首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geomorphological study by means of remote sensing imagery of the Rio Pastaza Megafan (Ecuador and northern Peru) reveals the traces of numerous avulsions. One hundred and eight avulsion sites have been defined. The location of these sites, the available radiocarbon ages as well as historical maps of the seventeenth century, enable us to propose an evolution history of the migration and avulsions of the Rio Pastaza since the Last Glacial Maximum. The first avulsions of the Río Pastaza occurred after the LGM in a zone close to and roughly parallel to the sudandean front, where the developed avulsion gave a distributive pattern to the ancient stream of the Río Pastaza in an area located between the modern Río Morona and Pastaza, where they caused the Rio Pastaza to develop a fan-like distributary pattern. This is interpreted as a response to thrust-related forelimb tilt, progressively shifting eastward the Rio Pastaza and the apex of the megafan. This sequence of events ended with the Great Diversion of the Rio Pastaza towards the modern Rios Corrientes and Tigre. Avulsions occurred in the Tigre-Corrientes Area between 9200 and 8,500 years Cal BP. Afterwards, the Río Pastaza was diverted to its present-day north–south course. This last significant avulsion occurred before AD 1691. In the area located between the modern Río Morona and Pastaza, avulsion frequency—probably overestimated—ranges between 100 and 200 years. In the Ríos Tigre and Corrientes area, avulsion frequency—probably underestimated—ranges from 300 to 400 years. Regional tectonics is likely to have triggered most of the avulsions in the Morona Pastaza area but its influence is restricted to this area. The factors controlling the avulsions in the Tigre-Corrientes area are less clear because the frequently described “hydrologic”-driven avulsion as observed in areas characterized by contrasted hydrologic cycles are inconsistent with the characteristics of the hydrologic cycles of the Rio Pastaza.  相似文献   

2.
Abstract River avulsions are commonly considered to be driven by the aggradation and growth of alluvial ridges, and the associated increase in cross‐valley slope relative to either the down‐channel slope or the down‐valley slope (the latter is termed the slope ratio in the present paper). Therefore, spatial patterns of overbank aggradation rate over stratigraphically relevant time scales are critical in avulsion‐dominated models of alluvial architecture. Detailed evidence on centennial‐ to millennial‐scale floodplain deposition has, to date, been largely unavailable. New data on such long‐term overbank aggradation rates from the Rhine–Meuse and Mississippi deltas demonstrate that the rate of decrease of overbank deposition away from the channel belt is much larger than has been supposed hitherto, and can be similar to observations for single overbank floods. This leads to more rapid growth of alluvial ridges and more rapid increase in slope ratios, potentially resulting in increased avulsion frequencies. A revised input parameter for overbank aggradation rate was used in a three‐dimensional model of alluvial architecture to study its effect on avulsion frequency. Realistic patterns of avulsion and interavulsion periods (≈1000 years) were simulated with input data from the Holocene Rhine River, with avulsions occurring when the slope ratio is in the range 3–5. However, caution should be practised with respect to uncritical use of these numbers in different settings. Evidence from the two study areas suggests that the avulsion threshold cannot be represented by one single value, irrespective of whether critical slope ratios are used, as in the present study, or superelevation as has been proposed by other investigators.  相似文献   

3.
Avulsion is the main process at the origin of anastomosing rivers. This study illustrates 3 examples of avulsions resulting from crevasse splays evolving in anastomosed channels along the Rio Pastaza, a tropical humid river sourced in the Ecuadorian Andean Cordillera and flowing into the Amazonian foreland. The Lower Pastaza flows in an alluvial plain, with no tectonic influence and an average monthly rainfall equally distributed throughout the year.Based on the analysis of satellite image recorded over the period 1977–2008, three cases have been studied. The first one began in 1990 with crevassing of natural levees of the right bank of the Pastaza main channel and the formation of a small channel linking up with a pre-existing tributary to this main channel. A splay formed at the confluence beheaded the tributary which became an anabranch of the main river. Downstream, two other avulsions developed from crevasse splays on a low gradient floodplain. In both cases, capture of one of the distributary channels flowing on the splay by a pre-existing drain of the floodplain and consecutive headward erosion arrives to disconnect the other drains and capture their flow into a single-thread channel. As this channel rejoins the Pastaza main channel downstream, this process gives rise to the larger-scale anastomosing system which characterizes the lower reach of the Rio Pastaza.  相似文献   

