-1524
The sequence of the 2016 Kumamoto, Japan, earthquake, which included an initial M6.5 foreshock on April 14, followed by a larger M7.3 mainshock on April 16, and subsequently occurred high aftershock activity, caused significant damage in Kumamoto and neighboring regions. The near-field strong motion record by strong motion network (K-NET and KiK-net) and the intensity meter network demonstrated clearly the characteristics of the strong ground motion developed by the shallow (H = 12 km), inland earthquake comprising short-time duration (<15–20 s) but large (>1G) ground accelerations. The velocity response spectra of the near-fault motion at Mashiki and Nishihara showed large levels (>300–550 cm/s) in the short-period range (T = 1–2 s), several times larger than that of the near-field record of the destructive 1995 Kobe earthquake (M7.3) and that of the 2004 Mid-Niigata earthquake (M6.8). This period corresponds to the collapse vulnerability of Japanese wooden-frame houses, and is the major cause of severe damage during the Kumamoto earthquake. The response spectra also showed extremely large levels (>240–340 cm/s) in the long-period (T > 3 s) band, which is potentially disastrous for high-rise buildings, large oil storage tanks, etc. to have longer resonant period. Such long-period motion was, for the most parts, developed by the static displacement of the fault movement rather than by the seismic waves radiating from the source fault. Thus, the extreme near-fault long-period motion was hazardous only close to the fault but it attenuated very rapidly away from the fault.  相似文献   

3.
Assessment of ecological risk (ER) is a key approach to adapting and mitigating ecological deterioration in cities of developing countries. In developing countries, the ecological landscapes such as vegetation cover, water bodies, and wetlands are highly vulnerable due to rapid urban expansion. Therefore, urban ER (UER) assessment and its drivers are crucial to guide ecological protection as well as restoration. This study aims to explore the spatiotemporal pattern of UER and the impact of urban spatial form on UER in the Kolkata Megacity Region (KMR), India. This study developed a UER index and used spatial regression models across the urban centres. The ER has been assessed at city scale as well as grid-scale (2 km × 2 km and 5 km × 5 km) from 2000 to 2020. The results showed that ER has substantially increased over the last 20 years. The urban centres with very high and high ER substantially increased, i.e. from 21.95% in 2000 to 31.70% in 2020. Kolkata and its surrounding urban centres were mostly characterized by very high and high ER. ER was influenced by spatial variables (such as land use and landscapes pattern). However, remote sensing parameters were weakly related to ER. The spatial lag model (SLM) (R2 = 0.8686) was found to be better fit model than spatial error model (SEM) (R2 = 0.8661) and ordinary linear regression model (OLS) (R2 = 0.8641). Thus, the findings of the study can improve research and a comprehensive framework for urban ecological resources and provide a scientific basis for urban ecosystem planning and restoration. In addition to this, it will guarantee the sustainable utilization of urban ecosystems.  相似文献   

4.
As the main greenhouse gas, carbon dioxide (CO2) has been under intensive studied in the last two decades. This paper addresses the research that whether the environmental Kuznets curve (EKC) for CO2 emissions exists in G20 group—an international forum for governments and central banks from 19 countries and European Union. To analyze the studied relationship thoroughly, other four explanatory variables—two trade openness terms, the ratio of secondary industry value-added to GDP and population density—are employed to investigate whether they have any influences on the existence and shapes of EKC. In the empirical study, two multinational panel data sets covering the periods between 1960 and 2010 (50 years) and between 1990 and 2010 (20 years) are utilized, and the panel data fixed effects and generalized method of moments estimators are employed. The estimation results indicate that the EKC indeed exists in the G20 members as a whole. To investigate whether the existence of EKC depends on the level of economic growth, the G20 countries are further divided into two subgroups: developed and developing countries. Although the estimation results suggest that there exists EKC in developing countries during both 20- and 50-year period, there is no persuasive evidence to prove the existence of EKC in developed countries during the 20-year period. For the time periods we studied, most developed countries have seen relatively stable or even decreasing CO2 emissions, while for the majority of the developing countries, the peak of CO2 emissions could not be reached in the near future.  相似文献   

