首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ringwood evaporite is part of the 900 m.y. old Bitter Springs Formation, a warm-water shallow-marine sequence of stromatolitic dolomite and limestone, microfossiliferous chert, red beds, quartzite, and evaporites. The evaporite at Ringwood comprises two parts: (i) a lower 127 m characterized by brecciated pyritic bituminous dolomite, together with smaller amounts of dolomite-gypsum breccia, friable chloritic dololutite, coarsely crystalline anhydrite, and satin-spar gypsum; and (ii) an upper 133 m which is similar except that bituminous dolomite forms only one bed, and the characteristic rock-type is dolomite-gypsum breccia. The evaporite is overlain by limestone breccia and massive stromatolitic limestone, interpreted as an algal reef. Gypsum is secondary after anhydrite, and the ratio of gypsum to anhydrite increases upwards. The evaporite shows none of the features of a sabkha or desiccated deep ocean basin deposit, and instead is interpreted as the filling of a barred basin which was cut off from the ocean by growth of an algal barrier reef. As circulation became restricted, bituminous dolomite deposited in the lagoon behind the reef, together with pyrite from the destruction by anaerobic bacteria of algal debris derived from the reef. With continued evaporation, brine concentration increased and gypsum precipitated. Occasional dust storms contributed wind-blown clay to the deposit. The barrier reef transgressed diachronously across the evaporite lagoon, and was eventually drowned when normal marine conditions became established. Burial of the evaporite to about 7000 m beneath the succeeding sediments of the Amadeus Basin converted gypsum to anhydrite, and formed chlorite by reaction of clay with dolomite. Late Palaeozoic tectonism folded and brecciated the rocks, and was followed by erosion which eventually exposed the evaporite to ingress of meteoric water. Hydration of anhydrite to gypsum ensued, the reaction becoming less complete with increasing depth from the ground surface.  相似文献   

2.
The Lower Triassic Kangan Formation in the Persian Gulf (South Pars Gas Field) and its adjacent areas are composed of carbonate–evaporite sequences. These sediments were deposited in a shallow marine homoclinal ramp. Study of the anhydrite-bearing intervals shows various structures and textures. The anhydrite structures are mainly bedded, massive, chicken-wire and nodular type and the main textures are felted, sparse crystal, needle shape, lath shape, equant and fibrous. Pervasive and poikilotopic cement together with replacement and porphyroblastic gypsum are accounted as the most common diagenetic features in anhydrite. Evaluation of anhydrite occurrences and features support both primary and secondary formations. The nodular to chicken-wire anhydrite formed under synsedimentary sabkha conditions, whereas anhydrite cements occurred during the late stages of diagenesis (shallow burial stage). Massive to bedded anhydrite could have been formed under subaqueous conditions or originated by coalescing and continued growth of anhydrite nodules in the sabkha zone. Anhydrite fabrics impose a significant control on the reservoir quality of the Kangan carbonates at the South Pars Gas Field. Thick massive and bedded anhydrite could have been formed as an intraformational seals and anhydrite cements occluded pore spaces and reduced the poroperm values. The sequence stratigraphic analysis revealed two depositional sequences in the studied intervals, which are composed of TST and HST. Investigation of anhydrite throughout depositional sequences indicates a change in the content and style of anhydrite texture. Anhydrite content (volume) decreases upward through transgressive system tract (sea-level rise) whereas, it enhances during highstand system tract (sea-level fall). Pervasive and poikilotopic anhydrite cements together with replacement by anhydrite are prevalent features during transgressive and early highstand system tract. At the late HST, with a progradational stacking pattern, anhydrite value increases and felted, radial, equant, crystalline and mosaic texture are the most common anhydrite fabrics. Sequence boundaries that indicate maximum sea level fall and exposure of successions are marked by the broad anhydrite deposits with massive to bedded and chicken-wire structures and various textures that located in late HST package. There is an unambiguous relationship between the microfacies associations, the evaporite textures, and the sea-level fluctuations. This relationship could lead to a predictable pattern that can be of use as a general guide for the sequence stratigraphic interpretations in the area.  相似文献   