4.
A three‐dimensional numerical model of sediment transport, erosion and deposition within a network of channel belts and associated floodplain is described. Sediment and water supply are defined at the upstream entry point, and base level is defined at the downstream edge of the model. Sediment and water are transported through a network of channels according to the diffusion equation, and each channel has a channel belt with a width that increases in time. The network of channels evolves as a result of channel bifurcation and abandonment (avulsion). The timing and location of channel bifurcation is controlled stochastically as a function of the cross‐valley slope of the floodplain adjacent to the channel belt relative to the down‐valley slope, and of annual flood discharge. A bifurcation develops into an avulsion when the discharge of one of the distributaries falls below a threshold value. The floodplain aggradation rate decreases with distance from the nearest active channel belt. Channel‐belt degradation results in floodplain incision. Extrinsic (extrabasinal, allogenic) and intrinsic (intrabasinal, autogenic) controls on floodplain dynamics and alluvial architecture were modelled, and sequence stratigraphy models were assessed. Input parameters were chosen based on data from the Rhine–Meuse delta. To examine how the model responds to extrinsic controls, the model was run under conditions of changing base level and increasing sediment supply. Rises and falls in base level and increases in sediment supply occurred over 10 000 years. Rising base level caused a wave of aggradation to move up‐valley, until aggradation occurred over the entire valley. Frequency of bifurcations and avulsions increased with rate of base‐level rise and aggradation rate. Channel‐belt width varied with water discharge and the lifespan of the channel belt. Wide, connected channel belts (and high channel‐deposit proportion) occurred around the upstream inflow point because of their high discharge and longevity. Less connected, smaller channel belts occurred further down‐valley. Such alluvial behaviour and architecture is also found in the Rhine–Meuse delta. During base‐level fall, valley erosion occurred, and the incised valley contained a single wide channel belt. During subsequent base‐level rise, a wave of aggradation moved up‐valley, filling the incised valley. Bifurcation and avulsion sites progressively moved upstream. Relatively thin, narrow channel belts bordered and cut into the valley fill. These results differ substantially from existing sequence stratigraphy models. The increase in sediment supply from upstream resulted in an alluvial fan. Most bifurcations and avulsions occurred at the fan apex (nodal avulsion), and channel belts were the widest and the thickest here (giving high channel‐deposit proportion) due to their high discharge and longevity. The width and thickness of channel belts decreased down‐valley due to decreased discharge, longevity and aggradation rate. This behaviour occurs in modern alluvial fans. Intrinsic controls also affect floodplain dynamics and alluvial architecture. Variation of aggradation rate, bifurcation frequency and number of coexisting channel belts occurred over periods of 500 to 2000 years, compared with 10 000 years for extrinsic controls. This variation is partly related to local aggradation and degradation of channel belts around bifurcation points. Channel belts were preferentially clustered near floodplain margins, because of low floodplain aggradation rate and topography there.  相似文献   