5.
This paper is an attempt to study the geochemistry of Akra Kaur Dam (AKD) water, north of Gwadar city, southern Balochistan. Representative water samples were collected from AKD reservoir to assess the suitability of water for drinking and agriculture purposes. The major ionic composition is suggestive for freshwater. The average ionic composition demonstrate SO4 > Ca > Na > Cl > HCO3 > Mg > K. The plots on Piper diagram reflected Ca–Mg–SO4 type of water facies. High Ca/SO4 and Ca/Mg ratios revealed that the water has influence of gypsum dissolution. The negative ratio of chloro-alkaline indices indicated reverse exchange between Ca and Mg in water occurred with Na and K in rocks. The pH, electrical conductivity, total dissolved salts, Ca, Mg, Na, K, HCO3, Cl and SO4 concentrations in the dam water were below the permissible limit, however, Na and SO4 were above the desirable limit, set by the World Health Organization. Important parameters such as residue sodium carbonate, sodium percent, sodium adsorption ratio, permeability index, magnesium content and Kelley’s ratio were calculated to evaluate the suitability of water for irrigation purpose. The result were compared with standard permissible limits and found satisfactory. The health and agriculture hazards of sulphate-bearing water were also discussed.  相似文献   

6.
Gallium (Ga) is a critical mineral that plays an irreplaceable role in consumer electronics, clean energy technologies and the aerospace industry. Nowadays competition for gallium resources at the national strategic level has begun to emerge, but gallium resources are unevenly distributed globally, and their presence is not guaranteed. New discoveries revealed an average gallium concentration of thirty-one samples from M1, M2, M3 and M4 stone coal-bearing seams of the Cambrian strata on South Qinling Orogenic Belt in central China is 157 mg/kg (9.98–747 mg/kg), which is 27.6-fold higher than the global hard coal average, as well as the existing association of Mo–V–U–Cd–Zn–Ba–Se–Mg–Ni–Cu enrichment. Ga average of these coal seams are 344 mg/kg (M3, 44.5–747 mg/kg, n = 11), 270 mg/kg (M4, 14.3–270 mg/kg, n = 5), 53.8 mg/kg (M2, 22.6–75.4 mg/kg, n = 8) and 19.8 mg/kg (M1, 9.98–34.9 mg/kg, n = 7) respectively, as well as the thickness of approximately 6, 12, 8, and 20 m, which be close to or exceed to the boundary grade standard (30 mg/kg) and minimum recoverable thickness (0.7 m) of gallium resources exploration. These findings indicate that the Cambrian stone coal deposits, especially in the middle and late Cambrian period, should be considered as promising alternative sources of gallium. The anomalous gallium-enriched sediments originated from a complex combination of hydrothermal fluids, original biomass and terrigenous materials. For the M1 stone coal-bearing seams, gallium most likely occurred in the mode of GaAs, GaxIn1-xAs and GaO(OH), while modes of gallium in the M2 to M4 seams is interrelated with the organic affinity and clay minerals. The crude reserve estimate of gallium resources in central China is approximately 10.06 × 104 tons, corresponding to a super-large coal-hosted gallium ore deposit. The unique paleogeographic location and geological structure in central China resulted that this newly discovered deposit is a unique type of gallium-enriched deposit that has been discovered worldwide. These discoveries will provide the critical parameters when developing distinctive beneficiation processes and appropriate extraction procedures, as well as guidance and effective for future prospecting regions of gallium resources around the globe, involving a combination consider the distribution of regional deep–large fault zones and the middle to late Cambrian black rock series deposits.  相似文献   

