首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
《Precambrian Research》2005,136(2):159-175
Juvenile Neoproterozoic dioritic, tonalitic, trondhjemitic and granodioritic gneisses in the São Gabriel block, southern Brazil, have been identified by geochronologic studies. Age proposals for associated (ultra-)mafic metavolcanic and metasedimentary rocks, however, range from Archean to Neoproterozoic. Whole rock Sm–Nd analyses presented here support a Neoproterozoic age for these rocks. TDM model ages of the (ultra-)mafic metavolcanic rocks range between 0.65 and 1.35 Ga with ɛNd(t) positive values between 3.16 and 6.87; TDM model ages of metasedimentary and metavolcanoclastic rocks vary between 0.77 and 1.19 Ga with ɛNd(t) values between 1.2 and 6.23; tonalitic calc-alkaline gneisses show ɛNd(t) values of 4.34 and 6.3 and TDM model ages of 0.89 and 0.72 Ga, respectively. A late-kinematic granite (Santa Zélia granite) display slightly negative ɛNd(t) values (−1.6) and a higher TDM model age of about 1.4 Ga. These data support the existence of Meso/Neoproterozoic juvenile oceanic crust and island arc rocks during the Brasiliano orogenic events. The main source rocks of the metasedimentary units are previously formed juvenile rocks. The data also indicate minor assimilation of older crustal material and/or contamination of the melts by radiogenic Nd released from older rocks on the subducting slab. Existence of widespread old sialic crust in the subduction zone environment, however, can be ruled out indicating important orogenic accretion between 0.9 and 0.7 Ga. A geotectonic model for the São Gabriel block and the eastern margin of the Rio de la Plata craton comprises eastward subduction and following accretion of an intra-oceanic island arc between 0.9 and 0.8 Ga and a subsequent westward subduction with formation of an active continental margin at the eastern margin of the Rio de la Plata craton between 0.8 and 0.7 Ga. We postulate that the juvenile rocks of São Gabriel block represent relics of a Neoproterozoic ocean between the Rio de la Plata craton and a continental block (Encantadas block) possibly derived from the Kalahari craton. Subduction and arc accretion began roughly coeval with the initial stages of the break-up of Rodinia (0.9 Ga) and indicate a peripheric Rio de la Plata craton in relation to the Rodinia supercontinent with evolution from a passive margin to an active margin in the beginning of the Neoproterozoic Brasiliano orogenic events.  相似文献   

2.
The Neoproterozoic-Eoplalaeozoic Brasiliano orogeny at the eastern margin of the Rio de la Plata craton in southernmost Brazil and Uruguay comprises a complex tectonic history over 300?million years. The southern Brazilian Shield consists of a number of tectono-stratigraphic units and terranes. The S?o Gabriel block in the west is characterized by c.760?C690?Ma supracrustal rocks and calc-alkaline orthogneisses including relics of older, c. 880?Ma old igneous rocks. Both igneous and metasedimentary rocks have positive ??Nd(t) values and Neoproterozoic TDM model ages; they formed in magmatic arc settings with only minor input of older crustal sources. A trondhjemite from the S?o Gabriel block intruding dioritc and tonalitic gneisses during the late stages of deformation (D3) yield an U?CPb zircon age (LA-ICP-MS) of 701?±?10?Ma giving the approximate minimum age of the S?o Gabriel accretionary event. The Encantadas block further east, containing the supracrustal Porongos belt and the Pelotas batholith, is in contrast characterized by reworking of Neoarchean to Palaeoproterozoic crust. The 789?±?7?Ma zircon age of a metarhyolite intercalated with the metasedimentary succession of the Porongos belt provides a time marker for the basin formation. Zircons of a sample from tonalitic gneisses, constituting the Palaeoproterozoic basement of the Porongos belt, form a cluster at 2,234?±?28?Ma, interpreted as the tonalite crystallization age. Zircon rims show ages of 2,100?C2,000?Ma interpreted as related to a Palaeoproterozoic metamorphic event. The Porongos basin formed on thinned continental crust in an extensional or transtensional regime between c. 800?C700?Ma. The absence of input from Neoproterozoic juvenile sources into the Porongos basin strongly indicates that the Encantadas and S?o Gabriel blocks were separated terranes that became juxtaposed next to each other during the Brasiliano accretional events. The tectonic evolution comprises two episodes of magmatic arc accretion to the eastern margin of the Rio de la Plata craton, (i) accretion of an intra-oceanic arc at c. 880?Ma (Passinho event) and (ii) accretion of the 760?C700?Ma Cambaí/Vila Nova magmatic arc (S?o Gabriel event). The latter event also includes the collision of the Encantadas block with the Rio de la Plata craton to the west. Collision and crustal thickening was followed by sinistral shear along SW?CNE-trending orogen-parallel crustal-scale shear zones that can be traced from southern Brazil to Uruguay and have been active between 660 and 590?Ma. Voluminous granitic magmatism in the Pelotas batholith spatially related to shear zones is interpreted as late- to post-orogenic magmatism, possibly assisted by lithospheric delamination. It marks the transition to the post-orogenic molasse stage. Localized deformation by reactivation of preexisting shear zones continued until c. 530?Ma and can be assigned to final stages of the amalgamation of West Gondwana.  相似文献   

