首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of flash flood disaster characteristics in China from 2011 to 2015   总被引:1,自引:0,他引:1  
Flash floods are one of the most disastrous natural hazards and cause serious loss of life and economic damage every year. Flooding frequently affects many regions in China, including periodically catastrophic events. An extensive compilation of the available data has been conducted across various hydroclimatological regions to analyze the spatiotemporal characteristics of flash floods in China. This inventory includes over 782 documented events and is the first step toward establishing an atlas of extreme flash flood occurrences in China. This paper first presents the data compilation strategy, details of the database contents, and the typical examples of first-hand analysis results. The subsequent analysis indicates that the most extreme flash floods originate mainly from small catchments over complex terrains and results in dominantly small- and medium-sized flooding events in terms of scales; however, these events, abrupt and seasonally recurrent in nature, account for a large proportion of the overall flooding-related disasters, especially disproportionately affecting elderly and youth populations. Finally, this study also recommends several immediate measures could be implemented to mitigate high impacts of deadly flash floods, although it still requires long-term significant efforts to protect human life and property in a country like China.  相似文献   

2.
3.
洪涝灾害历来是影响中国的主要自然灾害之一。根据历史文献记载及观测资料,从天气过程、水文过程、受灾情况等方面对1917年海河流域洪涝灾害的自然过程作了详细梳理。得出以下结论: (1) 1917年洪涝灾害呈现由台风袭扰→集中降水→山洪暴发/河流决口→积水/淹没→受灾的成灾过程。 (2) 7月份2次台风带来大范围暴雨,集中性降水出现于7月20—28日,沿燕山、太行山分布,而9月份2次台风带来的暴雨则使灾情更加严重。 (3) 1917年海河流域各河于7月中旬开始涨溢、决口,9月中旬上游降雨结束后,中下游水位趋于稳定并下降,10月份以后洪水才迟缓退去,而洪水泛滥引发的涝灾影响一直延续到1918年。 (4) 1917年洪涝灾害在海河南系和北系都有发生,南系尤为严重,共造成156个县受灾。受灾田亩级数在5级以上的区域主要集中于海河干流沿线、南运河沿线以及河北省文安县等低洼地区。  相似文献   

4.
Deep dissolution affects great part of soluble rocks (e.g. gypsum and anhydrite) of the Western Italian Alps. The related superficial phenomena (sinkholes, gravity-induced processes and a local worsening of geomechanical rock properties) are not limited to typical karsts landscape and cause slope instability also affecting populated sites and infrastructures. The paper aims to describe general characteristic of dissolution phenomena, to interpret their conditioning factors and evolutionary stages and to assess possible hazards due to their superficial effects.The search for evidences of deep dissolution leads to the selection of representative sites in the central part of the Western Italian Alps (Piemonte and Valle d'Aosta Region). Detailed geological and geomorphological studies have been used to classify the selected sites by type, size and variable state of activity. Very different evolutionary stages of dissolution phenomena have been interpreted by comparison of case-studies: some are early “embryonic”; others are more evolved, up to typical sinkholes, or even remodelled by other phenomena. Some cases show an extreme complexity in the interactions between corrosion phenomena and other geomorphic processes: slope deformations, from one side, and karst, fluvial and glacial phenomena, to the other. A wide range of movement rates on slope instabilities induced by deep dissolution have been estimated by topographic and geomorphic data. Geochemical data on removed rocks by dissolution indicate 0.4 mm/year values for local subsidence. Historical and technical data indicate low frequency of major dissolution-induced collapses, but highlight widespread damages to tunnels, roads and buildings, especially along slopes.  相似文献   

5.
Database of geo-hydrological disasters for civil protection purposes   总被引:6,自引:2,他引:4  
This paper presents the results of a research concerning available historical information about natural hazards (landslides and floods) and consequent disasters in the Consortium of Mountain Municipalities of Valtellina di Tirano, in Northern Italy. A geo-referenced database, collecting information till 2008, was designed with the aim of using available data of historical events for hazard estimation and the definition of risk scenarios as a basis for Civil Protection planning and emergency management purposes. This database and related statistics about landslides and floods are shown, and a brief overview of historical disasters caused by natural hazards in the study area is presented. A case study showing how useful the database can be to define a simple but realistic scenario is described. Information availability and reliability is discussed and possible uncertainties are underlined. The study shows that collecting and making use of historical information for the definition of hypothetical scenarios and the evaluation of territorial threats is a fundamental source of knowledge to deal with future emergencies.  相似文献   

6.