7.
The Middle Miocene porphyry granitoid stocks of Meiduk and Parkam porphyry copper deposits are intruded in the north-western part of the Dehaj-Sarduiyeh volcano-sedimentary belt in the south-eastern extension of the Urumieh-Dukhtar Magmatic Arc (UDMA) in Iran. The porphyritic to microgranular granitoids are mainly consist of quartz diorite, granodiorite and diorite. The whole rock geochemical analyses of these rocks reveals sub-alkaline, calc-alkaline, meta-peraluminous and I-type characteristics. Their geochemical characteristics such as Al2O3 content of 13.51–17.05 wt%, high Sr concentration (mostly >400 ppm), low Yb (an average of 0.74 ppm) and Y (an average of 9.02 ppm) contents, strongly differentiated REE patterns (La/Yb  20), lack of Eu anomaly (Eu/Eu1  1) are indicative of adakitic signature. Their enrichment in low field strength elements (LFSE) and conspicuous negative anomalies for Nb, Ta and Ti are typical of subduction related magmas. Detailed petrological studies and geochemical data indicated that Meiduk and Parkam porphyry granitoids were derived from amphibole fractionation of hydrous melts at a depth of >40 km in a post-collisional tectonic setting.  相似文献   

8.
Major and trace elements in groundwater from basaltic aquifers in pristine conditions were investigated in a volcanic island to evaluate sources, sinks, and mobility of elements over a wide range of mineralization conditions with total dissolved solids from 50 mg/L to 3400 mg/L. Groundwater was highly undersaturated with respect to primary silicate minerals, indicating that dissolution of basaltic rocks may continue under conditions with precipitation of calcite and secondary silicates. Evolution of B/Cl ratio in groundwater from marine aerosols to basaltic rocks showed that the ratio could be used as a conservative tracer for interactions between water and basaltic rocks. Relative mobility (RM) of elements calculated using the concentrations of elements in the local basaltic rocks and those in groundwater showed that mobility decreased in the order of B > Rb > Na > K > Mg > Ca > Mo > V > Si > Sr > Sc > P > U > Zn > Pb > Cr > Cu > Ba > Ni > Ti > (Mn, Al, Fe, Co, Th) indicating that oxyanion-forming elements and alkali metals had the highest mobility. Compared to average RM, V had decreased mobility, and Fe and Mn had increased mobility in anoxic groundwater while V, Mo, and U had higher mobility in oxic-alkaline water. The sources of V, Cr, Cu, and Zn in rocks were estimated using the partition coefficients between minerals and basaltic melt, and the disparity between sources and mobility indicated that sinks are more important for controlling the concentrations of these elements in groundwater than the contents in the rocks. Principal component analysis (PCA) of hydrogeochemical parameters in groundwater produced three principal components (PC) which represent dissolution of basaltic rocks without significant attenuation of released solutes, higher degree of water–rock interactions resulting in oxic-alkaline conditions, and attenuation of Zn and Cu in higher pH, respectively. Spatial distribution of PCs revealed that groundwater with elevated concentrations of mobile elements was concentrated in the southwestern area and that concentrations of V and Cr were more scattered, which is likely to be controlled by pH and redox states of groundwater as well as degree of water–rock interactions.  相似文献   

9.
Estuaries located in the northern Gulf of Mexico are expected to experience reduced river discharge due to increasing demand for freshwater and predicted periods of declining precipitation. Changes in freshwater and nutrient input might impact estuarine higher trophic level productivity through changes in phytoplankton quantity and quality. Phytoplankton biomass and composition were examined in Apalachicola Bay, Florida during two summers of contrasting river discharge. The <20 μm autotrophs were the main component (92?±?3 %; n?=?14) of phytoplankton biomass in lower (<25 psu) salinity waters. In these lower salinity waters containing higher dissolved inorganic nutrients, phycocyanin containing cyanobacteria made the greatest contribution to phytoplankton biomass (69?±?3 %; n?=?14) followed by <20 μm eukaryotes (19?±?1 %; n?=?14), and phycoerythrin containing cyanobacteria (4?±?1 %; n?=?14). In waters with salinity from 25 to 35 psu that were located within or in close proximity to the estuary, >20 μm diatoms were an increasingly (20 to 70 %) larger component of phytoplankton biomass. Lower summer river discharges that lead to an areal contraction of lower (5–25 psu) salinity waters composed of higher phytoplankton biomass dominated by small (<20 μm) autotrophs will lead to a concomitant areal expansion of higher (>25 psu) salinity waters composed of relatively lower phytoplankton biomass and a higher percent contribution by >20 μm diatoms. A reduction in summer river discharge that leads to such a change in quantity and quality of estuarine phytoplankton available will result in a reduction in estuarine zooplankton productivity and possibly the productivity of higher trophic levels.  相似文献   