3.
This paper concerns the evaporite units, depositional systems, cyclicity, diagenetic products and anhydritization patterns of the Calatayud Basin (nonmarine, Miocene, central Spain). In outcrop, the sulphate minerals of these shallow lacustrine evaporites consist of primary and secondary gypsum, the latter originating from the replacement of anhydrite and glauberite. In the evaporative systems of this basin, gypsiferous marshes of low salinity can be distinguished from central, saline lakes of higher salinity. In the gypsiferous marsh facies, the dominant, massive, bioturbated gypsum was partly replaced by synsedimentary chert nodules and siliceous crusts. In the saline lake facies, either cycles of gypsiferous lutite‐laminated gypsarenite or irregular alternations of laminated gypsum, nodular and banded glauberite, thenardite and nodular anhydrite precipitated. Early replacement of part of the glauberite by anhydrite also occurred. Episodes of subaerial exposure are represented by: (1) pedogenic carbonates (with nodular magnesite) and gypsiferous crusts composed of poikilitic crystals; and (2) nodular anhydrite, which formed in a sabkha. Additionally, meganodular anhydrite occurs, which presumably precipitated from ascending, highly saline solutions. The timing of anhydritization was mainly controlled by the salinity of the pore solutions, and occurred from the onset of deposition to moderate burial. Locally, a thick (>200 m) sequence of gypsum cycles developed, which was probably controlled by climatic variation. A trend of upward‐decreasing salinity is deduced from the base to the top of the evaporite succession.  相似文献   

4.
四川盆地早三叠世飞仙关早期的环境基本上继承了晚二叠世长兴末期的格局。在川东北地区演化为碳酸盐蒸发台地。蒸发台地飞仙关组为一套含硫酸盐的富白云岩的蒸发潮坪沉积层系。下部为薄层的含石膏、硬石膏晶体、团块及肠状石膏层的泥晶灰岩、微晶白云岩组成的小潮差蒸发潮坪层序。中部为层状鲕粒白云岩、鲕粒灰岩的潮下鲕粒滩相与萨布哈环境的富层状膏岩的膏坪相、含石膏岩的膏云坪相组成的大潮差蒸发潮坪层序。上部为中薄层状富泥的含石膏质夹层的泥质泥晶灰岩、微晶白云岩组成的旋回性清楚的似蒸发潮坪层序。这三种层序的纵向组合在蒸发台地相区可以很好对比,尽管各层序厚度有明显变化。强烈白云石化的鲕粒白云岩是四川盆地飞仙关组大中型气藏的主要储层,依据鲕粒岩的相序特征可将其分为有障壁性质的台缘鲕粒坝和台内鲕粒滩两类。蒸发台地西缘的台缘鲕粒坝在飞仙关期基本稳定。东缘的台缘鲕粒坝在飞仙关中后期大幅度向盆地方向迁移。  相似文献   

5.
塔里木盆地寒武系广泛发育白云岩,其中中寒武统地层沉积了巨厚的蒸发岩,蒸发岩和白云岩可以构成很好的储盖组合,该领域也是塔里木盆地未来勘探的新领域。萨布哈白云岩和渗透回流白云岩是两种与蒸发岩相关的白云岩,其储层发育的主控因素也都与蒸发岩存在着直接或间接的联系。通过对大量岩芯、薄片、主量元素、稀土元素、碳、氧稳定同位素及锶稳定同位素等地球化学测试和测井资料的细致研究,系统总结了它们的岩石学特征、地球化学特征。萨布哈白云岩储层的岩性以含石膏的泥 粉晶白云岩为特征,孔隙类型主要为膏模孔和溶塌角砾砾间孔,萨布哈白云石化作用及伴生石膏的沉淀作用和准同生期大气淡水溶蚀作用是该类储层的主控因素;渗透回流白云岩储层的岩性以保留原岩颗粒或藻(丘)格架结构的粉晶白云岩为特征,孔隙类型主要为粒间孔、铸模孔、格架孔,渗透回流白云石化作用和大气淡水溶蚀作用是该类储层的主控因素。两者主要发育于塔里木盆地干旱气候背景下的中-下寒武统地层,其分布规律主要受沉积相控制。  相似文献   

