首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 692 毫秒
1.
This study investigated the effect of cations and anions on the sorption and desorption of iron (Fe) and manganese (Mn) in six surface calcareous soil samples from Western Iran. Six 10 mM electrolyte background solutions were used in the study, i.e., KCl, KNO3, KH2PO4, Ca(NO3)2, NaNO3, and NH4NO3. NH4NO3 and NaNO3 increased the soil retention of Fe and Mn, whereas Ca(NO3)2 decreased the soil retention of Fe and Mn. Iron and Mn sorption was decreased by NO3 ? compared with H2PO4 ? or Cl?. The Freundlich equation adequately described Fe and Mn adsorption, with all background electrolytes. The Freundlich distribution coefficient (K F) decreased in the order H2PO4 ? > Cl? > NO3 ? for Mn and H2PO4 ? > NO3 ? > Cl? for Fe. The highest sorption reversibility was for Fe and Mn in competition with a Ca2+ background, indicating the high mobility of these two cations. A MINTEQ speciation solubility model showed that Fe and Mn speciation was considerably affected by the electrolyte background used. Saturation indices indicated that all ion background solutions were saturated with respect to siderite and vivianite at low and high Fe concentrations. All ion background solutions were saturated with respect to MnCO3(am), MnHPO4, and rhodochrosite at low and high Mn concentrations. The hysteresis indices (HI) obtained for the different ion backgrounds were regressed on soil properties indicating that silt, clay, sand, and electrical conductivity (EC) were the most important soil properties influencing Fe adsorption, while cation exchange capacity (CEC), organic matter (OM), and Mn-DTPA affected Mn adsorption in these soils.  相似文献   

2.
 Acid mine drainage (AMD) occurs when sulfide minerals are exposed to an oxidizing environment. Most of the methods for preventing AMD are either short-term or high cost solutions. Coating with iron phosphate is a new technology for the abatement of AMD. It involves treating the sulfide with a coating solution composed of H2O2, KH2PO4, and sodium acetate as a buffer agent. The H2O2 oxidizes the sulfide surface and produces Fe3+ so that iron phosphate precipitates as a coating on the sulfide surface. Experiments performed under laboratory conditions prove that an iron phosphate coating can be established on pyrrhotite surfaces with optimal concentrations of the coating solution in the range of: 0.2M/0.01M H2O2, 0.2M KH2PO4, and 0.2M sodium acetate NaAc, depending on the experimental scale. Iron phosphate coating may be a long-term solution to the problem of AMD. The method would be easy to implement; the reagent cost, however, is not low enough, although it is lower than the conventional treatment with lime. Received: 30 March 1995 · Accepted: 6 September 1995  相似文献   

3.
Total trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn), Al, and pyrite- and reactive-associated metals were measured for the first time in a microbial mat and its underlying anoxic-sulfidic sediment collected in the saltern of Guerrero Negro (GN), Baja California Sur, Mexico. It is postulated that the formation of acid volatile sulfide (AVS) and pyrite in the area of GN could be limited by the availability of reactive Fe, as suggested by its limited abundance (mat and sediment combined average value of only 19 ± 10 ??mol g?1; n = 22) as well as the low pyrite (0.89?C7.9 ??mol g?1) and AVS (0.19?C21 ??mol g?1) concentrations (for anoxic-sulfidic sediments), intermediate degrees of pyritization (12?C50%), high degrees of sulfidization (14?C100%), generally low degrees of trace metal pyritization, and slight impoverishment in total Fe. This is a surprising result considering the large potential reservoir of available Fe in the surrounding desert. Our findings suggest that pyrite formation in the cycling of trace metals in the saltern of GN is not very important and that other sedimentary phases (e.g., organic matter, carbonates) may be more important reservoirs of trace elements. Enrichment factors [EFMe = (Me/Al)sample/(Me/Al)background] of Co, Pb, and Cd were high in the mat (EFMe = 2.2 ± 0.4, 2.8 ± 1.6 and 34.5 ± 9.8, respectively) and even higher in the underlying sediment (EFMe = 4.7 ± 1.5, 14.5 ± 6.2 and 89 ± 27, respectively), but Fe was slightly impoverished (average EFFe of 0.49 ± 0.13 and 0.50 ± 0.27 in both mat and sediment). Organic carbon to pyrite-sulfur (C/S) molar ratios measured in the mat (2.9 × 102?C27 × 102) and sediment (0.81 × 102?C6.6 × 102) were, on average, approximately 77 times higher than those typically found in marine sediments (7.5 ± 2.1). These results may indicate that ancient evaporation basins or hypersaline sedimentary environments could be identified on the basis of extremely high C/S ratios (e.g., >100) and low reactive Fe.  相似文献   