5.
The Pliocene-early Pleistocene history of the ancestral Rio Grande and Quaternary history of the Rio Mimbres in the southern Rio Grande rift, New Mexico, illustrate how axial rivers may alternately spill into and subsequently abandon extensional basins. Three types of spillover basins are recognized, based on the angle at which the axial river enters the basin and whether it descends the hanging wall dip slope or footwall scarp to reach the basin floor. In the Mimbres basin type, the axial river enters and flows through the spillover basin nearly parallel to the footwall scarp, resulting in a narrow belt of basin-axis-parallel channel sand bodies located near the footwall scarp. In contrast, an axial river may enter a spillover basin at a high angle to its axis, either descending the hanging wall dip slope (Columbus basin type) or footwall scarp (Tularosa basin type), and construct a fluvial fan, consisting of radiating distributary channels orientated nearly perpendicular to the basin axis. Faulting exerts significant control on river spillover by creating the topographic gaps through which the axial river moves and by terminating spillover by subsequently uplifting or tilting the gap. Spillover may also be autocyclic in origin as a result of aggradation to the level of a pre-existing gap, headward erosion creating and/or intersecting a gap, or simple river avulsion upstream of a gap. Predicting facies architecture in the three types of spillover basins is critical to successful subsurface exploration for hydrocarbon reservoirs, groundwater aquifers or placer mineral deposits.  相似文献   

6.
Alluvial fans develop their semi‐conical shape by quasi‐cyclic avulsions of their geomorphologically active sector from a fixed fan apex. On debris‐flow fans, these quasi‐cyclic avulsions are poorly understood, partly because physical scale experiments on the formation of fans have been limited largely to turbidite and fluvial fans and deltas. In this study, debris‐flow fans were experimentally created under constant extrinsic forcing, and autogenic sequences of backfilling, avulsion and channelization were observed. Backfilling, avulsion and channelization were gradual processes that required multiple successive debris‐flow events. Debris flows avulsed along preferential flow paths given by the balance between steepest descent and flow inertia. In the channelization phase, debris flows became progressively longer and narrower because momentum increasingly focused on the flow front as flow narrowed, resulting in longer run‐out and deeper channels. Backfilling commenced when debris flows reached their maximum possible length and channel depth, as defined by channel slope and debris‐flow volume and composition, after which they progressively shortened and widened until the entire channel was filled and avulsion was initiated. The terminus of deposition moved upstream because the frontal lobe deposits of previous debris flows created a low‐gradient zone forcing deposition. Consequently, the next debris flow was shorter which led to more in‐channel sedimentation, causing more overbank flow in the next debris flow and resulting in reduced momentum to the flow front and shorter runout. This topographic feedback is similar to the interaction between flow and mouth bars forcing backfilling and transitions from channelized to sheet flow in turbidite and fluvial fans and deltas. Debris‐flow avulsion cycles are governed by the same large‐scale topographic compensation that drives avulsion cycles on fluvial and turbidite fans, although the detailed processes are unique to debris‐flow fans. This novel result provides a basis for modelling of debris‐flow fans with applications in hazards and stratigraphy.  相似文献   

7.
The eastern Ecuadorian Andes appear as a fold-and-thrust belt adjacent to a continental foredeep represented by one of the world's largest tropical alluvial megafans, the Pastaza megafan, debouching into the Amazonian lowland. The apex of the Pliocene–Pleistocene megafan situated in the present-day wedge top (Subandean Zone) has been cut by an erosion surface, the western part of which has been uplifted of 500 m along the frontal thrust, forming a poorly dissected plateau, the Mera plateau. This erosion surface erased most of the previous fluvial landscape but preserved a large thrust-related anticlinal hinge deforming less erodible underlying strata, the Mirador fold and smaller-sized anticlines. This surface has been then incised by two antecedent major rivers, the Pastaza and the Napo, and few tributaries. The plateau edge is marked by a series of large scale gently sloping landslides clustered along a 70 km long concave eastward line associated with the frontal thrust fault. The newly formed immature rivers issued from the landslides or sourced within east-dipping remnants of the erosion surface downstream of the landslide line constitute the greatest part of the streams feeding the Ecuadorian Amazonian basin. At 70 to 100 km from the landslide line, the drainage abruptly changes from highly immature to mature with a well-defined hinge line representing the outer limit of landslide and tectonic control. The diversions of the Pastaza River indicate ongoing fold growth since at least the late Pleistocene in the Eastern Cordillera, and the early Holocene in the Mera plateau. The preserved terraces of the Pastaza valley are all degradational and are ascribed to periods of tectonic (seismic) activity alternating with periods of tectonic quiescence or decreased seismic activity rather than to climatic events. 14C dating of the plateau erosion surface and of the upper Pastaza terraces indicates that the minimum average incision rate since 18,000 years BP varies locally in the upper Pastaza valley from 0.5 to 0.67 cm year−1 , increasing from 18,000 years BP to now. A comparison of these incision rates with fold-and-thrust fault uplift rates indicates that incision in the upper Pastaza valley was a result of rapid uplift (up to 1 cm year−1) along the Mirador fold-and-thrust which caused a restoration of the local equilibrium profile of the upper reach, combined with smaller local fault uplift along the westernmost thrust faults. The uplift of the whole Mera plateau with respect to the upper Amazonian basin gives a minimum average uplift rate of 2.8 cm year−1 since 18,000 years BP. The overall uplift of the Mera plateau and the Eastern Cordillera is likely to have been caused by a regional-scale low angle thrust ramp emerging as the frontal thrust fault.  相似文献   