6.
鄂尔多斯盆地中东部奥陶系马家沟组马五6亚段硬石膏产状类型多样,基于系统的宏观与微观岩石学分析,识别并区分出星散状(A1型)、纹层状(A2型)、致密块状(A3型)、结核状或团块状(A4型)、鸡雏状或角砾状(A5型)等硬石膏产状类型。单井高频旋回和微相分析表明,马五6亚段发育与潮坪、潟湖、鲕粒滩、砂屑滩、微生物丘等有关的5种高频向上变浅序列,硬石膏的产状类型、产出位置和分布形式等与向上变浅序列有很好的耦合关系。A1型和A2型硬石膏发育于高频向上变浅序列的下部和中部,主要与膏云质或云膏质潟湖相关,属于潟湖相原生化学沉积成因。A3型硬石膏分布于高频向上变浅序列的上部,受膏质潟湖控制,也属于原生化学沉积成因。经典的结核状硬石膏(A4-1)呈随机分布形式产于潮坪沉积序列,为成岩期交代作用或者膏化作用成因,与传统萨布哈交代成因的膏质结核相似。A4-2型硬石膏主要出现在颗粒岩和微生物岩中,主要由富含CaSO4的下渗卤水在溶蚀孔洞中沉淀形成;A5型硬石膏发育于向上变浅序列的上部和顶部,与高频暴露有关,为准同生期以溶蚀—充填为主的岩溶改造成因。发育完整的单个高频旋回,大致经历了高频快速海侵早期、高频快速海侵晚期至缓慢海退早期、高频缓慢海退晚期和高频海退末期暴露4个演化阶段,形成了与之耦合的海相碳酸盐岩与硬石膏共生序列。这些认识将对马家沟组沉积古环境的再认识具有重要的参考意义。  相似文献   

7.
鄂尔多斯盆地中东部奥陶系马家沟组马五6亚段硬石膏产状类型多样,基于系统的宏观与微观岩石学分析,识别并区分出星散状(A1型)、纹层状(A2型)、致密块状(A3型)、结核状或团块状(A4型)、鸡雏状或角砾状(A5型)等硬石膏产状类型。单井高频旋回和微相分析表明,马五6亚段发育与潮坪、潟湖、鲕粒滩、砂屑滩、微生物丘等有关的5种高频向上变浅序列,硬石膏的产状类型、产出位置和分布形式等与向上变浅序列有很好的耦合关系。A1型和A2型硬石膏发育于高频向上变浅序列的下部和中部,主要与膏云质或云膏质潟湖相关,属于潟湖相原生化学沉积成因。A3型硬石膏分布于高频向上变浅序列的上部,受膏质潟湖控制,也属于原生化学沉积成因。经典的结核状硬石膏(A4-1)呈随机分布形式产于潮坪沉积序列,为成岩期交代作用或者膏化作用成因,与传统萨布哈交代成因的膏质结核相似。A4-2型硬石膏主要出现在颗粒岩和微生物岩中,主要由富含CaSO4的下渗卤水在溶蚀孔洞中沉淀形成;A5型硬石膏发育于向上变浅序列的上部和顶部,与高频暴露有关,为准同生期以溶蚀—充填为主的岩溶改造成因。发育完整的单个高频旋回,大致经历了高频快速海侵早期、高频快速海侵晚期至缓慢海退早期、高频缓慢海退晚期和高频海退末期暴露4个演化阶段,形成了与之耦合的海相碳酸盐岩与硬石膏共生序列。这些认识将对马家沟组沉积古环境的再认识具有重要的参考意义。  相似文献   

