首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《地学前缘》2017,(3):13-26
文章主要利用中—新生代热史、地壳分层结构以及流变学参数,模拟计算渤海湾盆地中—新生代岩石圈热结构和热-流变结构演化特征。结果表明,盆地由三叠纪—侏罗纪时期的"冷幔热壳"型岩石圈热结构转变为白垩纪至今的"热幔冷壳"型岩石圈热结构。从济阳坳陷岩石圈热-流变结构演化特征来看,中生代早期上地壳上部、中地壳上部及上地幔顶部表现为厚的脆性层;早白垩世初期中地壳上部及上地幔顶部的脆性层完全转变为韧性层;晚白垩世开始,中地壳上部出现薄层的脆性层;古近纪早期中地壳上部脆性层变薄变浅;现今则除了发育上地壳上部、中地壳上部脆性层外,上地幔顶部开始在浅部发育薄的脆性层。中—新生代岩石圈总强度演化表明在早白垩世晚期和古近纪早期经历了两期减弱,中生代早期岩石圈总强度远大于中侏罗世之后的岩石圈总强度。岩石圈热-流变结构和强度演化与华北克拉通破坏过程中岩石圈厚度的变化具有良好的对应关系,从侧面反映太平洋板块俯冲和回撤导致华北克拉通东部破坏的地球动力学过程。因此,岩石圈热-流变结构可以为盆地形成、大陆边缘和造山带等的动力学演化过程研究提供科学依据。  相似文献   

2.
地球深度热状况是深部地球动力学和岩石圈活动性研究的重要内容, 岩石圈热结构和热-流变结构可以很好地揭示岩石圈范围内的热状况。近年来, 在青海共和盆地钻探揭露了深部高温干热岩体, 关于其热源机制尚未有定论。本文以青海共和盆地为研究对象, 分析壳内温度分布和流变强度, 探讨壳内低速体的地质属性。结果表明, 共和盆地的地壳流变结构从上而下分为脆性和韧性两层, 韧性层又包括中地壳和下地壳两层韧性层, 在上地壳尺度均表现为脆性破裂为主, 并逐渐过渡为韧性流变; 恰卜恰地区在脆性破裂的上地壳延伸至中下地壳时, 破裂沿一系列滑脱面发生韧性滑动, 局部地段形成壳内熔融, 为恰卜恰地区提供了额外的热源, 使其大地热流值(109.6 mW/m2)显著高于贵德地区(77.6 mW/m2)。这一认识为共和盆地壳内低速体存在提供了新的佐证, 也为区内干热岩热源分析以及高温地热资源探测开发提供了科学依据。  相似文献   

3.
为了探讨东海陆架盆地西湖凹陷岩石圈热流变性质,本文以实测地温数据为依据,模拟西湖凹陷岩石圈热结构,在此基础上,应用流变学原理模拟确定西湖凹陷岩石圈流变性质。结果表明,西湖凹陷岩石圈为一个冷地壳-热地幔、强地壳-弱地幔的"奶油蛋糕"型岩石圈。西湖凹陷平均地表热流密度为71 m W/m~2,地幔热流密度为40~65 m W/m~2,对地表热流密度的贡献度达73%~79%,地表热流受地幔热流控制,莫霍面温度在700℃左右,热岩石圈平均厚度为66 km。西湖凹陷岩石圈流变分层明显,上、中地壳基本为脆性层,下地壳和岩石圈上地幔为韧性层,岩石圈总流变强度平均约为2.65′10~(12) N/m,其中地壳流变强度为2.12′10~(12) N/m,地幔流变强度为5.29′10~(11) N/m,有效弹性厚度为11.7~14.5 km,地壳的流变性质控制了岩石圈的流变行为。此外,西湖凹陷岩石圈总强度较低,在构造应力作用下易于变形,且存在壳幔解耦现象。西湖凹陷岩石圈热状态及流变性质决定了西湖凹陷东部地区主要以浅部地壳的断层滑动和地层破裂来调节深部的构造应力。  相似文献   