3.
The Brasília belt borders the western margin of the São Francisco Craton and records the history of ocean opening and closing related to the formation of West Gondwana. This study reports new U–Pb data from the southern sector of the belt in order to provide temporal limits for the deposition and ages of provenance of sediments accumulated in passive margin successions around the south and southwestern margins of the São Francisco Craton, and date the orogenic events leading to the amalgamation of West Gondwana.Ages of detrital zircons (by ID–TIMS and LA-MC-ICPMS) were obtained from metasedimentary units of the passive margin of the São Francisco Craton from the main tectonic domains of the belt: the internal allochthons (Araxá Group in the Áraxá and Passos Nappes), the external allochthons (Canastra Group, Serra da Boa Esperança Metasedimentary Sequence and Andrelândia Group) and the autochthonous or Cratonic Domain (Andrelândia Group). The patterns of provenance ages for these units are uniform and are characterised as follows: Archean–Paleoproterozoic ages (3.4–3.3, 3.1–2.7, and 2.5–2.4 Ga); Paleoproterozoic ages attributed to the Transamazonian event (2.3–1.9 Ga, with a peak at ca. 2.15 Ga) and to the ca. 1.75 Ga Espinhaço rifting of the São Francisco Craton; ages between 1.6 and 1.2 Ga, with a peak at 1.3 Ga, revealing an unexpected variety of Mesoproterozoic sources, still undetected in the São Francisco Craton; and ages between 0.9 and 1.0 Ga related to the rifting event that led to the individualisation of the São Francisco paleo-continent and formation of its passive margins. An amphibolite intercalation in the Araxá Group yields a rutile age of ca. 0.9 Ga and documents the occurrence of mafic magmatism coeval with sedimentation in the marginal basin.Detrital zircons from the autochthonous and parautochthonous Andrelândia Group, deposited on the southern margin of the São Francisco Craton, yielded a provenance pattern similar to that of the allochthonous units. This result implies that 1.6–1.2 Ga source rocks must be present in the São Francisco Craton. They could be located either in the cratonic area, which is mostly covered by the Neoproterozoic epicontinental deposits of the Bambuí Group, or in the outer paleo-continental margin, buried under the allochthonous units of the Brasília belt.Crustal melting and generation of syntectonic crustal granites and migmatisation at ca. 630 Ma mark the orogenic event that started with westward subduction of the São Francisco plate and ended with continental collision against the Paraná block (and Goiás terrane). Continuing collision led to the exhumation and cooling of the Araxá and Passos metamorphic nappes, as indicated by monazite ages of ca. 605 Ma and mark the final stages of tectonometamorphic activity in the southern Brasília belt.Whilst continent–continent collision was proceeding on the western margin of the São Francisco Craton along the southern Brasília belt, eastward subduction in the East was generating the 634–599 Ma Rio Negro magmatic arc which collided with the eastern São Francisco margin at 595–560 Ma, much later than in the Brasília belt. Thus, the tectonic effects of the Ribeira belt reached the southernmost sector of the Brasília belt creating a zone of superposition. The thermal front of this event affected the proximal Andrelândia Group at ca. 588 Ma, as indicated by monazite age.The participation of the Amazonian craton in the assembly of western Gondwana occurred at 545–500 Ma in the Paraguay belt and ca. 500 Ma in the Araguaia belt. This, together with the results presented in this work lead to the conclusion that the collision between the Paraná block and Goiás terrane with the São Francisco Craton along the Brasília belt preceded the accretion of the Amazonian craton by 50–100 million years.  相似文献   