10.
The deposits of Glacial Lake Quincy overlie a diamicton associated with the classically defined Illinoian limit in central Indiana. This lake covered at least 180 km2 with a depth of > 20 m and developed when the Illinoian ice sheet retreated 15 km from the maximum limit, causing lake impoundment against Devore Ridge. Overflow from Glacial Lake Quincy eroded across the ridge forming a number of steeped-walled outlets. A section along Mill Creek exposes a sedimentologic sequence associated with Glacial Lake Quincy from a subglacial diamicton to ice-proximal to ice-distal glacial lacustrine sediments. We report new optical ages by multiple aliquot regenerative dose procedure for the fine-grained rhythmically bedded sediments presumed to represent the lowest energy depositional facies, dominated by suspension settling, which maximized sunlight exposure. In turn, optical ages were determined on the fine-grained (4-11 μm) polymineral and quartz fractions under infrared and blue excitation, which yielded statistically similar ages. Optical ages span from ca. 170 to 108 ka, with the average of 16 optical ages indicating deglaciation at ca. 135 ka, generally coincident with Marine Oxygen Isotope Stage 6-to-5 transition and rise in global sea level.  相似文献   

11.
This study uses the total-factor energy productivity change index (TFEPCH) to investigate the changes in energy productivity of construction industry for 30 provincial regions in China from 2006 to 2015, adopting the improved Luenberger productivity index combined with the directional distance function. In addition to traditional economic output indicator, this study introduces building floor space under construction as a physical output indicator for energy productivity evaluation. The TFEPCH was decomposed into energy technical efficiency change and energy technical progress shift. Results indicate that, first, energy productivity of China’s construction industry decreased by 7.1% annually during 2006–2015. Energy technical regress, rather than energy technical efficiency, contributed most to the overall decline in energy productivity of China’s construction industry. Second, energy productivity in the central region of China decreased dramatically, by a cumulative sum of approximately 77.1%, since 2006, while energy productivity in the eastern and western regions decreased by over 54.3 and 65.3%, respectively. Only two of the 30 provinces considered—Hebei and Shandong—improved their energy productivity during 2006–2015. The findings presented here provide a basis for decision-making and references for administrative departments to set differentiated energy efficiency goals and develop relevant measures. Additionally, the findings are highly significant for energy and resource allocation of Chinese construction industry in different regions.  相似文献   