4.
李涛  王宗秀 《地学前缘》2009,16(4):215-224
利用天然地震数据分析研究得到的中地壳滑脱层的深度、活动方式、强度等结果,与重磁异常基底解译成果相结合,提出华北地区在中地壳位置发育有区域滑脱面,其特定壳层及深度位置决定了其在华北深浅构造关系转换中,起着“屏蔽”或联系的重要作用,而在华北伸展变形中是地块运动变形的底边界面。上地壳各个部分在沿其滑动时,因速度差、侧向约束条件等的不同,而派生出断叉线、横向调整断裂及相应的凸起、凹陷断块等次级单元。它们构成了华北上地壳基本构造单元,并直接控制着盆山空间分布、构造地貌单元发育。研究提出了华北上地壳构造单元划分方案:上地壳基底构造分为9个一级单元(Ⅰ~Ⅸ)和23个二级单元。其中一级构造单元为:Ⅰ阴山北部东西向区域凹陷断块;Ⅱ阴山-燕山区域凸起断块;Ⅲ太行山区域凸起断块;Ⅳ大别山区域凸起断块;Ⅴ渤海湾盆地断坳、断隆区;Ⅵ南华北盆地断坳、断隆区;Ⅶ鲁西区域断隆区;Ⅷ下扬子区域断坳、断隆区;Ⅸ鄂尔多斯区域断坳区。  相似文献   

5.
接收函数方法获得的和田—拜城剖面壳幔图像   总被引:1,自引:0,他引:1       下载免费PDF全文
利用一个长750 km的宽频地震台阵所采集到的数据和接收函数方法,获得了横穿塔里木盆地的和田—拜城剖面的壳幔图像。和田凹陷、麦盖提斜坡、巴楚隆起、阿瓦提凹陷、塔北隆起、库车凹陷等地块及其边界断裂有清楚显示,各断裂均切穿岩石圈。地壳分为新近系—第四系沉积层、震旦系—古近系沉积层、上地壳结晶基底、中地壳低密度层、下地壳高密度层、下地壳低密度层等6个层。一般而言,各层的密度随深度增加而增加,但有两个层反常。中地壳的密度低于上地壳结晶基底,下地壳下部的密度低于下地壳上部。中地壳低密度层是一不连续的薄层,厚度3~8 km,深度约25 km。下地壳低密度层是一个连续的薄层,厚度5~10 km,深度约45 km。Moho面的深度在盆地北部为40~50 km,巴楚地块为35~55 km,盆地南部为55~60 km。岩石圈底面的深度为70~80 km。塔里木陆块的岩石圈地幔俯冲到西昆仑之下,但地壳并没有俯冲,地壳与地幔发生解耦。吐木休克断裂北侧的北塔里木地块变形微弱,麻札塔格断裂南侧的南塔里木地块变形强烈,两断裂之间的巴楚地块的变形以地壳的弯曲为特征。和田—麦盖提地块是一个整体但变形强烈。在其中识别出5个大的滑脱-推覆断裂面,造成下地壳地层叠覆和缩短,下地壳低密度层以隧道流的方式挤入中地壳。相比之下,沉积盖层几乎没有变形,说明南塔里木的强烈变形发生在震旦纪之前。  相似文献   

6.
青藏高原东北缘岩石圈密度与磁化强度及动力学含义   总被引:4,自引:0,他引:4  
利用横贯柴达木盆地南北的格尔木—花海子剖面岩石圈二维P波速度结构以及地震波速度与介质密度之间的关系,建立了该剖面岩石圈二维密度结构与二维磁化强度的初始模型。依据重磁同源原理,在柴达木盆地重、磁异常的二重约束下完成了重磁联合反演,获得了该剖面岩石圈二维密度结构与二维磁化强度分布。结果表明:柴达木盆地地壳厚度沿测线变化较大,平均厚度约60km。在柴达木盆地南缘地壳厚约50km,达布逊湖附近地壳最厚为63km左右,大柴旦附近地壳较薄,为50km左右。柴达木盆地的地壳纵向上可分为三层,即上地壳、中地壳与下地壳。位于盆地中部的中、下地壳分别发育大范围的壳内低密度体,并处于上地幔隆起的背景之上;横向上可将盆地分成南北两个部分,分界在达布逊湖附近。整个剖面结晶基底埋深变化也很大,在达布逊湖附近为12km,在昆仑山北缘基底几乎出露地表。结晶基底的展布形态与地壳底界,即莫霍面呈近似镜像对称。综合研究认为,柴达木盆地的岩石圈结构存在着明显的南北差异,其分界在达布逊湖的北面。在盆地南部,岩石圈介质横向变化较小,各层介质分布正常;在盆地的北侧,岩石圈结构特别在中、下地壳和上地幔顶部横向上发生了变化。壳内低密度体的存在意味着柴达木盆地具有较热的岩石圈和上地幔,加之基底界面与莫霍面的镜像对称分布,形成与准噶尔盆地和塔里木盆地的构造差异。多种地球物理参数所揭示的地壳上地幔结构及其横向变化特点为柴达木盆地构造演化及青藏高原北部边界的地球动力学研究提供了岩石圈尺度的地球物理证据。  相似文献   