4.
The effects of fertilizer applications on runoff loss of phosphorus   总被引:4,自引:0,他引:4  
The phosphorus index (PI) can be used to effectively identify areas with high risks of phosphorus losses. Manures and fertilizers are important source factors for the establishment of the PI system. An artificial precipitation experiment was performed to evaluate phosphorus losses with the applications of different types of fertilizers and manures. The results showed that the total phosphorus (TP) losses in runoff followed the order of ammonium phosphate monobasic (NH4H2PO4), ammonium hydrogen phosphate ((NH4)2HPO4), monobasic potassium phosphate (KH2PO4), chicken manure, and cattle manure with surface application of these fertilizers and manures. The order was slightly changed to NH4H2PO4, KH2PO4, (NH4)2HPO4, chicken manure, and cattle manure with incorporation application under the same rainfall condition. Both the methods and the rate of manure application can affect the amounts of phosphorus in water and particles of runoff. More than 90 % of TP in runoff were lost through suspended particles. Manure application had a significant contribution to the P load in runoff.  相似文献   

5.
6.
A 4-week laboratory experiment investigated the behaviour (survival and bioirrigation) and impact of the invasive polychaetes Marenzelleria viridis, M. neglecta and M. arctia on sediment-water solutes exchange, porewater chemistry, and Fe and P interactions in high-salinity sandy sediment (HSS) and low-salinity muddy sediment (LSM) from the Baltic Sea. M. viridis showed deep burrowing with efficient bioirrigation (11 L m?2 day?1) and high survival (71%) in HSS, while M. arctia exhibited shallow burrowing with high bioirrigation (12 L m?2 day?1) and survival (88%) in LSM. M. neglecta behaved poorly in both ecological settings (bioirrigation, 5–6 L m?2 day?1; survival, 21–44%). The deep M. viridis bioirrigation enhanced total microbial CO2 (TCO2) production in HSS by 175% with a net efflux of NH4+ and PO43?, at rates 3- to 27-fold higher than for the other species. Although the shallow and intense bioirrigation of M. arctia in LSM stimulated microbial TCO2 production to some extent (61% enhancement), the nutrient fluxes close to zero indicate that it effectively prevented the P release. Porewater Fe:PO43? ratios revealed that the oxidizing effect of M. arctia bioirrigation increased the PO43? adsorption capacity of LSM twofold relative to defaunated controls while no buffering of PO43? was detected in M. viridis HSS treatment. Therefore, the different behaviour of the three species in various environments and the sharp contrast between M. viridis and M. arctia effects on C, N and P cycling must be considered carefully when the ecological role of Marenzelleria species in the Baltic Sea is evaluated.  相似文献   

7.
This study presents the temporal and spatial variability of 234U/238U activity ratios in the Shu River and provides interpretation to explain the downstream changes of uranium and the 234U/238U activity ratios in the study area. The positive linear correlation (R 2 = 0.98, p < 0.001) between uranium concentration and specific electrical conductance is consistent with rock weathering and leaching as the major contributor of dissolved uranium in the studied area of the river. The 234U/238U activity ratio ranged between ~1.6 in the upper reaches of the river to ~1.15 furthest downstream. Activity ratios at specific sampling points do not show significant seasonal variability.  相似文献   