12.
《Ore Geology Reviews》2008,33(3-4):543-570
The Cuiabá Gold Deposit is located in the northern part of the Quadrilátero Ferrífero, Minas Gerais State, Brazil. The region constitutes an Archean granite–greenstone terrane composed of a basement complex (ca. 3.2 Ga), the Rio das Velhas Supergroup greenstone sequence, and related granitoids (3.0–2.7 Ga), which are overlain by the Proterozoic supracrustal sequences of the Minas (< 2.6–2.1  Ga) and Espinhaço (1.7 Ga) supergroups.The stratigraphy of the Cuiabá area is part of the Nova Lima Group, which forms the lower part of the Rio das Velhas Supergroup. The lithological succession of the mine area comprises, from bottom to top, lower mafic metavolcanics intercalated with carbonaceous metasedimentary rocks, the gold-bearing Cuiabá-Banded Iron Formation (BIF), upper mafic metavolcanics and volcanoclastics and metasedimentary rocks. The metamorphism reached the greenschist facies. Tectonic structures of the deposit area are genetically related to deformation phases D1, D2, D3, which took place under crustal compression representing one progressive deformational event (En).The bulk of the economic-grade gold mineralization is related to six main ore shoots, contained within the Cuiabá BIF horizon, which range in thickness between 1 and 6 m. The BIF-hosted gold orebodies (> 4 ppm Au) represent sulfide-rich segments of the Cuiabá BIF, which grade laterally into non-economic mineralized or barren iron formation. Transitions from sulfide-rich to sulfide-poor BIF are indicated by decreasing gold grades from over 60 ppm to values below the fire assay detection limit in sulfide-poor portions. The deposit is “gold-only”, and shows a characteristic association of Au with Ag, As, Sb and low base-metal contents. The gold is fine grained (up to 60 μm), and is generally associated with sulfide layers, occurring as inclusions, in fractures or along grain boundaries of pyrite, the predominant sulfide mineral (> 90 vol.%). Gold is characterized by an average fineness of 0.840 and a large range of fineness (0.759 to 0.941).The country rocks to the mineralized BIF show strong sericite, carbonate and chlorite alteration, typical of greenschist facies metamorphic conditions. Textures observed on microscopic to mine scales indicate that the mineralized Cuiabá BIF is the result of sulfidation involving pervasive replacement of Fe-carbonates (siderite–ankerite) by Fe-sulfides. Gold mineralization at Cuiabá shows various features reported for Archean gold–lode deposits including the: (1) association of gold mineralization with Fe-rich host rocks; (2) strong structural control of the gold orebodies, showing remarkable down-plunge continuity (> 3 km) relative to strike length and width (up to 20 m); (3) epigenetic nature of the mineralization, with sulfidation as the major wall–rock alteration and directly associated with gold deposition; (4) geochemical signature, with mineralization showing consistent metal associations (Au–Ag–As–Sb and low base metal), which is compatible with metamorphic fluids.  相似文献   

13.
This study investigated the potential for the uranium mineral carnotite (K2(UO2)2(VO4)2·3H2O) to precipitate from evaporating groundwater in the Texas Panhandle region of the United States. The evolution of groundwater chemistry during evaporation was modeled with the USGS geochemical code PHREEQC using water-quality data from 100 groundwater wells downloaded from the USGS National Water Information System (NWIS) database. While most modeled groundwater compositions precipitated calcite upon evaporation, not all groundwater became saturated with respect to carnotite with the system open to CO2. Thus, the formation of calcite is not a necessary condition for carnotite to form. Rather, the determining factor in achieving carnotite saturation was the evolution of groundwater chemistry during evaporation following calcite precipitation. Modeling in this study showed that if the initial major-ion groundwater composition was dominated by calcium-magnesium-sulfate (>70 precent Ca + Mg and >50 percent SO4 + Cl) or calcium-magnesium-bicarbonate (>70 percent Ca + Mg and <70 percent HCO3 + CO3) and following the precipitation of calcite, the concentration of calcium was greater than the carbonate alkalinity (2mCa+2 > mHCO3 + 2mCO3−2) carnotite saturation was achieved. If, however, the initial major-ion groundwater composition is sodium-bicarbonate (varying amounts of Na, 40–100 percent Na), calcium-sodium-sulfate, or calcium-magnesium-bicarbonate composition (>70 percent HCO3 + CO3) and following the precipitation of calcite, the concentration of calcium was less than the carbonate alkalinity (2mCa+2 < mHCO3- + 2mCO3−2) carnotite saturation was not achieved. In systems open to CO2, carnotite saturation occurred in most samples in evaporation amounts ranging from 95 percent to 99 percent with the partial pressure of CO2 ranging from 10−3.5 to 10−2.5 atm. Carnotite saturation occurred in a few samples in evaporation amounts ranging from 98 percent to 99 percent with the partial pressure of CO2 equal to 10−2.0 atm. Carnotite saturation did not occur in any groundwater with the system closed to CO2.  相似文献   