7.
在利用1∶50 000 高精度重力资料研究下辽河盆地南部地区的基底构造时,针对该裂谷型断陷盆地基底呈断距较大的破碎断块状格局和盆地下存在上地幔及下地壳隆起的地质构造特点,在分析了布格重力异常成因的基础上, 应用地震测深获得的地壳速度结构和1∶1 000 000 的重力资料,成功地划分出深部地质因素产生的背景异常,并合理地进行了异常分离,从而获得了盆地基底和主要密度界面引起的区域异常。然后采用先二维再三维的重力模拟解释思路,确定了盆地基底的深度。  相似文献   

8.
华北裂陷盆地不同块体地壳结构及演化研究   总被引:22,自引:0,他引:22  
通过对华北裂陷盆地内不同块体的深地震测深资料处理 ,得到与构造演化过程相关的、不同性质块体的地壳结构特征。盆地隆起区块体地壳一般呈均匀成层 ,速度随深度逐层增加 ,保留了古大陆地壳块体的稳定结构特征 ;盆地坳陷区块体地壳松散巨厚的表层沉积、通常低速占主导的壳内构造、强反射的下地壳和高低速相间的薄互层壳 幔过渡带 ,反映了上地幔物质上隆、侵入、地壳增温、张裂等塑、脆性变形改造的新生地壳构造。讨论了这两类截然不同块体地壳构造的地球动力学演化及形成。裂陷区内中强地震的孕发和深源矿产、油气生贮存等都与这两类块体地壳结构、构造密切相关。  相似文献   

9.
袁炳强  张国伟 《地球学报》2005,26(3):203-208
大陆岩石圈有效弹性厚度(Te)是反映岩石圈综合强度的参数,它反映了岩石圈的整体特征。分析岩石圈有效样性厚度与反映深部地质特征的有关地球物理参数之间的关系,对研究控制Te的因素、各因素之间的关系以及探索大陆构造与大陆动力学等具有重要意义。泉州一黑水地学断面Te与地壳厚度、热岩石圈厚度、均衡重力异常、磁性构造层底面深度、上地幔低速层顶界面深度、上地幔低阻层顶面深度之间的关系研究表明:Te与大地热流关系密切的“热”地球物理参数磁性构造层底面深度、热岩石圈厚度相关性好;与地壳厚度有一定的相关性;上地幔低速层顶界面深度和上地幔低阻层顶面深度与大陆岩石圈Te相关性均较差。  相似文献   

10.
川甘青复理石盆地地壳结构与演化   总被引:1,自引:0,他引:1  
杨文采  宋海斌  杨午阳 《地质学报》2008,82(9):1169-1177
本文讨论川甘青复理石盆地的地质概况、地壳属性、形成机制和资源前景.这个地区是中央造山带中未发生陆-陆碰撞的构造单元,包括甘南、青海东及川西北的倒三角形地区,过去称为"松潘甘孜造山带".地壳波速结构的特点包括:①上地壳分两层,上层的波速较低的沉积岩层,厚度可达7km,波速小于6.0km/s;下层为结晶基底,波速6.0~6.2km/s.②中地壳为正常波速,但厚度较大,可达20km以上.③下地壳波速从6.6km/s随深度上升到7.3 km/s,厚度亦增加到20 km以上.上述特点的产生与复理石盆地形成时洋壳的俯冲有关.构造演化可分四个阶段,①洋壳俯冲阶段;②深水浊流沉积及等深流沉积阶段;③陆坡凸起沉积加剧阶段;④古特提斯洋封闭以后,地壳推挤成高原阶段.川甘青复理石盆地也许是中国大陆浅层油气勘探的最后希望.在盆地边部及西秦岭西延余脉,有良好的金矿资源开发前景.  相似文献   