8.
To evaluate the impact of invading seagrass on biogeochemical processes associated with sulfur cycles, we investigated the geochemical properties and sulfate reduction rates (SRRs) in sediments inhabited by invasive warm affinity Halophila nipponica and indigenous cold affinity Zostera marina. A more positive relationship between SRR and below-ground biomass (BGB) was observed at the H. nipponica bed (SRR = 0.6809 × BGB ? 4.3162, r 2 = 0.9878, p = 0.0006) than at the Z. marina bed (SRR = 0.3470 × BGB ? 4.0341, r 2 = 0.7082, p = 0.0357). These results suggested that SR was more stimulated by the dissolved organic carbon (DOC) exuded from the roots of H. nipponica than by the DOC released from the roots of Z. marina. Despite the enhanced SR in spring-summer, the relatively lower proportion (average, 20%) of acid-volatile sulfur (AVS) in total reduced sulfur and the strong correlation between total oxalate-extractable Fe (Fe(oxal)) and chromium-reducible sulfur (CRS = 0.2321 × total Fe(oxal) + 1.8180, r 2 = 0.3344, p = 0.0076) in the sediments suggested the rapid re-oxidation of sulfide and precipitation of sulfide with Fe. The turnover rate of the AVS at the H. nipponica bed (0.13 day?1) was 2.5 times lower than that at the Z. marina bed (0.33 day?1). Together with lower AVS turnover, the stronger correlation of SRR to BGB in the H. nipponica bed suggests that the extension of H. nipponica resulting from the warming of seawater might provoke more sulfide accumulation in coastal sediments.  相似文献   

9.
In this study, teff (Eragrostis tef) straw has been chemically treated and tested as an adsorbent for Cr(VI) removal. Chemically treatment of teff straw was done by NaOH, H3PO4 and ZnCl2 solutions. Scanning electron micrograph and X-ray diffraction were used for anatomical characterization, whereas Fourier transform infrared spectroscopy was used for surface change characterization of adsorbents. Effects of different experimental parameters like pH (2–12), initial Cr(VI) concentration (100–900 mg/L), adsorbent dose (2.5–20 g/L), contact time (15–360 min) and temperature (288–318 K) were studied. Temperature increment was found to stimulate the adsorption process. Langmuir isotherm was found to give better representation over wide range of temperature for untreated, H3PO4- as well as ZnCl2-treated teff straw, and Freundlich isotherm best represented the isotherm data for NaOH-treated teff straw. Maximum Cr(VI) adsorption capacity of untreated, NaOH-, H3PO4- and ZnCl2-treated teff straw was found to be 86.1, 73.8, 89.3 and 88.9 mg/g, respectively. Respective values of average effective diffusion coefficient (D e) were found to be 2.8 × 10?13, 2.59 × 10?14, 1.32 × 10?13 and 1.14 × 10?13 m2/s, respectively. The negative value of ΔG o for all the adsorbents indicates Cr(VI) spontaneous adsorption. Isosteric heat of adsorption (ΔH st,a) was found to vary with surface coverage (θ). ΔH st,a increased for untreated, H3PO4- and ZnCl2-treated teff straw, and decreased steadily with θ for NaOH-treated teff straw.  相似文献   