Large floods are among the most hazardous natural phenomena, which in many cases cause enormous losses to the economy and lead to human casualties. Along with the use of modern instrumental data, the analysis of historical information on large past floods is widely practiced in the world. This allows obtaining qualitative and quantitative characteristics of historical floods and significantly expanding the observation series. The Selenga River is one of the largest rivers of Central Asia with catchment area equal to 447,060 km2, and also it is rather flood-prone river. The hydrological regime of the Selenga River is quite well studied in the twentieth century on the basis of gauging stations data, but there is still a lack of knowledge about past floods. In this paper, we present a list of 26 known floods within the Selenga River basin from 1730 to 1900, compiled from available historical documents (newspapers, scientific reports, diaries, memoirs, etc.). We estimated peak water levels for three catastrophic floods (1830, 1869 and 1897), the historical maximum of which was 850 cm. The reliability of our estimates is confirmed by a comparative analysis of the large 1971 flood. It was revealed that the largest floods can cause a rise of the Lake Baikal water level up to 200 cm. The inflow to Lake Baikal resulting from the largest floods in the Selenga River basin is comparable to the average annual inflow of water into the lake. We can conclude that the use of historical data for the analysis of floods in Eastern Siberia is quite acceptable, but some limitations must be taken into account.

  相似文献   

7.
We examined spatial distribution characteristics of extreme hydrological events in Xinjiang, China, using district data from 1901 to 2010. Frequency distribution showed a general symmetry along the Tianshan Mountains, with even distribution in Junggar Basin and Tarim Basin. Frequency was more in the north-west than in the south-east. The maximum incidence was in west Tianshan Mountains and generally decreased south-eastward. There were significant regional variations in type distribution. Rainstorm floods were more common in central Xinjiang. Hailstorms mainly occurred in the central Junggar Basin, the southern slope of the western Tianshan Mountains and north-west of Tarim Basin. Debris flow was mainly distributed in Ili Valley and the central northern Tianshan Mountains. Glacier lake outburst floods were more common in the Karakorum Mountains and southern slopes of the western Tianshan Mountains. Ice floods were mainly distributed in the western Tianshan Mountains. Snow hazards were mainly distributed in the wide northern areas, especially the Altai Mountains and Hamilton Basin. Snowmelt floods were mainly distributed in the Tacheng Basin and Ili Valley. The incidence of extreme hydrological events was greatly affected by weather systems and terrain features.  相似文献   

8.
90年代以来,我国洪涝灾害急剧发展,破坏损失达历史最高水平,防灾抗灾空前困难,1998年南北特大洪水是这种特征的重要标志。造成我国洪涝灾害日益严重的主要原因是:降雨分布不均,气候异常加剧;主要江河中下游地势平缓,河道曲折,洪水泻泄不畅;水土流失和崩滑流活动剧烈,河湖淤积严重湖泊萎缩、行洪蓄洪地续下降;大江大河沿岸工程地记隐患比较严重。这些因素都与区域地壳运动和地质环境变化密切相关。  相似文献   

9.
This study presents a chronology of historical and measured flood events in the Papaloapan River basin of Mexico during 450 years. Twenty-eight historical floods were recorded during the period 1550–1948 on this river and one flood event (1969) in the instrumental era (1949–2000), of which 14 were extraordinary floods and only 15 were catastrophic ones. There were several flood-rich decades during 1860–1870, 1880–1890, 1920–1930 and 1940–1950. Wavelet analysis found a significant flooding periodicity of 58 years. The wavelet coherence analysis found that flooding had an in-phase relationship with the Atlantic Multidecadal Oscillation and also with the Pacific Decadal Oscillation. Logistic regression corroborated that there exists a positive relationship between floods events and these two natural climatic oscillations. The logistic regression model predicted correctly 92% of flood events.  相似文献   

10.