14.
The western Blue Ridge allochthon of the southern Appalachians is dominated by the >180 km-long Murphy synclinorium, paired with anticlinoria to the northwest. These are first generation, northwest overturned, doubly plunging, large amplitude and wavelength (>10 km) isoclinal folds contemporaneous with peak Neo-Acadian orogeny (Visian, ∼335–345 Ma) regional metamorphism. The synclinorium folds a regional unconformity separating Neoproterozoic rift and lower Paleozoic drift sequences from a younger successor-basin sequence. Strain analysis of metaconglomerates from lithologic groups above and below the unconformity indicates coaxial, low to moderate, oblate to nearly plane strain in both groups. The synclinorium evolved via NNW-SSE-crustal shortening (∼32%), combined with orthogonal NNE-SSW-sub-horizontal flow (stretching) (∼35–45%) sub-parallel to the developing fold axes. Differences in metamorphic grade and paleodepth (∼10–17 km) of the exposed synclinorium had essentially no effect on strain magnitudes. Retrodeformation of the embedded regional unconformity reveals a very broad synclinal warping of the rift and drift-facies units predating superposition of the Murphy synclinorium, suggesting tectonic inheritance in the latter structure's origin. The earlier mild deformation is post-Early Cambrian and may represent the only vestige of the dynamic effects of the Middle Ordovician Taconic orogeny to be found in this region.  相似文献   

15.
Integrated geoelectrical resistivity, hydrochemical and soil property analysis methods were used to study the groundwater characteristics of sandy soils within a shallow aquifer in the agriculture area, Machang. A pilot test investigation was done prior to the main investigation. The area was divided into two sites. Test-Site 1 is non-fertilized; Test-Site 2 is the former regularly fertilized site. From the surface to depths of 75 cm, a lower average resistivity was obtained in Test-Site 2 (around 0.37 less than in Test-Site 1). The presence of nitrate and chloride contents in pore water reduced the resistivity values despite the low moisture content. The pH values for the whole area range from 4.11 to 6.88, indicating that the groundwater is moderately to slightly acidic. In the southern region, concentration of nitrate is considered to be high (>20 mg/l), while it is nearly zero in the northern region. In the south, the soil properties are similar. However, the geoelectrical model shows lower resistivity values (around 18 Ω m) at the sites with relatively high nitrate concentration in the groundwater (>20 mg/l). Conversely, the sites with low nitrate concentration reveal the resistivity values to be higher (>35 Ω m). Basement and groundwater potential maps are generated from the interpolation of an interpreted resistivity model. The areas that possibly have nitrate-contaminated groundwater have been mapped along with groundwater flow patterns. The northern part of the area has an east to west groundwater flow pattern, making it impossible for contaminated water from the southern region to enter, despite the northern area having a lower elevation.  相似文献   