8.
Deposits of the ancestral Rio Grande (aRG) belonging to the Camp Rice Formation are preserved and exposed in the uplifted southern portion of the Robledo Mountains horst of the southern Rio Grande rift. The sediments are dated palaeomagnetically to the Gauss chron (upper Pliocene). The lower part of the succession lies in a newly discovered palaeocanyon cut into underlying Eocene rocks whose margins are progressively onlapped by the upper part. Detailed sedimentological studies reveal the presence of numerous river channel and floodplain lithofacies, indicative of varied deposition in channel bar complexes of low‐sinuosity, pebbly sandbed channels that traversed generally dryland floodplains and shifted in and out of the study area five times over the 1 Myr or so recorded by the succession. Notable discoveries in the deposits are: (1) complexes of initial avulsion breakout channels at the base of major sandstone storeys; (2) common low‐angle bedsets ascribed to deposition over low‐angle dunes in active channels; (3) palaeocanyon floodplain environments with evidence of fluctuating near‐surface water tables. Sand‐body architecture is generally multistorey, with palaeocurrents indicative of funnelling of initial avulsive and main fluvial discharge from the neighbouring Mesilla basin through a narrow topographic gap into the palaeocanyon and out over the study area. An avulsion node was evidently located at the stationary southern tip to the East Robledo fault during Gauss times, with aRG channels to the north flowing close to the fault and preventing fan progradation. Subsequent Matuyama growth of the fault caused (1) deposition to cease as the whole succession was uplifted in its footwall, (2) development of a thick petrocalcic horizon, and (3) fan progradation into the Mesilla basin. Parameters for the whole aRG fluvial system are estimated as: active single channels 2 m deep and 25 m wide; valley slope 0·24–0·065°; maximum mean aggradation rate 0·05 mm year–1; major channel belt avulsion interval 200 ky; individual channel recurrence interval 100 ky; minimum bankfull mean flow velocity 1·54 m s–1, minimum single‐channel discharge 77 m3 s–1, bed shear stress 22·3 N m–2; and stream power 34·3 W m–2.  相似文献   

9.
A study of the avulsion of a major distributory channel on the alluvial fan (22 000 km2 in area) of the Okavango River in northern Botswana has revealed that channels serve as arterial systems distributing water which sustains large areas of permanent swamp. The channels are vegetatively confined. A primary channel, defined here as a channel which receives water and sediment directly from the fan apex, aggrades vertically as a result of bedload deposition. The rate of aggradation increases downchannel and may exceed 5 cm yr?1 in the distal reaches. Rapid aggradation is associated with a decline in flow velocity. This initiates a series of feedback mechanisms involving invasion of the channel by aquatic plants which trap floating plant debris, further reducing flow rate and causing the channel water surface to become elevated, thereby increasing rate of water loss from the channel, accelerating blockage and aggradation. The channel ultimately fails. Enhanced water loss from the channel promotes the growth of flanking swamp vegetation, which confines the failing channel. Increased flow through the swamp erodes pre-existing hippopotamus trails, producing a secondary channel system which overlaps but does not connect directly to the failing reach of the primary channel. The region of failure of the primary channel migrates upstream, accompanied by headward propagation of the secondary channel system. The swamp distal to the failed primary channel dessicates and is destroyed by peat fires. Secondary channels are stable and not prone to blockage. Comparison with avulsions described in other river systems indicates that the influence of plants in the Okavango River system is exceptionally strong.  相似文献   