4.
Combined analyses of Nd isotopes from a wide range of Neoarchaean–Cretaceous igneous rocks provides a proxy to study magmatic processes and the evolution of the lithosphere. The main igneous associations include the Neoproterozoic granitoids from the southern Brazilian shield, which were formed during two tectonothermal events of the Brasiliano cycle: the São Gabriel accretionary orogeny (900–700 Ma) and the Dom Feliciano collisional orogeny (660–550 Ma). Rocks related to the formation of the São Gabriel arc (900–700 Ma) mainly have a depleted juvenile signature. For the Neoproterozoic collisional event, the petrogenetic discussion focuses on two old crustal segments and three types of mantle components. However, no depleted juvenile material was involved in the formation of the Dom Feliciano collisional belt (800–550 Ma), which implies an ensialic environment for the Dom Feliciano orogeny. In the western Neoproterozoic foreland, records of a Neoarchaean lower crust predominate, whereas a Paleoproterozoic crust does in the eastern Dom Feliciano belt. The western foreland includes two amalgamated geotectonic domains, the São Gabriel arc and Taquarembó block. In the collisional belt, the old crust was intensely reworked during the São Gabriel event. In addition to the Neoproterozoic subduction-processed subcontinental lithosphere (São Gariel arc), we recognize two old enriched mantle components, which also are identified in the Paleoproterozoic intraplate tholeiites from Uruguay and the Cretaceous potassic suites from eastern Paraguay. One end member displays the prominent influence of Trans-Amazonian (2.3–2.0 Ga) or older subduction events, whereas the other can be interpreted as a reenrichment of the first during the latest Trans-Amazonian collisional or younger events. This reenriched mantle is documented in late Neoproterozoic suites from the western foreland (605–550 Ma) and younger suites from the eastern collisional belt (600–580 Ma). The other enriched mantle component with an old subduction signature, however, appears only in older rocks of the collisional belt (800–600 Ma). The participation of the subduction-related Brasiliano mantle as an end member of binary mixing occurred in some early Neoproterozoic suites (605–580 Ma) from the western foreland, but the contribution of the Neoarchaean lower crust increased near the late igneous event (575–550 Ma).  相似文献   

5.
The Makbal Complex in the northern Tianshan of Kazakhstan and Kyrgyzstan consists of metasedimentary rocks, which host high‐P (HP) mafic blocks and ultra‐HP Grt‐Cld‐Tlc schists (UHP as indicated by coesite relicts in garnet). Whole rock major and trace element signatures of the Grt‐Cld‐Tlc schist suggest a metasomatized protolith from either hydrothermally altered oceanic crust in a back‐arc basin or arc‐related volcaniclastics. Peak metamorphic conditions of the Grt‐Cld‐Tlc schist reached ~580 °C and 2.85 GPa corresponding to a maximum burial depth of ~95 km. A Sm‐Nd garnet age of 475 ± 4 Ma is interpreted as an average growth age of garnet during prograde‐to‐peak metamorphism; the low initial εΝd value of ?11 indicates a protolith with an ancient crustal component. The petrological evidence for deep subduction of oceanic crust poses questions with respect to an effective exhumation mechanism. Field relationships and the metamorphic evolution of other HP mafic oceanic rocks embedded in continentally derived metasedimentary rocks at the central Makbal Complex suggest that fragments of oceanic crust and clastic sedimentary rocks were exhumed from different depths in a subduction channel during ongoing subduction and are now exposed as a tectonic mélange. Furthermore, channel flow cannot only explain a tectonic mélange consisting of various rock types with different subduction histories as present at the central Makbal Complex, but also the presence of a structural ‘dome’ with UHP rocks in the core (central Makbal) surrounded by lower pressure nappes (including mafic dykes in continental crust) and voluminous metasedimentary rocks, mainly derived from the accretionary wedge.  相似文献   

6.
A low-angle thrust fault places high-PT granulites (hangingwall) of the Internal Zone of the Neoproterozoic Brasília Belt (Tocantins Province, central Brazil) in contact with a lower-grade footwall (External Zone) comprised of nappes of distal passive margin- and back-arc basin-related supracrustals. The footwall units were emplaced at  750 Ma onto proximal sedimentary rocks (Paranoá Group) of the São Francisco paleo-continent passive margin. The high-PT belt is comprised of 645–630 Ma granulite-facies paragneiss and orthogneiss, and mafic–ultramafic complexes that include three major layered intrusions and metavolcanic rocks granulitized at  750 Ma. These complexes occur within lower-grade metasedimentary rocks in the hangingwall of the Maranhão River Thrust, which forms the Internal Zone–External Zone boundary fault to the north of the Pirineus Zone of High Strain. Detailed lithostructural studies carried out in Maranhão River Thrust hangingwall and footwall metasedimentary rocks between the Niquelândia and Barro Alto complexes, and also to the east of these, indicate the same lithotypes and Sm–Nd isotopic signatures, and the same D1D2 progressive deformation and greenschist-facies metamorphism. Additionally, footwall metasedimentary rocks exclusively display a post-D2 deformation indicating that the Maranhão River Thrust propagated through upper crustal rocks of the Paranoá Group relatively late during the tectonic evolution of the belt. Fault propagation was a consequence of intraplate underthrusting during granulite exhumation. The results allow for a better tectonic understanding of the Brasília Belt and the Tocantins Province, as well as explaining the presence of the Pirineus Zone of High Strain.  相似文献   