16.
Detailed geochemical, isotope, and geochronological studies were carried out for the granitoids of the Chuya and Kutima complexes in the Baikal marginal salient of the Siberian craton basement. The obtained results indicate that the granitoids of both complexes are confined to the same tectonic structure (Akitkan fold belt) and are of similar absolute age. U–Pb zircon dating of the Kutima granites yielded an age of 2019±16 Ma, which nearly coincides with the age of 2020±12 Ma obtained earlier for the granitoids of the Chuya complex. Despite the close ages, the granitoids of these complexes differ considerably in geochemical characteristics. The granitoids of the Chuya complex correspond in composition to calcic and calc-alkalic peraluminous trondhjemites, and the granites of the Kutima complex, to calc-alkalic and alkali-calcic peraluminous granites. The granites of the Chuya complex are similar to rocks of the tonalite–trondhjemite–granodiorite (TTG) series and are close in CaO, Sr, and Ba contents to I-type granites. The granites of the Kutima complex are similar in contents of major oxides to oxidized A-type granites. Study of the Nd isotope composition of the Chuya and Kutima granitoids showed their close positive values of εNd(T) (+ 1.9 to + 3.5), which indicates that both rocks formed from sources with a short crustal history. Based on petrogeochemical data, it has been established that the Chuya granitoids might have been formed through the melting of a metabasitic source, whereas the Kutima granites, through the melting of a crustal source of quartz–feldspathic composition. Estimation of the PT-conditions of granitoid melt crystallization shows that the Chuya granitoids formed at 735–776 °C (zircon saturation temperature) and > 10 kbar and the Kutima granites, at 819–920 °C and > 10 kbar. It is assumed that the granitoids of both complexes formed in thickened continental crust within an accretionary orogen.  相似文献   

17.
The interaction between heavy metals and river sediment is very important because river sediment is the sink for heavy metals introduced into a river and it can be a potential source of pollutants when environmental conditions change. The Kumho River, the main tributaries of the Nakdong River in Korea, can be one of the interesting research targets in this respect, because it runs through different geologic terrains with different land use characteristics in spite of its short length. Various approaches were used, including mineralogical, geochemical, and statistical analyses to investigate the distribution and behavior of heavy metals in the sediments and their sources. The effect of geological factor on the distribution of these metals was also studied. No noticeable changes in the species or relative amounts of minerals were observed by quantitative X-ray diffraction in the sediments at different stations along the river. Only illite showed a significant correlation with concentrations of heavy metals in the sediments. Based on an average heavy metal concentration (the average concentrations of Cd, Co, Cr, Cu, Ni, Pb, and Zn were 1.67, 20.9, 99.7, 125, 97.6, 149, 298 ppm, respectively), the sediments of the Kumho River were classified as heavily polluted according to EPA guidelines. The concentrations of heavy metals in the sediments were as follows: Zn > Pb > Cu > Ni > Cr > Co > Cd. In contrast, contamination levels based on the average I geo (index of geoaccumulation) values were as follows: Pb > Cd > Zn > Cu > Co = Cr > Ni. The concentrations of heavy metals increased downstream (with the exception of Cd and Pb) and were highest near the industrial area, indicating that industrial activity is the main factor in increasing the concentrations of most heavy metals at downstream stations. Sequential extraction results, which showed increased heavy metal fractions bound to Fe/Mn oxides at the downstream stations, confirmed anthropogenic pollution. The toxicity of heavy metals such as Ni, Cu, and Zn, represented by the exchangeable fraction and the fraction bound to carbonate, also increased at the downstream stations near the industrial complexes. Statistical analysis showed that Pb and Cd, the concentrations of which were relatively high at upstream stations, were not correlated with other heavy metals, indicating other possible sources such as mining activity.  相似文献   

18.
The goal of this study was to use an ecosystem-based approach to consider the effect of environmental conditions on the distribution and abundance of juvenile bay whiff and southern flounder within the Aransas Bay Complex, TX, USA. Species habitat models for both species were developed using boosted regression trees. Juvenile bay whiff were associated with low temperatures (<15 °C, 20–23 °C), moderate percent dry weight of sediments (25–60 %), salinity >10, and moderate to high dissolved oxygen (6–9 mg O2/l, 10–14 mg/l). Juvenile southern flounder were associated with low temperatures (<15 °C), low percent dry weight of sediment (<25 %), seagrass habitat, shallow depths (<1.2 m), and high dissolved oxygen (>8 mg O2/l). Our results indicate that conservation measures should focus along the eastern side of Aransas Bay and the north corner of Copano Bay to protect essential fish habitat. These findings provide a valuable new tool for fisheries managers to aid in the sustainable management of bay whiff and southern flounder and provide crucial information needed to prioritize areas for habitat conservation.  相似文献   