8.
云膏共生组合是受化学沉积分异作用控制而形成的岩石组合,对其沉积序列精细刻画,有利于揭示诸多蒸发环境下的沉积学信息。依据鄂尔多斯盆地中部奥陶系马家沟组五段6(简称“马五6亚段”)亚段钻井、岩心资料,开展了岩石宏观和微观观察、典型沉积序列刻画等工作。研究结果表明: (1)鄂尔多斯盆地中部马五6亚段普遍发育碳酸盐岩与蒸发岩共生组合,主要由10种岩石类型构成;(2)主要发育5种沉积序列,下云上膏的岩性组合和序列顶部多发育暴露面等特征表明单个序列具有向上变浅、变咸的演化特征,是蒸发台地叠合海水渐次补给作用的结果;(3)在局限—蒸发台地环境下,主要发育潟湖/滩间海、颗粒滩、灰泥丘、台坪4种沉积亚相及11种沉积微相,与经典的蒸发潮坪序列在岩性组合与沉积构造方面存在明显的差异;(4)马五6亚段沉积期发育2次海平面升降,沉积环境可分别对应于云(膏)质潟湖—灰泥丘/颗粒滩—膏质潟湖—蒸干膏质潟湖和灰泥丘/颗粒滩—膏质潟湖—蒸干膏质潟湖—台坪。该研究结果可为鄂尔多斯盆地马五6亚段沉积环境与海平面变化研究提供系统的岩石学证据。  相似文献   

9.
G. V. WOOD  M. J. WOLFE 《Sedimentology》1969,12(3-4):165-191
SUMMARY
Study of 176 ft. (53.7 m) of core from the Arab/Darb Formation of the Umm Shaif Field, Abu Dhabi Marine Areas, has revealed a sequence of sediments which can be related to nine distinct cycles of sabkha formation. The sabkha cycle consists of a basal algal grainstone/boundstone (which is interpreted as a shoal) passing upwards through lagoonal dolomite, intertidal algal mat and into a final supratidal development of nodular anhydrite and associated dolomite. Dolomiti-sation and the formation of nodular anhydrite were early-stage products of diagenesis. Poikilotopic anhydrite is common in the lagoonal dolomites but it is thought that this was not formed until the sediment was completely lithified.
Stylolites, although of small amplitude, are more common in dolomite than in limestone; a generalisation which is at variance with earlier observations.  相似文献   

10.
The Middle Miocene evaporites in the Red Sea rift were deposited within a complex system of fault-bounded basins that were episodically active during sedimentation. Such a tectonic framework is known to be highly favourable to resedimentation processes. An offshore petroleum well in the north-western Red Sea has cored, below a massive salt unit, an anhydrite-bearing succession which provides an excellent opportunity to study the processes of gravity induced redeposition of Ca-sulphates in a deep basin. Anhydrite deposits, interbedded with siliciclastic layers and thin halite layers, are composed of resedimented facies ranging from fine-grained laminated sediments to coarse-grained breccias. The components derive from the reworking of shelf sediments deposited initially in shallow water to supratidal settings on the surface and edges of structural highs bordering depressions: proximal siliciclastic deposits with interstitial anhydrite (cement patches, nodules) or gypsum and dolostones with early diagenetic anhydrite facies (nodular, chicken-wire) formed in sabkha conditions, interstitially grown gypsum crystals and subaqueous gypsum crusts precipitated in hypersaline ponds, and diatom-rich oozes formed in marine, shallow-water conditions. The homogeneity of the stable isotope composition and petrography of sulphates argue for the initial crystallization of Ca-sulphates within brines of the same origin and in closely interconnected sedimentary settings. The unconsolidated sediments redeposited as slope-foot accumulations were carried both as anhydrite (nodules, soft masses, various fragments, individual grains or crystals released by disintegration of large masses) and gypsum (crystalline aggregates or single crystals) later converted to anhydrite during burial. Layers of chaotic breccia are interpreted as the result of seismic events, whereas the fine-grained deposits could be related to redistribution by nepheloid layers of suspensions of finer grains released by disintegration of the soft anhydrite masses during downslope transport, or of in situ deposits removed by the turbiditic flows.  相似文献   