7.
The Neoproterozoic Adamastor-Brazilide Ocean was generated during the breakup of the Rodinia supercontinent, and remnants of its oceanic lithosphere have been found in the Brasiliano-Pan African orogenic system that includes the Araçuaí, West-Congo, Brasília, Ribeira, Kaoko, Dom Feliciano, Damara and Gariep belts. The Araçuaí and the West-Congo belts are counterparts of the same Neoproterozoic orogen. The first belt comprises two thirds of the Araçuaí-West-Congo Orogen. This orogen is rather unique owing to its confined nature within the embayment outlined by the São Francisco and Congo cratons. In spite of this, the presence of ophiolitic remnants, and a calc-alkaline magmatic arc, indicate that the basin/orogen evolution comprise both oceanic spreading and consumption. It is assumed that coeval Paramirim and Sangha aulacogens played a key role by making room for the Araçuaí-West-Congo Basin. Sedimentary successions record all major stages of a basin that evolved from continental rift, when glaciation-related sedimentation was very significant, to passive margin. Rifting started around 1.0–0.9 Ga. The oceanic stage is constrained by an ophiolitic remnant dated at 0.8 Ga. If the cratonic bridge that once linked the São Francisco and Congo palaeocontinental regions did not hinder the opening of an ocean basin, it certainly limited its width. As a consequence, only a narrow oceanic lithosphere was generated, and it was subducted afterwards. This is also suggested by orogenic calc-alkaline granitoids occuping a small area of the orogen. Geochronological data for pre-, syn- and late-collisional granitoids indicate that the orogenic stage lasted from 625 Ma to 570 Ma. A period of magmatic quiescence was followed by intrusion of postcollisional plutons at 535–500 Ma. The features of the Araçuaí-West-Congo Orogen suggest the development of a complete Wilson Cycle in a branch of the Adamastor Ocean, which can be interpreted as a gulf with limited generation of oceanic lithosphere.  相似文献   

8.
The Borborema Province, in the NE of Brazil, is a rather complex piece in the Brazil–Africa puzzle as it represents the junction of the Dahomeyide/Pharusian, Central African, Araçuai and Brasilia fold belts located between the West-African/São Luis, Congo/São Francisco and Amazonas craton. The correlation between the Dahomeyides from W-Africa (Ghana, Benin, Togo, and Mali) and the Borborema Province involves the Médio Coreaú and Central Ceará domains. The inferred continuation of the main oceanic suture zone exposed in the Dahomeyides of W Africa is buried beneath the Phanerozoic Parnaíba Basin in Brazil (northwest of the Médio Coreaú domain) where some high density gravity anomalies may represent hidden remnants of an oceanic suture. In addition to this major suture a narrow, nearly continuous strip composed of mainly mafic pods containing relics of eclogite-facies assemblages associated with partially migmatized granulite-facies metapelitic gneisses has been found further east in the NW Borborema Province. These high pressure mafic rocks, interpreted as retrograded eclogites, are located between the Transbrasiliano Lineament and the Santa Quitéria continental arc and comprise primitive to evolved arc-related rocks with either arc- or MORB-type imprints that can indicate either deep subduction of oceanic lithosphere or roots of continental and oceanic magmatic arcs. Average peak PT conditions under eclogite-facies metamorphism (T = 770 °C and P = 17.3 kbar) were estimated using garnet–clinopyroxene thermometry and Jd content in clinopyroxene. Transition to granulite-facies conditions, as well as later widespread re-equilibration under amphibolite facies, were registered both in the basic and the metapelitic rocks and suggest a clockwise PT path characterized by an increase in temperature followed by strong decompression. A phenomenon possibly related to the exhumation of a highly thickened crust associated with the suturing of the Médio Coreaú and Central Ceará domains, two distinct crustal blocks separated by the Transbrasiliano Lineament.  相似文献   

9.
秦岭造山带东段秦岭岩群的年代学和地球化学研究   总被引:20,自引:14,他引:6  
时毓  于津海  徐夕生  邱检生  陈立辉 《岩石学报》2009,25(10):2651-2670
对东秦岭地区的陕西省洛南县、宁陕县、长安县和河南省淅川县出露的四个秦岭岩群变质岩进行的岩石学和地球化学研究表明,样品主要由变质火山岩和变质沉积岩组成.详细的锆石U-Pb定年结果显示三个正变质岩均形成于新元古代早期(971~843Ma),而副变质岩中富集大量新元古代碎屑锆石,根据最年轻的谐和年龄(859Ma)和早古生代的变质年龄,推测其沉积时代为新元古代中晚期.因此,北秦岭南部的秦岭岩群的变质岩主要由新元古代早期的火成岩和新元古代中晚期的沉积岩组成.变质作用主要发生在加里东期,局部有燕山期的变质作用叠加.指示北秦岭的造山作用主要发生在早古生代.岩石地球化学研究还显示秦岭岩群的新元古代火山岩均形成于火山弧构造环境,沉积岩沉积于大陆弧-活动大陆边缘环境,指示秦岭造山带在新元古代早期是一个火山弧.秦岭岩群的火山岩和沉积岩在形成时代和构造环境方面与扬子克拉通西缘的特征非常相似,表明位于北秦岭造山带的秦岭岩群应归属于扬子克拉通陆块,是扬子北缘的一个大陆边缘弧.  相似文献   