10.
为揭示黄河口清水沟河道长时段的冲淤演变规律并建立其冲淤计算方法,分析了清水沟1976—2015年的时空冲淤演变过程,采用河床演变的滞后响应模型,考虑河口来水来沙及河道延伸与蚀退的影响,建立了清水沟累计冲淤量的计算方法。结果表明:1976—1980年改道初期清水沟改道点上游先冲后淤,改道点下游淤滩塑槽,淤积量随着下游河道展宽而增加,1980年后改道点上、下游河道冲淤过程趋于一致;受水沙条件等因素影响,1980—1986年清水沟主槽冲刷展宽,之后主槽淤积萎缩;1996年清八改汊和2002年小浪底水库"调水调沙"原型试验以来,河道转淤为冲,2002年后河道冲刷速率随时间指数衰减;河床演变的滞后响应模型可计算清水沟长时段的冲淤过程,该方法可为预测未来清水沟冲淤演变趋势提供科学参考。  相似文献   

11.
Anastomosing rivers, systems of multiple interconnected channels that enclose floodbasins, constitute a major category of rivers for which various sedimentary facies models have been developed. While the sedimentary products of anastomosing rivers are relatively well‐known, their genesis is still debated. A rapidly growing number of ancient alluvial successions being interpreted as of anastomosing river origin, including important hydrocarbon reservoirs, urge the development of robust models for the genesis of anastomosis, to facilitate better interpretation of ancient depositional settings and controls. The upper Columbia River, British Columbia, Canada, is the most‐studied anastomosing river and has played a key role in the development of an anastomosing river facies model. Two hypotheses for the origin of upper Columbia River anastomosis include the following: (i) downstream control by aggrading cross‐valley alluvial fans; and (ii) upstream control by excessive bedload input from tributaries. Both upstream and downstream control may force aggradation and avulsions in the upper Columbia River. In order to test both hypotheses, long‐term (millennia‐scale) floodplain sedimentation rates and avulsion frequencies are calculated using 14C‐dated deeply buried organic floodplain material from cross‐valley borehole transects. The results indicate a downstream decrease in floodplain sedimentation rate and avulsion frequency along the anastomosed reach, which is consistent with dominant upstream control by sediment overloading. The data here link recent avulsion activity to increased sediment supply during the Little Ice Age (ca 1100 to 1950 ad ). This link is supported by data showing that sediment supply to the upper Columbia study reach fluctuated in response to Holocene glacial advances and retreats in the hinterland. Upstream control of anastomosis has considerable implications for the reconstruction of the setting of interpreted ancient anastomosing systems. The present research underscores that anastomosing systems typically occur in relatively proximal settings with abundant sediment supplied to low‐gradient floodplains, a situation commonly found in intermontane and foreland basins.  相似文献   

12.
Tectonic deformation of the land surface is known to influence the gradient, water and sediment discharge and the grain-size of modern fluvial systems. Any change in these variables alters the equilibrium of a fluvial system, potentially causing a change in channel morphology. 3D seismic data from the Tertiary (Miocene) age, Upper Frio Formation, Kelsey Field, South Texas, in the US are used to examine changing fluvial channel morphology through time during a period of active growth of a rollover anticline in the hangingwall of a normal fault (the Vicksburg Fault). The studied interval varies between 22 and 47 m thick, and spans several hundred thousand years. It consists of an alternation of fluvial sandstones, overbank mudstones and coal. Seismic extractions show the evolution of sinuous fluvial channels during a phase of growth fault activity. Prior to growth, a single sinuous channel is imaged. During growth, the fluvial system became decapitated by a developing rollover anticline, and a highly sinuous drainage network formed, with frequent avulsion events, headward propagation of streams and related stream capture. Increased channel sinuosity was spatially associated with increased avulsion frequency in the area down dip to the east of the rollover anticline, more than 10 km from the active fault. More than 25 m of relative accommodation developed on the flank of the growing rollover anticline compared with on the crest. The increased channel sinuosity is interpreted as reflecting an increase in longitudinal valley slope analogous to observations made in flume experiments and modern river systems. The increase in avulsion frequency is attributed to increased aggradation as the rivers adjusted back to equilibrium grade following the increase in slope.  相似文献   