10.
In situ measurements of 60Fe-60Ni and 53Mn-53Cr isotopic systems with an ion microprobe have been carried out for sulfide assemblages from unequilibrated enstatite chondrites (UECs). Evidence for the initial presence of 60Fe has been observed in nine sulfide inclusions from three UECs: ALHA77295, MAC88136, and Qingzhen. The inferred initial (60Fe/56Fe) [(60Fe/56Fe)0] ratios show a large variation range, from ∼2 × 10−7 to ∼2 × 10−6. The sulfide inclusions with high Fe/Ni ratios yield (60Fe/56Fe)0 ratios of ∼(2-7) × 10−7, similar to most of the (60Fe/56Fe)0 values of troilite and pyroxene observed in unequilibrated ordinary chondrites (UOCs). Inclusions with high inferred (60Fe/56Fe)0 ratios (∼1-2 × 10−6) have low Fe/Ni ratios and the magnitude of the 60Ni excesses is similar in two MAC88136 assemblages in spite of a difference of a factor of two in their Fe/Ni ratios. The inferred high (60Fe/56Fe)0 ratios were probably the result of Fe-Ni re-distribution in the sulfides during later alteration processes.The 53Mn-53Cr system was measured in five of the sulfide assemblages that were examined for their 60Fe-60Ni systematics. The 53Mn-53Cr isochrons yielded variable initial (53Mn/55Mn) [(53Mn/55Mn)0] ratios from ∼(2-7) × 10−7. There is no obvious correlation between the (60Fe/56Fe)0 and (53Mn/55Mn)0 ratios. The variable 53Mn-53Cr isochrons probably also indicate later disturbance to the isotopic systems in these sulfides. Even though no chronological information can be extracted from the 60Fe-60Ni and 53Mn-53Cr systems in these UEC sulfides, our results indicate that 60Fe was present in the enstatite chondrite formation region of the early Solar System.  相似文献   

11.
《Applied Geochemistry》2003,18(1):25-36
The controls on the internal neutralization of low productivity, highly acidified waters by sulfide accumulation in sediments are yet poorly understood. It is demonstrated that the neutralization process is constrained by organic matter quality and thermodynamic effects which control the relative rates of SO4 and Fe reduction, and the fate of the reduced Fe and S in the sediments. The investigated sediments were rich in dissolved Fe(II) (0.005–12 mmol l−1) and SO4 (1.3–22 mmol l−1). The pH ranged from 3.0 to 6.8. Contents of reduced inorganic S (0.1–9.5%), molar C/N ratios of the organic matter (12–80) and metabolic turnover rates (1–110 μeq cm−3 a−1) varied strongly. Substantial amounts of Fe sulfides were only found at a simultaneous partial thermodynamic and solubility equilibrium of the involved biogeochemical processes. Sulfide oxidation was apparently inhibited, and SO4 and Fe reduction coexisted. In this type of sediment increases in C availability cause enhanced neutralization rates. In the absence of a partial equilibrium, the sediments were in a sulfide oxidizing and Fe reducing state, and did not accumulate Fe sulfides. The latter type of sediment will increase neutralization rates in response to decreasing deposition of reactive Fe oxides but not necessarily in response to increases in lake productivity by e.g. fertilization measures.  相似文献   

12.
The large range of stable oxygen isotope values of phosphate‐bearing minerals and dissolved phosphate of inorganic or organic origin requires the availability of in‐house produced calibrated silver phosphate of which isotopic ratios must closely bracket those of studied samples. We propose a simple protocol to synthesise Ag3PO4 in a wide range of oxygen isotope compositions based on the equilibrium isotopic fractionation factor and the kinetics and temperature of isotopic exchange in the phosphate–water system. Ag3PO4 crystals were obtained from KH2PO4 that was dissolved in water of known oxygen isotope composition. Isotopic exchange between dissolved phosphate and water took place at a desired and constant temperature into PYREX? tubes that were placed in a high precision oven for defined run‐times. Samples were withdrawn at desired times, quenched in cold water and precipitated as Ag3PO4. We provide a calculation sheet that computes the δ18O of precipitated Ag3PO4 as a function of time, temperature and δ18O of both reactants KH2PO4 and H2O at t = 0. Predicted oxygen isotope compositions of synthesised silver phosphate range from ?7 to +31‰ VSMOW for a temperature range comprised between 110 and 130 °C and a range of water δ18O from ?20 to +15‰ VSMOW.  相似文献   