10.
The São Luís Craton, northern Brazil, is composed of a few granitoid suites and a metavolcano-sedimentary succession. New single zircon Pb evaporation ages and Nd isotope data, combined with other available information, show that the metavolcano-sedimentary succession developed from 2240 Ma to approximately 2200-2180 Ma from juvenile protoliths. The subduction-related calc-alkaline suites of granitoids, spatially associated with the metavolcano-sedimentary sequence, formed in an oceanic island arc setting between 2168-2147 Ma. Most of these granitoids are tonalitic and formed from juvenile, mantle- or oceanic plate-derived protoliths, whereas minor true granites are the product of the reworking of the juvenile island arc material. These arc-related successions represent an accretionary event around 2.20±0.05 Ga, which is coincident with one of the main periods of crustal growth in the South American Platform. This accretionary orogen has subsequently been involved in a collision episode, at ca. 2100-2080 Ma, which is mainly recorded in the nearby Gurupi Belt. The rock associations, inferred geological settings, and the crustal evolution detected in the São Luís Craton are similar to what is described in Paleoproterozoic domains of major geotectonic units of the South American Platform, such as part of the São Francisco Craton, southeastern Guyana Shield, and of the West African Craton.  相似文献   

11.
Northern Victoria Land (Antarctica) is made up of three terranes of Cambrian–Ordovician rocks: the Wilson (WT), Bowers (BT) and Robertson Bay terranes (RBT). The WT comprises a low- to high-grade metasedimentary sequence intruded by calc-alkaline plutons with magmatic arc affinity; the BT is composed of low-grade metavolcanic and metasedimentary rocks usually interpreted as an intra-oceanic arc; the RBT is a very low-grade flysch-like sequence. Terrane juxtaposition has traditionally been attributed to accretion during the Cambro-ordovician Ross orogeny. We propose a new model in which the WT, BT and RBT are interpreted as an arc/back-arc/trench system, developed in the context of a SW-dipping subduction zone. The subducting plate carried a continent originally located outboard of the turbidite fan of the RBT. Collision between this continent and the East Antarctic craton caused partial subduction of the intervening back-arc basin and, ultimately, the end of Ross-orogenic subduction. The turbidite fan of the RBT originally sedimented above the trench and on the subducting oceanic plate; due to collision it was thrusted on the continent, that constitutes, at least in part, the present basement of the RBT turbidite. The eastern portions of this continental mass were later dissected by the tensile tectonics related to the opening of the of the Southern Ocean.  相似文献   

12.
The Borborema Province of NE Brasil comprises the central part of a wide Pan-African-Brasiliano orogenetic belt that formed as a consequence of late Neoproterozoic convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. New Sm/Nd and U/Pb results from the eastern part of this province help to define the basic internal architecture and pre-collisional history of this province, with particular emphasis on delineating older cratonic terranes, their fragmentation during the Mesoproterozoic, and their assembly into West Gondwana during the Pan African-Brasiliano orogeny at ca. 600 Ma.The region can be divided into three major geotectonic domains: a) Rio Piranhas-Caldas Brandão massif, with overlying Paleoproterozoic to Neoproterozoic supracrustal rocks, north of the Patos Lineament; b) the Archean to Paleoproterozoic São Francisco craton (SFC) to the south; and c) a complex domain of Paleoproterozoic to Archean basement blocks with several intervening Mesoproterozoic to Neoproterozoic fold belts in the center (south of Patos Lineament and north of SFC). The northern and central domains comprise the Borborema Province.Archean basement gneiss and Transamazonian granulite of northern SFC are exposed in the southern part of the central domain, underlying southern parts of the Sergipano fold belt. Basement in the Rio Piranhas massif appears to consist mostly of Transamazonian (2.1 to 2.2 Ga) gneissic rocks; Nd model ages (TDM) of ca. 2.6 Ga for 2.15 Ga gneisses indicate a substantial Archean component in the protoliths to these gneisses. The Caldas Brandão massif to the east yields both Transamazonian and Archean U/Pb zircon and Nd (TDM) ages, indicating a complex architecture. Metasedimentary rocks of the Jucurutu Formation yield detrital zircons with original crystallization ages as young as 1.8 Ga, indicating that these rocks may be late Paleoproterozoic and correlate with other ca. 1.8 Ga cratonic supracrustal rocks in Brazil such as the Roraima Group and Espinhaço Group.Most metavolcanic and pre-Brasiliano granitic units of the Sergipano (SDS), Pajeú-Paraíba (SPP), Riacho Pontal (SRP), and Piancó-Alto Brígida (SPAB) fold belts in the central domain formed ˜ 1.0 ± 0.1 Ga, based on U/Pb ages of zircons. Nd model ages (TDM) for these same rocks, as well as Brasiliano granites intruded into them and large parts of the Pernambuco-Alagoas massif, are commonly 1.3–1.7 Ga, indicating that rocks of the fold belts were not wholly derived from either older (> 2.1 Ga) or juvenile (ca. 1.0 Ga) crust, but include mixtures of both components. A simple interpretation of Brasiliano granite genesis and the Nd data implies that there is no Transamazonian or Archean basement underlying large parts of these fold belts or of the Pernambuco-Alagoas massif. An exception is a belt of syenitic Brasiliano plutons (Syenitoid Line) and host gneisses between SPAB and SPP that clearly has a Transamazonian (or older) source. In addition, there are several smaller blocks of Archean to Transamazonian gneiss that can be defined within and among these fold belts. These blocks do not appear to constitute a continuous basement complex, but appear to be isolated older crustal fragments.Our data support a model in which ca. 1.0 Ga rifting was an important tectonic and crust-forming event along the northern edge of the São Francisco craton. Our data also show that significant parts of the Borborema Province are not remobilized Transamazonian to Archean crust, but that Mesoproterozoic crust is a major feature of the Province. There are several small remnants of older crust within the area dominated by Mesoproterozoic crust, suggesting that the rifting event created several small continental fragments that were later incorporated into the Brasiliano collisional orogen. We cannot at present determine if the Rio Piranhas-Caldas Brandão massifs and the older crustal blocks of the central domain were originally part of the São Francisco craton or whether some (or all) of them came from more exotic parts of the Proterozoic Earth. Finally, our data have not yet revealed any juvenile terranes of either Transamazonian or Brasiliano age.  相似文献   