13.
ENSO事件对长江上游1470-2003年旱涝灾害影响分析   总被引:10,自引:1,他引:9  
张强  姜彤  吴宜进 《冰川冻土》2004,26(6):691-696
对长江上游旱涝灾害时间序列(1470-2003年)及SST指数序列(1868-2003年)作统计相关与谱分析,探讨了长江上游旱涝灾害与ENSO事件的遥相关关系.结果表明:长江上游旱涝灾害主周期要大于ENSO事件的主周期,前者主周期主要为16.69a,5.09a以及10.47a,而后者主周期主要为5a,~10~12年以及~10a.交叉谱分析结果表明,长江上游旱涝灾害与SST在约5a以及约10~12a周期上呈现出显著的相关性.可以认为ENSO事件发生周期与生存周期的长短直接影响着长江上游旱涝灾害发生的周期与频率,并在5a以及10~12a的周期上表现出高的统计相关性.SST指数与长江上游旱涝灾害相关分析表明,ElNiño事件的发生使长江上游发生旱灾机率增大,而LaNiña事件的发生则使长江上游发生涝灾的机率增大.  相似文献   

14.
Bristow  Skelly  & Ethridge 《Sedimentology》1999,46(6):1029-1047
Base-level rise of ≈2·35 m on the Niobrara River has resulted in aggradation of the channel belt and a recent avulsion. Overbank areas have become flooded by rising groundwaters, and more than eight crevasse splays have formed between 1993 and 1997. Two crevasse splays, situated on the west and east sides of the Niobrara, have been studied using ground-penetrating radar (GPR), shallow boreholes and topographic surveys. The vibracores and GPR profiles provide a nearly three-dimensional view of the architecture of crevasse splay deposits. The east splay was initiated in the winter of 1993/94 and has expanded to cover an area ≈200 m by 1000 m, with sediment up to 2·5 m thick. The west splay, which was initiated by the opening of a crevasse channel through a levee in the autumn of 1995, covers an area ≈150 m by 250 m, with up to 1·2 m of sand deposited in a single year. The Niobrara splays are sand dominated and characterized by bedload deposition within channels, 5–30 m wide and 0·5–2 m deep, with the development of slipfaces where splays prograde into standing bodies of water. Sedimentary structures in cores include horizontal lamination, ripple lamination and sets of cross-stratification. There is a slight tendency for splays to coarsen up, but individual beds within the splays often fine up. The abundance of crevasse splays on the Niobrara River contrasts with other braided river floodplains. In the Niobrara, crevasse splay formation followed aggradation within the channel belt, which occurred in response to base-level rise. The link between crevasse splays, channel aggradation and base-level rise has important implications for the interpretation of ancient braided river and floodplain sequences. It is suggested that crevasse splay deposits should be an important component of aggrading fluvial sediments and, hence, should be preserved within the rock record. In this case, the aggradation and crevassing have been tied to a rise in base-level elevation, and it is suggested that similar deposits should be preserved where braided rivers are affected by base-level rise, for instance during transgression and filling of palaeovalleys.  相似文献   