19.
Eleven surface soil samples from calcareous soils of industrial areas in Hamadan Province, western Iran were analyzed for total concentrations of Zn, Cd, Ni, Cu and Pb and were sequentially extracted into six fractions to determine the bioavailability of various heavy metal forms. Total Zn, Cd, Ni, Cu and Pb concentrations of the contaminated soils were 658 (57–5,803), 125.8 (1.18–1,361), 45.6 (30.7–64.4), 29.7 (11.7–83.5) and 2,419 (66–24,850) mg kg−1, respectively. The soils were polluted with Zn, Pb, and Cu to some extent and heavily polluted with Cd. Nickel values were not above regulatory limits. Copper existed in soil mainly in residual (RES) and organic (OM) fractions (about 42 and 33%, respectively), whereas Zn occurred essentially as RES fraction (about 69%). The considerable presence of Cd (30.8%) and Pb (39%) in the CARB fraction suggests these elements have high potential biavailability and leachability in soils from contaminated soils. The mobile and bioavailable (EXCH and CARB) fractions of Zn, Cd, Ni, Cu, and Pb in contaminated soils averaged (7.3, 40.4, 16, 12.9 and 40.8%), respectively, which suggests that the mobility and bioavailability of the five metals probably decline in the following order: Cd = Pb > Ni > Cu > Zn.  相似文献   

20.
Although the diamond potential of cratons is linked mainly to thick and depleted Archean lithospheric keels, there are examples of craton-edge locations and circum-cratonic Proterozoic terranes underlain by diamondiferous mantle. Here, we use the results of comprehensive major and trace-element studies of detrital garnets from diamond-rich Late Triassic (Carnian) sedimentary rocks in the northeastern Siberia to constrain the thermal and chemical state of the pre-Triassic mantle and its ability to sustain the diamond storage. The studied detrital mantle-derived garnets are dominated by low- to medium-Cr lherzolitic (~45%) and low-Cr megacrystic (~39%) chemistries, with a significant proportion of eclogitic garnets (~11%), and only subordinate contribution from harzburgitic garnets (~5%) with variable Cr2O3 contents (1.2–8.4 wt.%). Low-Cr megacrysts display uniform, “normal” rare-earth element (REE) patterns with no Eu/Eu* anomalies, systematic Zr and Ti enrichment (mainly within 2.5–5), which are evidence of their crystallization from deep metasomatic melts. Lherzolitic (G9) garnets exhibit normal or humped to MREE-depleted sinusoidal REE patterns and elevated Nd/Y (up to 0.33–0.41) and Zr/Y ratios (up to 7.62). Rare low- to high-Cr harzburgitic (G10) garnets have primarily “depleted”, sinusoidal REE-patterns, low Ti, Y and HREE, but vary significantly in Zr-Hf, Ti and MREE-HREE contents, Nd/Y (within 0.1–2.4) and Zr/Y (1.53–19.9) ratios. The observed trends of chemical enrichment from the most depleted, harzburgitic garnets towards lherzolitic (including high-Ti high-Cr G11-type) garnets and megacrysts result from either voluminous high-temperature metasomatism by plume-derived silicate melts or recurrent mobilization of less voluminous kimberlitic or related carbonated mantle melts, rather than the initially primitive, fertile nature of the Proterozoic SCLM. Calculated Ni-in-garnet temperatures (primarily within ~1150–1250 °C) indicate their derivation from at least ~220 km thick Cr-undersaturated lithosphere at the relevant Devonian to Triassic thermal flow of ~45 mW/m2 or cooler. We suggest the existence of rare harzburgitic domains in the primarily lherzolitic diamond-facies SCLM beneath the northeastern Siberian craton at least by Triassic, whereas the abundance of eclogitic garnets, predominance of E-type inclusions in placer diamonds and specific morphologies argue for diamondiferous eclogites occurring within a ~50–65 kbar diamond window of the Olenek province by the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号