13.
In order to better understand phosphorus (P) cycling and origins in the sediment of the Lake Illawarra, two sediment cores were extracted in November, 2010 and a modified sequential extraction scheme (SEDEX) was used to profile the exchangeable P (Pex), reactive Fe/Al-bound P (Preac), reductive Fe/Al-bound P (Predu), authigenic apatite P (Pauth), detrital P (Pdet), organic P (Porg) and residual P (Presi). The total sedimentary P (TP) ranged from 93 to 437 μg g?1, and was dominated by inorganic P. The average percentage of each fraction of P in the sediment followed the sequence: Preac (28.6 %) > Presi (23.5 %) > Pauth (19.1 %) > Predu (17.0 %) > Porg (4.9 %) > Pex (4.7 %) > Pdet (2.2 %). The profiles of TP and Porg showed two peak values with depth, which were matched to land use history in the Lake Illawarra catchment. The sediment depth profiles indicated that Fe oxyhydroxides play a predominant role in the P cycle in the sediments of the lagoon. This is supported by significant positive correlation between Preac and reactive Fe and a negative correlation between Pauth and Fe. Pauth and Preac concentrations were also well negatively correlated, possibly a result of competitive equilibrium between Fe and Ca for P. The estimated P burial efficiency was up to 82 % for this lagoon, which is likely related to the high sediment accumulation rate and the high value of R Fe-P. In addition, the bioavailable P, which consists of Pex, Preac, and Porg, represented a significant proportion of the sedimentary P pool, accounting, on average, for 38 % of the TP. This result indicates that the sediment is a potential internal source of P for this lake ecosystem.  相似文献   

14.
Biochar prepared from corn stalks is used as a source of phosphorus in this study. The hypotheses were to investigate effects of biochar applications in clay soil on availability, changes of phosphorus pools and maximum adsorption of phosphorus as well as corn growth. The soil was placed in plastic pots with each contains 3 kg of this soil. Biochar was added at levels of 0 (control), 6.5 (B1), 19 (B2), and 38 (B3) g pot?1. In this experiment, the pot was planted with corn (Zea mays). The results of this study revealed that the biochar application enhanced available phosphorus (Olsen-P) from 11.51 to 17.10 mg kg?1. Adding biochar significantly increased the amount of NH4Cl-P, NaHCO3-Po, and NaOH I-Po fractions (p?≤?0.05), but it significantly decreased HCl-Pi fraction (p?≤?0.05). Addition of biochar at the highest level increased the fresh and dry matter productions by up to about 75 and 48.7%, respectively, compared to the control. The phosphorus uptake by corn plants significantly increased with increasing levels of biochar. The removal efficiency (% sorption) and maximum adsorption (b) of phosphorus increased with increasing level of biochar addition compared to control. Consequently, it is recommended to add biochar produced from corn stalks to the soil in order to substitute phosphate fertilizers.  相似文献   

15.
The aim of this research was to evaluate the efficiency of electrocoagulation (EC) for the removal of natural organic matter (NOM) by using iron (Fe) and aluminum (Al) electrodes. The effects of several operational parameters such as initial pH (3–10), time of electrolysis (5–30 min), initial concentration of organic matter (10–50 mg NOM/L), current density (0.25–1.25 mA/cm2), type of electrode material (n = 4, 2 sides × 11 cm × 10 cm, wall thickness = 2 mm, distance between each electrode = 5 mm), and type of connection of electrodes (bipolar and monopolar configurations) were explored for the removal of NOM from synthetic humic acid solution in a 2 L laboratory-scale EC cells (A s/V = 0.110 cm?1). The optimum conditions for the process were identified as pH = 3 and 7, electrolysis time = 20 and 10 min for Fe and Al electrodes, respectively. Using both electrodes at current density = 0.25 mA/cm2 and initial concentration of organic matter = 50 mg/L, a NOM removal efficiency of almost 100% could be achieved in the bipolar mode. Based on the optimum conditions, specific reactor electrical energy consumptions were 14.90 kWh/kg Al (or 0.092 kWh/m3) and 2.88 kWh/kg Fe (or 0.11 kWh/m3). Specific electrode consumptions were obtained to be 0.0062 and 0.0382 kg/m3, and operating costs of the EC system were preliminary estimated at 0.057 and 0.119 $/m3 for Al and Fe electrodes, respectively.  相似文献   