13.
Detailed geological mapping, structural, petrological and chronological investigation allow us to place new constraints on the tectono‐thermal evolution of the North Qilian high pressure/low temperature (HP/LT) metamorphic belt. The North Qilian HP/LT metamorphic belt manly consists of eclogite, blueschist, metasedimentary rocks and serpentinite. Most of eclogites and mafic blueschists occur as lenses within metasedimentary rocks, and minor eclogites within serpentinite. Petrological and geochemistical data indicate that the protoliths of eclogite and mafic blueschist includes E‐, N‐MORB, OIB and arc basalt. Geochronology and Lu‐Hf isotope of detrital zircons from metasedimentary rocks indicate the detritus materials are derived from Qilian block and likely deposit in continental margin or fore‐arc basin. Zircon U‐Pb datings show that the protolith ages of eclogites vary between 500 Ma and 530 Ma, and the metamorphic age of eclogite between 460 and 489 Ma. The detrital zircon ages of metasedimentary rocks distribute between 532 and 2700 Ma. The structural data show that the deformation related to the subduction during prograde is recorded in eclogite blocks. In contrast, the dominant deformation structures are characterized by tight fold, sheath fold and penetrative foliation and lineation, which are recorded in various rocks, reflecting a top‐to‐the‐south shear sense and representing the deformation related to the exhumation. The petrological data suggest that the different rocks in the North Qilian HP/LT metamorphic belt equilibrated at different peak metamorphic conditions and recorded different P‐T path. Synthesizing the structural, petrological, geochemical and geochronological data suggest a subduction channel model related to oceanic subduction during Paleozoic in the North Qilian Mountains. The different HP/LT metamorphic rocks formed in different settings with various protolith ages were carried by the subducted oceanic crust into different depth in subduction channel, and experienced independent tectono‐thermal evolution inside subduction channel. The North Qilian HP/LT mélange reflects a fossil oceanic subduction channel.  相似文献   

14.
We report U-Pb crystallization ages from four metavolcanic rocks and two granitic gneiss samples as well as whole-rock chemical analyses and Sm-Nd isotopic ratios from 25 metaigneous and metasedimentary rocks from the Chopawamsic and Milton terranes, southern Appalachian Orogen. A metarhyolite sample from the Chopawamsic Formation and a metabasalt sample from the Ta River Formation in the Chopawamsic terrane have indistinguishable U-Pb crystallization ages of 471.4+/-1.3 Ma and 470.0+1.3/-1.5 Ma, respectively. A sample from the Prospect granite that intruded metavolcanic rocks of the Ta River Formation yields a younger U-Pb date of 458.0+/-1 Ma. Metarhyolite and granitic gneiss samples from the northern part of the Milton terrane yield U-Pb dates of 458.5+3.8/-1.0 Ma and 450+/-1.8 Ma, respectively. Metavolcanic and metaplutonic rocks from both terranes span a range in major element composition from basalt to rhyolite. Trace element concentrations in these samples show enrichment in large-ion lithophile elements K, Ba, and Rb and depletion in high field strength elements Ti and Nb, similar to those from island arc volcanic rocks. Initial epsilon(Nd) values and T(DM) ages of the metaigneous and metasedimentary samples range from 0.2 to -7.2 and from 1200 to 1700 Ma for the Chopawamsic terrane and from 3.7 to -7.2 and from 850 to 1650 Ma for the Milton terrane. The crystallization ages for the metavolcanic and metaplutonic samples from both terranes indicate that Ordovician magmatism occurred in both. Similar epsilon(Nd) values from representative samples from both terranes suggest that both were generated from an isotopically similar source. Xenocrystic zircons from metavolcanic rocks in the Chopawamsic terrane have predominately Mesoproterozoic (207)Pb/(206)Pb ages (600-1300 Ma), but a single Archean (2.56 Ga) core was also present. The xenocrystic zircons and the generally negative epsilon(Nd) values indicate that both terranes are composed of isotopically evolved continental crust.  相似文献   