11.
鄂尔多斯盆地南部下奥陶统马家沟组沉积特征   总被引:2,自引:2,他引:0  
依据鄂尔多斯盆地南部早奥陶世古构造、古地理、古水动力以及古气候背景,结合单井、野外露头沉积相分析等认为,秦岭海槽和中央古隆起的存在和演化控制盆地南部马家沟组沉积特征及演化。(1)平面上根据中央古隆起的障壁作用将其分为两大沉积区,西南区和东北区。西南区发育盆地—斜坡—台地边缘相,东北区为障壁潟湖沉积环境;(2)东北区马家沟组由"三云三灰"六段组成,马一、马三、马五段为白云岩、石膏和石盐组成的蒸发岩系,马二、马四、马六段为石灰岩夹白云岩的碳酸盐岩序列,在纵向上构成蒸发岩与碳酸盐岩间互的旋回性沉积。在此基础上进一步建立了马家沟组障壁潟湖沉积模式,该模式具有两个主要特征:(1)中央古隆起作为障壁控制秦岭海与潟湖之间的海水沟通;(2)依据海平面升降旋回将该模式动态地分为三个阶段,即与海侵期相对应的以石灰岩沉积为主的障壁潟湖沉积阶段(阶段Ⅰ)、与海退期相对应的以石灰岩夹蒸发岩沉积为主的障壁咸化潟湖沉积阶段(阶段Ⅱ)和与低海平面期对应的以膏盐岩沉积为主的障壁膏盐湖沉积阶段(阶段Ⅲ)。  相似文献   

12.
Lithologic succession, microscopic examination as well as X-ray diffraction and chemical data revealed that the surface Middle Miocene evaporites of Wadi Quei are composed of anhydrite beds intercalated with carbonate and green shale, whilst the subsurface evaporites of Gemsa locality are composed of gypsum, anhydrite, carbonates and celestite with a rare amount of halite. The anhydrite is found to be formed diagenetically after gypsum. The carbonate is interpreted as having been of biogenic origin. The strong smell of H2S and golden crystals of pyrite at Wadi Quei beds are indications of the biogenic action of sulphate-reducing bacteria in the presence of organic matter. It is suggested that the evaporite sequence which was deposited in a supratidal sabkha environment is characterized by alkaline-reducing conditions. The presence of nodular gypsum at Gemsa locality is probably deposited in a supratidal environment with oscillation of sea level.  相似文献   

13.
依据鄂尔多斯盆地古构造古地理背景、古水动力以及古气候条件,结合单井沉积相分析建立了马家沟组障壁潟湖沉积相模式,该模式分三个阶段即与海侵期相对应的以灰岩沉积为主的障壁潟湖沉积阶段(阶段Ⅰ)、与海退相对应的以灰岩夹蒸发岩沉积为主的障壁咸化潟湖沉积阶段(阶段Ⅱ)和与低海平面期对应的以膏岩盐沉积为主的障壁膏盐湖沉积阶段(阶段Ⅲ...  相似文献   