16.
The concentrations of uranium, iron and the major constituents were determined in groundwater samples from aquifer containing uranyl phosphate minerals (meta-autunite, meta-torbernite and torbernite) in the Köprüba?? area. Groundwater samples from wells located at shallow depths (0.5–6 m) show usually near neutral pH values (6.2–7.1) and oxidizing conditions (Eh = 119–275 mV). Electrical conductivity (EC) values of samples are between 87 and 329 μS/cm?1. They are mostly characterized by mixed cationic Ca dominating bicarbonate types. The main hydrogeochemical process is weathering of the silicates in the shallow groundwater system. All groundwater in the study area are considered undersaturated with respect to torbernite and autunite. PHREEQC predicted UO2(HPO4) 2 2? as the unique species. The excellent positive correlation coefficient (r = 0.99) between U and PO4 indicates the dissolved uranium in groundwater would be associated with the dissolution of uranyl phosphate minerals. The groundwater show U content in the range 1.71–70.45 μg/l but they are mostly lower than US EPA (2003) maximum contaminant level of 30 μg/l. This low U concentrations in oxic groundwater samples is attributed to the low solubility of U(VI) phosphate minerals under near neutral pH and low bicarbonate conditions. Iron closely associated with studied sediments, were also detected in groundwater. The maximum concentration of Fe in groundwater samples was 2837 μg/l, while the drinking water guidelines of Turkish (TSE 1997) and US EPA (2003) were suggested 200 and 300 μg/l, respectively. Furthermore, iron and uranium showed a significant correlation to each other with a correlation coefficient (r) of 0.94. This high correlation is probably related to the iron-rich sediments which contain also significant amounts of uranium mineralization. In addition to pH and bicarbonate controlling dissolution of uranyl phosphates, association of uranyl phosphates with iron (hydr) oxides seems to play important role in the amount of dissolved U in shallow groundwater.  相似文献   

17.
Behavior of Uranium in the Yellow River Plume (Yellow River Estuary)   总被引:2,自引:0,他引:2  
The Yellow River (Huanghe) is the second largest river in China and is known for its high turbidity. It also has remarkably high levels of dissolved uranium (U) concentrations (up to 38 nmol 1-1). To examine the mixing behavior of dissolved U between river water and seawater, surface water samples were collected along a salinity gradient from the Yellow River plume during September 2004 and were measured for dissolved U concentration,234U:238U activity ratio, phosphate (PO4 3–), and suspended particulate matter. Laboratory experiments were also conducted to simulate the mixing process in the Yellow River plume using unfiltered Yellow River water and filtered seawater. The results showed a nonconservative behavior for dissolved U at salinities < 20 with an addition of U to the plume waters estimated at about 1.4 X 105 mol yr–1. A similarity between variations in dissolved U and PO4 3– with salinity was also found. There are two major mechanisms, desorption from suspended sediments and diffusion from interstitial waters of bottom sediments, that may cause the elevated concentrations of dissolved U and PO4 3– in mid-salinity waters. Mixing experiments indicate that desorption seems more responsible for the elevated dissolved U concentrations, whereas diffusion influences more the enrichment of PO4 3–.  相似文献   