15.
The southernmost Guyana Shield-Uatumã subdomain, northeastern Amazonas State, Brazil is dominantly formed by granitoid and volcanic rocks from the Água Branca Suite (ABS), undivided Granite Stocks (GS) and São Gabriel volcano–plutonic system (SGS). The ABS is characterized by a granite series that exhibits comparatively low Fe/(Fe + Mg) ratio, low (Nb/Zr)N, high Sr values and high Rb/Zr ratio. Its rocks display metaluminous to weakly peraluminous (A/CNK 0.94–1.06), high-K calc-alkaline, I normal-type character and have moderately to strongly fractionated rare earth elements (REE) pattern. The SG granites and SGS effusive–ignimbrite–granite association is metaluminous to weakly peraluminous (A/CNK 0.84–1.18), high-K calc-alkaline, has moderately to weakly fractionated REE trend, higher Fe/(Fe + Mg) ratio, lower Sr content and lower Rb/Zr ratio. The ABS geochemical signature is consistent with formation from volcanic arc rocks and small participation of collisional setting rocks, whereas the SG and SGS have post-collisional tectonic rocks-related geochemical signature. This model is in harmony with a post-collisional extensional regime, started with the 1.90–1.89 Ga Água Branca magmatism, and culminated with the 1.89–1.88 Ga São Gabriel system at an early stage of intracratonic reactivation, which included intrusion of mafic dikes. The Uatumã subdomain was related to mantle underplating with continental uplift and its origin involved contributions of 2.3–2.44 Ga Archean-contaminated Trans-Amazonian, 2.13–2.21 Ga Trans-Amazonian, 1.93–1.94/2.0 Ga Tapajós-Parima. Foliation styles point out that part of the Água Branca granitoids recorded later deformational effects, likely related to the Rio Negro Province formation.  相似文献   

16.
Granulite rocks are exposed in eastern Minas Gerais, Brazil. Its early neoproterozoic evolution is characterised by a history of an active continental margin, including the accretion of suspect terranes. The Manhuaçu Terrane is one of those which is represented by a granitic continental plutonic arc and terrigeneous metasediments reflecting a continental margin. A metasedimentary gneiss belt at this margin with shallow to deep marine clastic lithologies as well as metavolcanic and metaplutonic mafic rocks was interpreted as an extensive tectonic segment with suspect development in a back-arc setting. Fragments of a volcanic arc are identified and interpreted as an evidence for a probable island-arc domain. The granulites occur as massive rocks as well as high-grade gneisses and show lithological, structural and metamorphic attributes consistent with their host belt type. In the western portion granulites derived from sedimentary protoliths, have been deposited, deformed and metamorphosed together with the mafic intrusions and as well as with their crystallization. Regional uplift exposed these rocks probably immediately after the metamorphism. In these belts the metamorphic grade is not uniform, especially where uplifting has exposed oblique cross sections over the granulitic rocks. Geothermobarometric calculations indicate that the granulites has been generated under T conditions between 800 and 990 ± 50 C and from medium (4.8 kb) to relatively high (10.0 kb) pressures.  相似文献   

17.
The allochthonous Cabo Ortegal Complex (NW Iberian Massif) contains a ~500 m thick serpentinite‐matrix mélange located in the lowest structural position, the Somozas Mélange. The mélange occurs at the leading edge of a thick nappe pile constituted by a variety of terranes transported to the East (present‐day coordinates; NW Iberian allochthonous complexes), with continental and oceanic affinities, and represents a Variscan suture. Among other types of metaigneous (calcalkaline suite dated at 527–499 Ma) and metasedimentary blocks, it contains close‐packed pillow‐lavas and broken pillow‐breccias with a metahyaloclastitic matrix formed by muscovite–paragonite–margarite–garnet–chlorite–kyanite–hematite–epidote–quartz–rutile. Pseudosection modelling in the MnCNTKFMASHO system indicates metamorphic peak conditions of ~17.5–18 kbar and ~550 °C followed by near‐isothermal decompression. This P–T evolution indicates subduction/accretion of an arc‐derived section of peri‐Gondwanan transitional crust. Subduction below the Variscan orogenic wedge evolved to continental collision with important dextral component. Closure of the remaining oceanic peri‐Gondwanan domain and associated release of fluid led to hydration of the overlying mantle wedge and the formation of a low‐viscosity subduction channel, where return flow formed the mélange. The submarine metavolcanic rocks were deformed and detached from the subducting transitional crust and eventually incorporated into the subduction channel, where they experienced fast exhumation. Due to the cryptic nature of the high‐P metamorphism preserved in its tectonic blocks, the significance of the Somozas Mélange had remained elusive, but it is made clear here for the first time as an important tectonic boundary within the Variscan Orogen formed during the late stages of the continental convergence leading to the assembly of Pangea.  相似文献   