Defining the surface hydrological parameters represents a crucial factor for the sustainable development purposes. In areas with heavy precipitation and rugged topography, these parameters control the occurrence of some natural hazards, from which the flash flood gets the most attention. Traditional methods for the assessment of the surface hydrological parameters are costly, time-consuming and provide information for limited geographic extent. On the other hand, remotely sensed data provide a cost-effective, rapid and wide aerial coverage with adequate accuracy. Geospatial analysis of these remotely sensed data provides a suitable and effective method for the reconnaissance determination of the surface hydrological parameters. In this work, digital elevation models, Landsat 8 satellite images as well as digital maps of soil and land use for Kyushu Island were acquired and analyzed using geographic information system. Surface hydrological parameters were determined in terms of watershed boundaries, soil moisture, initial abstraction as well as flash flood potentiality. Results of this research show a great correlation with historical flash flood events that occurred in the island. The northern parts of the island are subjected to the threat of flash floods. A follow-up is recommended in some areas on the island. As a conclusion, the geospatial analysis performs an accurate reconnaissance method for hydrological analysis at regional scale, which in turn guides the detailed field observation saving time and cost.

  相似文献   

11.
Flash floods are one of the major natural hazards occurring in small streams with a negative effect on the country as well as on human lives. Heavy rainfall occurred on July 20, 2014 and July 21, 2014 and caused severe surface water flooding and a flash flood in the Malá Fatra National Park (Slovakia). The most affected was Vrátna Valley with the Varínka stream. This study presents a reconstruction and post-event analysis of a flash flood on small ungauged basin located in this protected area of Slovakia. The reconstruction included hydraulic terrain measurements on estimating the flood’s culmination and documenting the flood’s development. The measurements were taken at three cross sections of the Varínka stream. This paper is focused mainly on post-event analysis of the Varínka stream in two profiles: Strá?a (gauged profile) and Tiesňavy (ungauged cross section). Subsequently, the extremeness of the flash flood was preliminary evaluated. Results of the post-event analysis showed that the July 2014 flood was not the highest flood in this area despite its catastrophic consequences. By studying historical materials, we came to the conclusion that in the past (e.g. in 1848 or 1939) some devastating floods in this area had occurred, which had disastrous consequences for the population. The second part of the study is focused on comparing this flash flood with three major floods which have occurred in Slovak territory since 1998. The first flood occurred on the 20th of July, 1998 on the Malá Svinka stream, and the two others are floods which occurred on the 7th of June, 2011 in the Small Carpathian Mountains: on the Gidra stream in Píla village and on the Parná stream in Horné Ore?any village. Such comparison of flash floods from different geographical regions and different rainfall events can provide comprehensive information about their regimes, threats and disastrous effects.  相似文献   

12.
《Comptes Rendus Geoscience》2008,340(9-10):644-650
The knowledge of past catastrophic events can improve flood risk mitigation policy, with a better awareness against risk. As such historical information is usually available in Europe for the past five centuries, historians are able to understand how past society dealt with flood risk, and hydrologists can include information on past floods into an adapted probabilistic framework. In France, Flood Risk Mitigation Maps are based either on the largest historical known flood event or on the 100-year flood event if it is greater. Two actions can be suggested in terms of promoting the use of historical information for flood risk management: (1) the development of a regional flood data base, with both historical and current data, in order to get a good feedback on recent events and to improve the flood risk education and awareness; (2) the commitment to keep a persistent/perennial management of a reference network of hydrometeorological observations for climate change studies.  相似文献   

13.
The May–August 2005 heavy rainstorm events in Romania triggered a large number of geomorphic hazards of great magnitude, consisting of primarily floods and landslides. Some of the most affected regions were the Curvature Carpathians and Subcarpathians. This paper addresses the effects of rainfall on slopes, especially in the middle sector of the Sibiciu basin (the Buzău Carpathians) outlining the significant landslide damage along the road connecting the Colţi and Aluniş villages. The landslides are analyzed in terms of geologic, geomorphic and engineering geologic features, focusing on the Colţi–Aluniş landslide which had the greatest impact on the road displacement. The related environmental and social impacts are also discussed.  相似文献   