18.
《International Geology Review》2012,54(10):1220-1238
Recently, many Mo deposits genetically related to emplacement of Early Cretaceous granites have been found in the Dabie–Qinling belt. A typical intrusion that combines magmatism and metallogenesis, the Bao'anzhai granite, yields a zircon 238U–206Pb age of 123.2 ± 1.1 Ma and a molybdenite Re–Os isochron age of 122.5 ± 2.7 Ma. This granite is characterized by high silica and alkali, but low Mg, Fe, and Ca. It is enriched with light rare earth elements (REEs) and large-ion lithophile elements (LILEs, Rb, K, Th, U) but depleted of heavy REEs, high field strength elements (HFSEs, Nb, Ta, Ti, and Y), and Sr. This high-K granite has medium initial 87Sr/86Sr ratios (0.706518–0.707116) and low initial Pb isotopic ratios [(206Pb/204Pb)i, 16.423–16.699; (207Pb/204Pb)i, 15.285–15.345; (208Pb/204Pb)i, 37.335–37.633], and is characterized by low ?Nd(t) and ?Hf(t) values (?14.92 to??14.22 and??21.67 to??19.19, respectively). These data indicate that this pluton is a high-K calc-alkaline fractionated I-type granitite. It was generated by partial melting of the Yangtze lower crust, which is probably similar to Neoproterozoic TTG-like magmatic rocks at the north Yangtze Block under a non-thickened lower crust environment (<35 km). The ores also have low radiogenic Pb isotopes (206Pb/204Pb, 16.592–17.674; 207Pb/204Pb, 15.300–15.476; 208Pb/204Pb, 37.419–37.911) and low Re content in molybdenite (5.693–10.970 ppm), suggesting a crustal magmatic source for the metallogenic minerals in the Mo deposit.  相似文献   

19.
We analyzed responses of soluble reactive phosphorus (SRP), bioavailable phosphate (PO4), particulate phosphorus, turnover time of orthophosphate (Tt), and alkaline phosphatase activity (APA) to varying degrees of nutrient stress. The nutrient stress was evoked by different treatments in concentration and combination of inorganic nitrogen (N) and phosphorus (P), and labile organic carbon (glucose) to mesocosms in experiments carried out in eutrophic southern (Odense Fjord, Denmark) and northern (Tvärminne Archipelago, Finland) coastal zones of the Baltic Sea. Despite seasonal and geographical differences, similar responses were observed in both experiments. Low SRP (<100 nmol l?1), shortT t (<10 h), and increased levels of APA were observed in both N+P balanced and P deficient treatments, while the opposite trend was observed in P replete treatments. The shortestT t and the highest APA were found when glucose was combined with N treatment. Bioavailable PO4 was estimated usingT t and P uptake rates as derived from stoichiometric conversion of carbon based primary and bacterial production. With shorterT t, the PO4 pool declined to <1 nmol-P l?1, whereas the SRP background pool (difference between SRP and PO4) remained relatively constant (c. 50 nmol l?1). APA was inversely related to PO4 but not to SRP. Responses of specific APA and specific affinity for PO4 uptake, which are APA and PO4 uptake rates (inverse ofT t), respectively, normalized to the summed P biomass of phytoplankton and bacteria, responded consistently to the pattern and magnitude of nutrient limitation evoked in our experiments. Our results, together with a literature survey, suggest that both parameters can be useful in examining PO4 availability for the natural phytoplankton and bacteria community in P starved aquatic systems.  相似文献   

20.
The crystallographic structures of the synthetic cheralite, CaTh(PO4)2, and its homolog CaNp(PO4)2 have been investigated by X-ray diffraction at room temperature. Rietveld analyses showed that both compounds crystallize in the monoclinic system and are isostructural to monazite LnPO4 (Ln = La to Gd). The space group is P21/n (I.T. = 14) with Z = 2. The refined lattice parameters of CaTh(PO4)2 are a = 6.7085(8) Å, b = 6.9160(6) Å, c = 6.4152(6) Å, and β = 103.71(1)° with best fit parameters R wp = 4.87%, R p = 3.69% and R B = 3.99%. For CaNp(PO4)2, we obtained a = 6.6509(5) Å, b = 6.8390(3) Å, c = 6.3537(8) Å, and β = 104.12(6)° and R wp = 6.74%, R p = 5.23%, and R B = 6.05%. The results indicate significant distortions of bond length and angles of the PO4 tetrahedra in CaTh(PO4)2 and to a lesser extent in CaNp(PO4)2. The structural distortions were confirmed by Raman spectroscopy of CaTh(PO4)2. A comparison with the isostructural compounds LnPO4 (Ln = Ce and Sm) confirmed that the substitution of the large rare earth trivalent cations with Ca2+ and Th4+ introduces a distortion of the PO4 tetrahedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号