14.
The Julian Alps are located in NW Slovenia and structurally belong to the Julian Nappe where the Southern Alps intersect with the Dinarides. In the Jurassic, the area was a part of the southern Tethyan continental margin and experienced extensional faulting and differential subsidence during rifting of the future margin. The Mesozoic succession in the Julian Alps is characterized by a thick pile of Upper Triassic to Lower Jurassic platform limestones of the Julian Carbonate Platform, unconformably overlain by Bajocian to Tithonian strongly condensed limestones of the Prehodavci Formation of the Julian High. The Prehodavci Formation is up to 15 m thick, consists of Rosso Ammonitico type limestone and is subdivided into three members. The Lower Member consists of a condensed red, well-bedded bioclastic limestone with Fe–Mn nodules, passing into light-grey, faintly nodular limestone. The Middle Member occurs discontinuously and consists of thin-bedded micritic limestone. The Upper Member unconformably overlies the Lower or Middle Members. It is represented by red nodular limestone, and by red-marly limestone with abundant Saccocoma sp. The Prehodavci Formation unconformably overlies the Upper Triassic to Lower Jurassic platform limestone of the Julian Carbonate Platform; the contact is marked by a very irregular unconformity. It is overlain by the upper Tithonian pelagic Biancone (Maiolica) limestone. The sedimentary evolution of the Julian High is similar to that of Trento Plateau in the west and records: (1) emergence and karstification of part of the Julian Carbonate Platform in the Pliensbachian, or alternatively drowning of the platform and development of the surface by sea-floor dissolution; (2) accelerated subsidence and drowning in the Bajocian, and onset of the condensed pelagic sedimentation (Prehodavci Formation) on the Julian High; (3) beginning of sedimentation of the Biancone limestone in the late Tithonian.  相似文献   

15.
Most efforts in the study of sea-marginal sabkhas have concentrated on the Persian Gulf, but little is known about the sediments and mineralogy of sabkhas marginal to other seas. The purpose of this paper was to present some geochemical and mineralogical observations in a recent sabkha on the coast of Sinai along the Gulf of Suez. The sabkha is composed of coarse clastic sediments with marine-derived groundwater at depth of about 1 m. The general morphology, climate and water salinity of the Gulf of Suez resemble those of the Persian Gulf, despite the fact that the content of authigenic evaporites in this sabkha is more sparse. The evaporite minerals accumulated only in the upper 30–40 cm of the sabkha, below that and down to the groundwater table, there is no accumulation of evaporites. Laterally, the salinity of the groundwater in the sabkha and the concentration of evaporites in the sediments above it increase constantly with distance from the shore. In contrast to the Persian Gulf where anhydrite is a major evaporite mineral, in Belayim gypsum is the only calcium sulphate mineral in the recent sabkha. Anhydrite is found only in an old elevated sabkha where it recrystallized from gypsum. The gypsum occurs as interstitial crystal concentrations or lithified horizons almost exclusively at the depth of 20–40 cm below the sabkha surface. Above that, in the uppermost horizons, there is in situ accumulation of interstitial halite crystals. The total concentrations of gypsum and halite are almost equal in this sabkha. The sea water recharge in El Belayim is almost exclusively by seepage through the sabkha sediments and not by flooding. The groundwater under this sabkha is only slightly more saline than the Gulf water, thus, not heavy enough for extensive downward refluxing. The major hydrodynamic process must be upward migration of the brines from the groundwater, precipitating on the way gypsum and later halite with some magnesite. Since the sediments of the sabkha are too coarse to support extensive capillary movement, the brines must, therefore, migrate upwards due to ‘evaporative pumping’.  相似文献   

16.
The Middle Triassic Geli Khana Formation of the northeastern part of the Arabian plate marks the establishment of the Neo-Tethys passive margin. The indication of bottom-current activities, within the lower and middle parts of the formation, gives the opportunity to study Middle Triassic facies and depositional settings in northern Iraq. Three sections (two outcrops and one subsurface) were selected to study the sedimentology and stratigraphy of Geli Khana succession. Petrographic investigations of the carbonate and siliciclastic beds on 140 thin sections show both skeletal and non-skeletal grains. The skeletal grains reveal deposition in deep open marine and in shallow warm water, within a gently slope ramp setting. Twelve microfacies were recognized. In the northern thrust zone, these facies were subdivided, according to their environmental interpretation, into three basic types of facies associations: outer ramp/basinal, middle ramp/slope, and inner ramp/lagoon (open and restricted). Restricted lagoon and tidal flat facies association is suggested for the Geli Khana Formation in Well Jabal Kand-1. Typical contourite deposits associated with turbidites are recognized for the first time in the Middle Triassic Geli Khana Formation in the northern thrust zone, northern Iraq, Kurdistan region. The contourites are characterized by thin beds and occasional lenses of sandy limestones, siltstones to fine-grained sandstones with current ripples, laminations (planar and cross), and erosional surfaces. These current structures are associated with thin-bedded (5–25 cm) limestones and shales. Deformation structures are characteristic feature of the formation inferring syndepositional slumping and turbidite influence too.  相似文献   