14.
Ice, moraine, and landslide dams in mountainous terrain   总被引:4,自引:0,他引:4  
We review recent work on ice, moraine, and landslide dams in mountainous terrain, thus complementing several comprehensive summaries on glacier dams in intracontinental and Arctic areas of low relief. We discuss the roles of tectonic and climatic forcing on ice-, moraine-, and landslide-dam formation and sudden drainage, and focus on similarities and differences between their geomorphic impacts on confined valleys drained by steep bedrock and gravel-bed rivers.Despite numerous reported failures of natural dams in mountain belts throughout the world, their relevance to long-term dynamics of mountain rivers remains poorly quantified. All types of dams exert local base-level controls, thus trapping incoming sediment and inhibiting fluvial bedrock incision. Pervasive geomorphic and sedimentary evidence of outburst events is preserved even in areas of high erosion rates, suggesting that sudden dam failures are characterized by processes of catastrophic valley-floor aggradation, active-channel widening, and downstream dispersion of sediment, during which little bedrock erosion seems to be achieved.We find that, in the absence of direct evidence of former dams, a number of similarities among the geomorphic and sedimentologic characteristics of catastrophic outburst flows may give rise to ambiguous inferences on the dam-forming process. This is especially the case for tectonically active mountain belts where there is ample and comparable potential for the formation and failure of ice, moraine, landslide, and polygenetic dams concomitant with climatic oscillations or earthquake disturbance. Hence, the palaeoclimatic implications of erroneously inferring the cause of dam formation may be significant.We recommend that future research on natural dams in mountainous terrain addresses (a) climate- and earthquake-controlled systematics in the pattern of formation and failure; (b) quantification of response of mountain rivers to catastrophic outburst events and their concomitant process sequences; (c) elaboration of a comprehensive classification of natural dams in mountainous terrain with special attention to polygenetic dams; (d) physical-based modelling of dam formation, failure, and routing of water and sediment outbursts; and (e) quantitative controls on the contribution of natural dams to sediment budgets in mountainous terrain.  相似文献   

15.
The city of Jazan is situated on the eastern flank of the Read Sea and considered as one of the fastest growing cities in the Kingdom of Saudi Arabia. This zone attracts a lot of investors for various development projects. Recently, many new projects have been implemented and constructed in this region including new urban areas, infrastructures, and industrial projects. However, historically this area has been challenged from different types of geological hazards. These geological hazards are catastrophic events that can cause human injury, loss of life, and economic devastation. The current study is aimed at evaluating the different types of geological hazards in Jazan city. This study is based on interpretation of satellite data such as LANDSAT and QuickBird images, existing geological maps, and physiographical characteristics with the help of field and laboratory analyses. The results of the analysis indicate that there exist various types of geological hazards in the study area mostly related to the natural factors which include (1) Sabkha soil; (2) Salt dome; (3) Loess soil; and (4) Sand dune/drift. Further, the findings of this study revealed that, most of these geological hazards have a severe impact on the ongoing development activities in Jazan area.  相似文献   

16.
Forest fire can modify and accelerate the hydrological response of Mediterranean basins submitted to intense rainfall: during the years following a fire, the effects on the hydrological response may be similar to those produced by the growth of impervious areas. Moreover, climate change and global warming in Mediterranean areas can imply consequences on both flash flood and fire hazards, by amplifying these phenomena. Based on historical events and post-fire experience, a methodology to interpret the impacts of forest fire in terms of rainfall-runoff model parameters has been proposed. It allows to estimate the consequences of forest fire at the watershed scale depending on the considered burned area. In a second stage, the combined effect of forest fire and climate change has been analysed to map the future risk of forest fire and their consequence on flood occurrence. This study has been conducted on the Llobregat river basin (Spain), a catchment of approximately 5,000 km2 frequently affected by flash floods and forest fires. The results show that forest fire can modify the hydrological response at the watershed scale when the burned area is significant. Moreover, it has been shown that climate change may increase the occurrence of both hazards, and hence, more frequent severe flash floods may appear.  相似文献   