15.
Channel modifications from 1968 to 1969 on the South Fork Forked Deer River in western Tennessee have caused upstream degradation, downstream aggradation, and bank failures along the altered channels, adjacent reaches, and tributaries. The result of these adjustments is a general decrease in gradient as the channel attempts to absorb the imposed increase in energy conditions created by channelization. Headward degradation at a rate of approximately 2.57 km/yr on the South Fork Forked Deer River caused from 1.52 m to about 3.14 m of incision over a 13.5 km reach from 1969 to 1981. As a consequence of substantially increased sediment supply, approximately 2.13 m of aggradation was induced downstream of this reach during the same period. This accumulation represents a 60% recovery of bed level at the downstream site since the completion of channel work in 1969. Gradient adjustment with time is described by exponential decay functions. The length of time required for adjustment to some new quasi-equilibrium condition is computed by these decay functions and is about 20 years from the completion of channel work. Adjusted slopes are less than predisturbed values, probably because straightened channels dissipate less energy by friction, allowing more energy for sediment transport. An equivalent sediment load, therefore, can be transported at a considerably gentler slope. The predisturbed slope exceeds the adjusted slope by an order of magnitude on the downstream reach of the South Fork Forked Deer River.  相似文献   

16.
Bauer, I. E. & Vitt, D. H. 2011: Peatland dynamics in a complex landscape: Development of a fen‐bog complex in the Sporadic Discontinuous Permafrost zone of northern Alberta, Canada. Boreas, 10.1111/j.1502‐3885.2011.00210.x. ISSN 0300‐9483. The development of a peatland complex in the Sporadic Discontinuous Permafrost zone of northwestern Alberta, Canada was reconstructed using a series of dated profiles. Peat‐forming communities first established c. 10 230 cal. a BP, and by 8000 cal. a BP the site supported monocot fens or marshes in several isolated topographic depressions. Most of the current peatland area initiated between c. 8000 and 4000 cal. a BP, and involved the replacement of upland habitats by shrubby or treed fen and, in some areas, the establishment of Sphagnum on mineral terrain. Ombrotrophic hummock communities had established by c. 7000 cal. a BP, and permafrost was present at 6800 cal. a BP in at least some peat plateau areas. Macrofossil‐based reconstructions show considerable local diversity in vegetation succession and permafrost dynamics, with cyclic collapse and aggradation in at least one profile and relative stability in others. Lichen‐rich peat is rare in deep‐peat plateau cores, and where charcoal was recovered, fire effects on vegetation trajectories varied between cores. Organic matter accumulation was high in the early Holocene and declined after permafrost formation, with low rates especially over the past 4000 years. The site was burned in a wildfire in 1971, and by 1998 permafrost had disappeared from almost all peat plateau areas. In this part of the discontinuous permafrost zone, peat plateaus are likely to be unsustainable under a warming climate. The hydrology and carbon dynamics of former plateau areas following large‐scale permafrost degradation require further investigation.  相似文献   

17.
The integration of geomorphic mapping, soil stratigraphy, and radiocarbon dating of alluvial deposits offers insight to the timing, magnitude, and paleoclimatic context of Holocene fan sedimentation near Yuma, Arizona. Mapping of 3400 km2 indicates about 10% of the area aggraded in the late Holocene and formed regionally extensive alluvial fan and alluvial plain cut-and-fill terraces. Fan deposits have weakly developed gravelly soils and yielded a date of 3200–2950 cal yr BP from carbonized wood. Alluvial plain deposits have weakly developed buried sandy soils and provided a date of 2460–2300 cal yr BP from a terrestrial snail shell. Precipitation records were analyzed to form historical analogues to the late Holocene aggradation and to consider the role of climatic variability and extreme hydrologic events as drivers of the sedimentation. The historical precipitation record indicates numerous above-average events correlated to the Southern Oscillation Index (SOI) in the region, but lacks any significant reactivation of alluvial fan surfaces. The timing of aggradation from 3200 to 2300 cal yr BP correlates well with other paleoclimatic proxy records in the southwestern U.S. and eastern Pacific region, which indicate an intensification of the El Niño-Southern Oscillation (ENSO) climatic pattern and rapid climate change during this period.  相似文献   