17.
Abstract Interpretation of seepage reflux dolomitization is commonly restricted to intervals containing evaporites even though several workers have modelled reflux of mesosaline brines. This study looked at the partially dolomitized forereef facies of the Capitan Formation to test the extent of reflux dolomitization and evaluate the possible role of the near‐backreef mesosaline carbonate lagoon as an alternative source of dolomitizing fluids. The Capitan Formation forereef facies ranges from 10% to 90% dolomite. Most of the dolomite is fabric preserving and formed during early burial after marine cementation, before and/or during evaporite cementation and before stylolitization. Within the forereef facies, dolomite follows depositional units, with debris‐flow and grain‐flow deposits the most dolomitized and turbidity‐current deposits the least. The amount of dolomite increases with stratigraphic age and decreases downslope. Within the reef facies, dolomite is restricted to haloes around fractures and primary cavities except where the reef facies lacks marine cements and, in contrast, is completely dolomitized. This dolomite distribution supports dolomitization by sinking fluids. Oxygen isotopic values for fabric‐preserving dolomite (δ18O = 0·9 ± 1·0‰, N = 101) support dolomitization by sea water to isotopically enriched sea water. These values are closer to the near‐backreef dolomite (δ18O = 2·1 ± 0·7‰, N = 48) than the hypersaline backreef dolomite (δ18O = 3·6 ± 0·9‰, N = 11). Therefore, the fabric‐preserving dolomite is consistent with dolomitization during seepage reflux of mainly mesosaline brines derived from the near‐backreef carbonate lagoon. The occurrence of mesosaline brine reflux in the Capitan Formation has important implications for dolomitization in forereef facies and elsewhere. First, any area with a restricted carbonate lagoon may be dolomitized by refluxing brines even if there are no evaporite facies present. Secondly, such brines may travel significant distances vertically provided permeable pathways (such as fractures) are present. Therefore, the absence of immediately overlying evaporite or restricted facies is not sufficient cause to eliminate reflux dolomitization from consideration.  相似文献   