17.
Frolova  N. L.  Kireeva  M. B.  Magrickiy  D. V.  Bologov  M. B.  Kopylov  V. N.  Hall  J.  Semenov  V. A.  Kosolapov  A. E.  Dorozhkin  E. V.  Korobkina  E. A.  Rets  E. P.  Akutina  Y.  Djamalov  R. G.  Efremova  N. A.  Sazonov  A. A.  Agafonova  S. A.  Belyakova  P. A. 《Natural Hazards》2016,80(1):103-125

Hydrological extreme events pose an imminent risk to society and economics. In this paper, various aspects of hydrological hazards in Russia are analysed at different scales of risk assessment. It is shown that the number of hydrological and meteorological hazards in Russia has been growing every year. The frequency of economic losses associated with extreme low flow in this century has increased by factor five compared to the last decade of the previous century. With regard to floods, an interesting spatial patter can be observed. On the one hand, the number of floods in the Asian part of the country has increased, whereas on the other hand, the number and intensity of floods in estuarine areas in the European part of Russia have significantly reduced since the middle of the twentieth century, especially in the 2000s. This decrease can be attributed to runoff flooding in the mouths of regulated rivers, with an effective system of flood and ice jam protection. The analysis shows that there is an 8–12-year periodicity in the number of flood occurrences and that flood surges have intensified over the last 110 years, especially on the European territory of Russia. An integrated index that accounts for flood hazards and socio-economic vulnerability was calculated for each region of Russia. A classification of flood risk was also developed, taking into account more than 20 hydrological and social–economic characteristics. Based on these characteristics, hazard and vulnerability maps for entire Russia were generated which can be used for water management and the development of future water resources plans.

  相似文献   

18.
 The definition of landslide warning thresholds, based on the analysis of hydrological data, is proposed. In the Tiber River Basin of central Italy historical information on landslides and floods, for the period 1918–1990, was available from a nationwide bibliographical and archive inventory on geohydrological catastrophes. Hydrological data were obtained from mean daily discharge records at various gauging stations within the basin. Several hundred hydrological events, broadly defined as a series of consecutive days having mean daily discharge exceeding a predefined value, were identified. Hydrological parameters obtained from the discharge records were used to rank the events according to their probability to trigger mass movements or inundations and to define regional thresholds for the occurrence of landslides and floods. The proposed approach, not lacking limitations, has conceptual and operational advantages, among which is the possibility of using historical information on geohydrological catastrophes. Received: 20 November 1996 · Accepted: 25 June 1997  相似文献   

19.
Canli  Ekrem  Loigge  Bernd  Glade  Thomas 《Natural Hazards》2017,88(1):103-131
Hydrological extreme events pose an imminent risk to society and economics. In this paper, various aspects of hydrological hazards in Russia are analysed at different scales of risk assessment. It is shown that the number of hydrological and meteorological hazards in Russia has been growing every year. The frequency of economic losses associated with extreme low flow in this century has increased by factor five compared to the last decade of the previous century. With regard to floods, an interesting spatial patter can be observed. On the one hand, the number of floods in the Asian part of the country has increased, whereas on the other hand, the number and intensity of floods in estuarine areas in the European part of Russia have significantly reduced since the middle of the twentieth century, especially in the 2000s. This decrease can be attributed to runoff flooding in the mouths of regulated rivers, with an effective system of flood and ice jam protection. The analysis shows that there is an 8–12-year periodicity in the number of flood occurrences and that flood surges have intensified over the last 110 years, especially on the European territory of Russia. An integrated index that accounts for flood hazards and socio-economic vulnerability was calculated for each region of Russia. A classification of flood risk was also developed, taking into account more than 20 hydrological and social–economic characteristics. Based on these characteristics, hazard and vulnerability maps for entire Russia were generated which can be used for water management and the development of future water resources plans.  相似文献   

20.
The kinematics and mechanics of the seismicity of the Friuli area in northeastern Italy are discussed, especially the focal mechanism of the catastrophic earthquake of May 6, 1976. Alternative solutions are analyzed. A N-S section, down to 60 km below sea-level, across the Alps from the Bavarian foreland to the Adriatic Sea illustrates these possibilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号