18.
河流堰塞的地貌响应   总被引:1,自引:0,他引:1  
堰塞作为一种极端地表过程,深刻影响着河流地貌的变化,特别是河流纵剖面的变化。其对河流纵剖面的影响主要体现在两方面:一方面,堰塞坝将抬高局地的侵蚀基准面,阻碍了上游河道侵蚀,形成河流裂点;另一方面,堰塞坝溃决往往形成大型/巨型洪水,造成下游河道和岸坡的剧烈侵蚀。稳定的堰塞坝形成后,在1~105 a的时间尺度上对河流裂点的发育以及河流纵剖面变化上甚至会超过构造、气候和岩性作用,占据主导。本文在简要概述堰塞地貌相关概念的基础上,介绍了部分河流堰塞的研究方法和案例,以及河流堰塞的发育过程和研究意义。目前多仅从堰塞坝与河流纵剖面的空间关系的相关性来论证其地貌响应,并且发现一些堰塞坝与河流纵剖面的相关性,但是也有一些古堰塞坝对现代河流纵剖面的影响并不显著,原因可能与堰塞坝规模、溃决洪水次数、堵江的持续时间和距今年代的不同有关,目前还缺乏深入研究。  相似文献   

19.
Sedimentation in the upstream reaches of incised valleys is predominantly of alluvial origin and, in most cases, independent from relative sea‐level or lake‐level oscillations. Preserved facies distributions record the depositional response to a combination of allogenic factors, including tectonics, climate and landscape evolution. Tectonics drive fluvial aggradation and degradation through local changes in gradient, both longitudinal and transverse to the valley slope. This article deals with a Pliocene–Pleistocene fluvial valley fill developed in the north‐eastern shoulder of the Siena Basin (Northern Apennines, Italy). Evolution of the valley was not influenced by sea‐level or lake‐level changes and morphological and depositional evolution of valley resulted from extensional tectonics that gave rise to normal and oblique‐slip faults orthogonal and parallel to the valley axis. Data from both field observations and geophysical study are interpreted to develop a comprehensive tectono‐sedimentary model of coeval longitudinal and lateral tilting of the developing alluvial plain. Longitudinal tilting was generated by a transverse, upstream‐dipping normal fault that controlled the aggradation of fining‐upward strata sets. Upstream of the fault zone, valley back‐filling generated an architecture similar to that of classic, sea‐level‐controlled, coastal incised valleys. Downstream of the fault zone, valley down‐filling was related to an overwhelming sediment supply sourced and routed from the active fault zone itself. Lateral tilting was promoted by the activity of a fault oriented parallel to the valley axis, as well as by different offsets along near orthogonal faults. As a result, the valley trunk system experienced complex lateral shifts, which were governed by interacting fault‐generated subsidence and by the topographic confinement of progradational, flank‐sourced alluvial fans.  相似文献   

20.
Regional topographic and geomorphic analyses reveal first-order topographic variations from high-elevation and low-relief interior plateau to the relatively low elevation, high-relief marginal plateau in eastern Tibet. Field investigation and slip distribution modeling after 2008 Ms. 8.0 Wenchuan earthquake indicate significant along-strike variability during the rupture that appears to correspond to different segments of a single fault system. This observation motivates a more careful examination of topographic features along the Longmen Shan to explore the connection between the seismic cycle and mountain building. Analyses of topographic relief, hillslope gradient, and channel gradient indices reveal significant differences in the character of topography along the Longmen Shan mountain front. The central portion of the range exhibits the highest slope, relief and steepness of river longitudinal profiles. Whereas the southern Longmen Shan exhibits only subtle differences associated with slightly lower hillslope and channel gradients, the northern Longmen Shan is characterized by topography of significantly lower relief, lessened hillslope gradients, and low-gradient channels. We consider two explanations for these topographic differences; first, that the differences in topographic development along the Longmen Shan reflect different stages of an evolutionary history. Alternatively, these may reflect differences in the rate of differential rock uplift relative to the stable Sichuan Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号