18.
The Passaic Formation of the late Triassic Newark Supergroup is 2700 m thick and was deposited in series of wide, deep to shallow lacustrine environments in the Newark rift basin (eastern North America). The Passaic Formation can be divided into lower, middle, and upper sections based on depositional structures, composition and the distribution and morphology of its evaporites. Evaporites formed as a result of syndiagenetic cementation and/or displacive processes. Evaporitive minerals now include gypsum and anhydrite, although other mineral species, such as glauberite, may have originally existed. Most of the evaporites of the Passaic Formation occur within massive red mudstone and siltstone lithologies in the form of diffuse cements, void-fillings, euhedral crystals, crystal clusters and nodules. These evaporites grew displacively within the fine siliciclastic matrix as a result of changes in the hydrochemical regimes of the rift basin. A well-developed upward increase in the amount of evaporite material is present in the Passaic Formation. This resulted from: (1) long-term, progressive increase in aridity, and (2) significant increase in evaporation surface area of the basin during its tectonic evolution. A nonmarine source for the evaporites is evident from the isotopic data. Sulphate δ34S ranges from 11%. to 3.3%. CDT, while δ18O ranges from + 15.1%. to + 20.9%. SMOW, indicating derivation from early diagenetic oxidation of organic sulphur and pyrite within the organic-rich, lacustrine deposits. The 87Sr/86Sr ratios in sulphate are radiogenic (average 0.71211), showing the interaction of basin waters with detrital components and that the Newark Basin was isolated from the world ocean. Most of the original evaporites show evidence of diagenetic change to polycrystalline and polymineralic pseudomorphs now filled with recrystallized coarse-grained anhydrite (1–3 mm size) and low-temperature albite. Homogenization temperatures of fluid inclusions within the coarse-grained anhydrite indicate crystallization temperatures for anhydrite in the range of 150° to 280°C. Such elevated temperatures resulted from circulation of hot water in the basin. Later exhumation of these rocks caused partial to total replacement of anhydrite by gypsum in the upper part of the section. The resulting increase in volume due to hydration of anhydrite at shallow depths also emplaced non-evaporative satin-spar veins (fibrous gypsum) along bedding planes and in fractures. While the local geology of the Newark rift basin controlled the distribution of facies, the sedimentological development of the Passaic Formation evaporites resulted from the world-wide climatic aridity that prevailed during the late Triassic. because the Newark Basin sequence was only covered with about 3 km of sedimentary overburden that correspond to about 100°C and hence suggests that evaporites have experienced alteration by hot fluids. 5 As the Triassic marks the greatest evaporite formation world-wide and profound sense of parched continentality throughout the world existed before the final break-up of the Pangea, the Passaic Formation evaporites are an example of the influence of these palaeoclimatic conditions at the eastern margin of North America.  相似文献   

19.
下扬子区中一下三叠统广泛分布一套厚几十至数百米的石膏、硬石膏矿层,具较大的经济价值。笔者经多年野外工作,在掌握大量第一手资料的基础上,研究发现:由于扬子板块在三叠纪期间从赤道附近的暖湿气候带向北回归线附近的干热气候带漂移,并与亚洲板块碰撞抬升,造成其地理环境由热带陆表海向亚热带潮坪一泻湖转变,同时导致其生物群、沉积相及地球化学等发生一系列演变,是这套石膏、硬石膏矿床形成的重要原因。  相似文献   

20.
The Middle Muschelkalk (Middle Triassic) of the Catalan Coastal Range (north-east Spain) comprises sandstone, mudstone, anhydrite and minor carbonate layers. Interbedded sandstones and mudstones which are dominant in the north-eastern parts of the basin are terminal alluvial fan deposits. South-westward in the basin, the rocks become dominated by interbedded evaporites and mudstones deposited in sabkha/mudflat environments. The diagenetic and pore water evolution patterns of the Middle Muschelkalk suggest a strong facies control. During eodiagenesis, formation of microdolomite, anhydrite, baryte, magnesite, K-feldspar and mixed-layer chlorite/smectite was favoured within and adjacent to the sabkha/mudflat facies, whereas calcite, haematite, mixed-layer illite/smectite and quartz formed mainly in the alluvial facies. Low δ18OSMOW values for microdolomite (+23.7 to +28.4%) and K-feldspar overgrowths (+17.3 to +17.7%) suggest either low-temperature, isotopic disequilibrium or precipitation from low-18O porewaters. Low-18O waters might have developed, at least in part, during low-temperature alteration of volcanic rock fragments. During mesodiagenesis, precipitation of quartz overgrowths and coarse dolomite occurred in the alluvial sandstones, whereas recrystallization of microdolomite was dominant in the sabkha/mudflat facies. The isotopic compositions of these mesogenetic phases reflect increasing temperature during burial. Upon uplift and erosion, telogenetic calcite and trace haematite precipitated in fractures and replaced dolomite. The isotopic composition of the calcite (δ18OSMOW=+21.5 to +25.6%o; δ13C= 7.7 to - 5.6%o) and presence of haematite indicate infiltration of meteoric waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号