11.
A mechanism for causing graben-like subsidence by crustal stretching in response to tension is suggested, based partly on previous hypotheses of Vening Meinesz, Artemjev and Artyushkov, Bott and Fuchs. The mechanism requires rheological subdivision of the crust into a brittle upper layer about 10–20 km thick overlying a ductile lower crust. The brittle layer responds to tension by normal faulting and wedge subsidence; the ductile layer responds by local or regional thinning and by lateral flow of material from beneath the subsiding wedge causing complementary uplift by horst formation or elastic upbending. A graben width of between 30 and 60 km is predicted in absence of basement inhomogeneity. Computations of the energy budget indicate that sedimentary basins of more than 5 km thickness can form by the mechanism provided that water pressure reduces the friction on the faults. The mechanism can explain relatively rapid beginning and end of subsidence, and spasmodic sinking may occur. A wide variety of observed graben-like basins can be explained by the hypothesis, including classical rift valleys and the Mesozoic basins of UK and the North Sea, but it is inapplicable to broad unfaulted cratonic or shelf subsidence.  相似文献   

12.
The superdeep North Caspian, South Caspian, and Barents basins have their sedimentary fill much thicker and the Moho, correspondingly, much deeper than it is required for crustal subsidence by lithospheric stretching. In the absence of large gravity anomalies, this crustal structure indicates the presence under the Moho of a thick layer of eclogite which is denser than mantle peridotite. Crustal subsidence in the basins can be explained by high-grade metamorphism of mafic lower crust. The basins produced by lithospheric stretching normally subside for the first ~100 myr of their history, while at least half of the subsidence in the three basins occurred after that period, which is another evidence against the stretching formation mechanism. According to the seismic reflection profiling data, stretching can be responsible for only a minor part of the subsidence in the Caspian and Barents basins. As for the South Caspian basin, there has been a large recent subsidence event in a setting of compression. Therefore, eclogitization appears to be a realistic mechanism of crustal subsidence in superdeep basins.  相似文献   

13.
Andreas Henk   《Tectonophysics》2006,415(1-4):39-55
Two-dimensional finite element techniques are used to study the temporal evolution and spatial distribution of stress and strain during lithospheric extension. The thermomechanical model includes a pre-existing fault in the upper crust to account for the reactivation of older tectonic elements. The fault is described using contact elements which allow for independent meshing of hanging wall and foot wall as well as simulation of large differential displacements between the fault blocks. Numerical models are run for three different initial temperature distributions representing extension of weak, moderately strong and strong lithosphere and three different extension velocities. In spite of the simple geodynamic boundary conditions selected, i.e., wholesale extension at a constant rate, stress and strain vary substantially throughout the lithosphere. In particular, in case of the weak lithosphere model, lower crustal flow towards the locus of maximum upper crustal extension results in the formation of a lower crustal dome while maintaining a subhorizontal Moho relief. The core of the dome experiences hardly any internal deformation, although it is the part of the lower crust which is exhumed the most. Stress fields in the lower crustal dome vary significantly from the regional trend underlining mechanical decoupling of the lower crust from the rest of the lithosphere. These differences diminish if cooler temperatures and, hence, stronger rheologies are considered. Lithospheric strength also exerts a profound control on the basin architecture and the surface expressions of extension, i.e., rift flank uplift and basin subsidence. If the lower crust is sufficiently weak, its flow towards the region of extended upper crust can provide a threshold value for the maximum subsidence which can be achieved during the syn-rift stage. In spite of continuous regional extension, corresponding burial history plots show exponentially decreasing subsidence rates which would traditionally be interpreted in terms of lithospheric cooling during the post-rift stage. The models provide templates to genetically link the surface and sub-surface expressions of lithospheric extension, for which usually no contemporaneous observations are possible. In particular, they help to decipher the information on the physical state of the lithosphere at the time of extension which is stored in the architecture and subsidence record of sedimentary basins.  相似文献   