18.
The Barro Alto Complex and Juscelândia volcanosedimentary sequence are exposed in the central part of the Neoproterozoic Brasília belt of central Brazil. The former is a large (approximately 150 km long), boomerang-shaped, mafic-ultramafic, layered complex formed by two different intrusions metamorphosed under granulite facies. These rocks are tectonically overlain by rocks of the Juscelândia volcanosedimentary sequence, represented mainly by biotite-gneiss and amphibolite, or amphibolite facies metamorphic equivalents of rhyolite and basalt, respectively. New SIMS U–Pb zircon data and Sm–Nd isochron data presented herein help clarify the igneous and metamorphic evolution of the Juscelândia volcanosedimentary sequence, as well as its relationship with the Barro Alto Complex. Zircon grains from two biotite gneisses were analyzed by SIMS (SHRIMP) and indicate Mesoproterozoic dates, approximately 1.28 Ga, interpreted as the time of bimodal volcanism in a tectonic setting transitional between a continental rift and an ocean basin. Metamorphism is constrained by Sm–Nd garnet-whole-rock isochrons for garnet amphibolite and pelitic schists of the Juscelândia sequence, as well as for clinopyroxene-garnet amphibolite and garnet granulite of the Barro Alto Complex, which give ages between 0.74 and 0.76 Ga, in agreement with SIMS dates for metamorphic zircon rims. These new data are significant, because they establish that a single metamorphic event affected both the Barro Alto Complex and the Juscelândia sequence. Based on these new data, we present a modified tectonic model for the Brasília belt.  相似文献   

19.
Lower Paleozoic moderately sorted quartz–arenites from the Balcarce Formation deposited in eastern Argentina (Tandilia System) comprise mainly detrital material derived from old upper crustal material. The sources were magmatic, sedimentary, and subordinated felsic metamorphic terranes. High concentrations of tourmaline and Ti-rich heavy minerals, including zircon and nearly euhedral chromite, are common. Trace element concentrations (Nb, Cr) on rutile indicate pelitic and metabasaltic sources, respectively. Major element analyses on chromites indicate a basic volcanic protolith of mid-oceanic ridge origin, which was exposed close to the depositional basin. The delivery of chromite may be associated with convergent tectonics causing the consumption and obduction of oceanic crust during pre-Upper Ordovician times. The oblique/orthogonal collision of the Precordillera Terrane with the western border of the Rio de la Plata Craton, west of the Balcarce Basin or source further to the east from a Lower Palaeozoic extensional basin are possibilities.Geochemical and petrographic data exclude the underlying Precambrian and Cambrian sedimentary rocks as dominant sources, and favour the basement of the Río de La Plata Craton, including Cambrian rift-related granites of South Africa and the Sierras Australes (eastern Argentina), as main suppliers of detritus. Trace element geochemistry of recycled pyroclastic material, associated with the quartz–arenites, also suggests volcanic arc sources. The provenance of the pyroclastic material may either be the Puna–Famatina arc, located in north and central Argentina, or a hypothetical active margin further to the south. These ash layers are equivalent in age to volcanic zircons found in the Devonian Bokkeveld Group in western South Africa.The deposition of a glacial diamictite of Hirnantian age (Sierra del Volcán Diamictite) is interpreted as a member of the Balcarce Formation. Based on the stratigraphic re-location of the glacial diamictite and trace fossils, the Balcarce Formation is considered here to be Ordovician to Silurian in age. The Balcarce Formation can be correlated with similar rocks in South Africa, the Peninsula Formation, and the upper Table Mountain Group (Windhoek and Nardouw subgroups), including the Hirnantian glacial deposit of the Pakhuis Formation.  相似文献   

20.
《Gondwana Research》2002,5(3):721-733
During the late stages of the Brasiliano orogenic cycle (Lower Cambrian), the Camaquã Basin was gradually filled by the alkaline-trending, bimodal volcanic rocks of the Acampamento Velho Alloformation. This volcanic package consists of two facies associations: the lower one composed of andesites and basaltic andesites, and the upper one of rhyolitic rocks. The rhyolitic association comprises alternating pyroclastic rocks (lapilli, tuffs and welded tuffs) in the middle section and flows at the top. Geochemical evidence, especially trace elements and REE, confirmed the stratigraphic succession proposed herein for the volcanic rocks, as well as their co-genetic relationships and the fractional crystallization of the felsic sequence. The Acampamento Velho Formation seems to have been generated in an extensional regime preceding the collision of the Rio de la Plata and Kalahari continental plates. This extensional regime probably occurred during subduction of the Adamastor oceanic plate beneath the Rio de la Plata plate in a retroarc setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号