14.
Two NE-SW trending wide-angle seismic profiles were surveyed across the Chinese side Two NE-SW trending wide-angle seismic profiles were surveyed across the Chinese side of the Yinggehai (莺歌海) basin (YGHB) with ocean bottom hydrophones (OBHs) and piggyback recorded by onshore stations located on the Hainan (海南)Island.Detailed velocity-depth models were obtained through traveltime modeling and partially constrained by amplitude calculations.More than 15 km Tertiary sedimentary infill within the YGHB can be divided in to three layers with distinct velocity-depth distribution.Overall,the upper layer has a high velocity gradient with 3.8-4.1 km/s at its bottom,consistent with progressive compaction and diagenesls.Its thickness increases gradually towards the basin center,reaching 4.5 km along the southern profile.The middle layer is characterized in its most part as a pronounced low velocity zone (LVZ) with average velocity as low as 3.0 km/s.Its thickness increases from 3.0 to over 4.5 km from NW towards SE.The primary causes of the velocity inversion are high accumulation rate and subsequent under-compaction of sediments.The velocity at the top of the lower layer is estimated at about 4.5 km/s.Despite strong energy source used (4 x 12L airgun array),no reflections can be observed from deeper levels within the basin.Towards NE the basin is bounded sharply by a clear and deep basement fault (Fault No.1),which seems to cut through the entire crust.A typical continental crust with low-velocity middle crust is found beneath the coast of the western Hainan Island.Its thickness is determined to be 28 km and shows no sign of crustal thinning towards the basin.The sharp change in crustal structure across Fault No.1 indicates that the fault is a strike-slip fault.The crustal structure obtained in this study clearly favors the hypothesis that the YGHB is a narrow pull-apart basin formed by strike-slip faulting of the Red River fault zone.  相似文献   

15.
The lithosphere is subject to fluctuations in temperature and pressure during the formation of sedimentary basins. These fluctuations cause metamorphic reactions that change the density of the lithosphere, which, in turn, influences basin subsidence. This contribution develops a model for sedimentary basin formation to assess the importance of this coupling. The model shows that basin subsidence is significantly affected by metamorphic densification. Compared to results obtained with cruder density models, metamorphic densification accelerates subsidence in the initial post-rifting stages as garnet becomes stable over an increasing depth interval within the mantle, an effect that amplifies the crust–mantle density contrast. For models with an extraordinarily cold lithosphere, uplift is generated as a late stage of basin evolution. In general, subsidence is not smooth but occurs instead in small steps reflecting periods of accelerated/decelerated subsidence. For typical crustal thicknesses, subsidence is controlled largely by reactions in the mantle, and particularly those determining garnet stability.  相似文献   

16.
Consolidated crust in the North Barents basin with sediments 16–18 km thick is attenuated approximately by two times. The normal faults in the basin basement ensure only 10-15% stretching, which caused the deposition of 2–3 km sediments during the early evolution of the basin. The overlying 16 km of sediments have accumulated since the Late Devonian. Judging by the undisturbed reflectors to a depth of 8 s, crustal subsidence was not accompanied by any significant stretching throughout that time. Dramatic subsidence under such conditions required considerable contraction of lithospheric rocks. The contraction was mainly due to high-grade metamorphism in mafic rocks in the lower crust. The metamorphism was favored by increasing pressure and temperature in the lower crust with the accumulation of a thick layer of sediments. According to gravity data, the Moho in the basin is underlain by large masses of high-velocity eclogites, which are denser than mantle peridotites. The same is typical of some other ultradeep basins: North Caspian, South Caspian, North Chukchi, and Gulf of Mexico basins. From Late Devonian to Late Jurassic, several episodes of rapid crustal subsidence took place in the North Barents basin, which is typical of large petroleum basins. The subsidence was due to metamorphism in the lower crust, when it was infiltrated by mantle-source fluids in several episodes. The metamorphic contraction in the lower crust gave rise to deep-water basins with sediments with a high content of unoxidized organic matter. Along with numerous structural and nonstructural traps in the cover of the North Barents basin, this is strong evidence that the North Barents basin is a large hydrocarbon basin.  相似文献   

17.
Results of modeling of the formation of the Vilyui sedimentary basin are presented. We combine backstripping reconstructions of sedimentation and thermal regime during the subsidence with a numerical simulation based on the deformable solid mechanics. Lithological data and stratigraphic sections were used to “strip” the sedimentary beds successively and calculate the depth of the stratigraphic units during the sedimentation. It is the first time that the evolution of sedimentation which is nonuniform over the basin area has been analyzed for the Vilyui basin. The rift origin of the basin is proven. We estimate the spatial distribution of the parameters of crustal and mantle-lithosphere extension as well as expansion due to dike intrusion. According to the reconstructions, the type of subsidence curves for the sedimentary rocks of the basin depends on the tectonic regime of sedimentation in individual basins. The backstripping analysis revealed two stages of extension (sediments 4–5 km thick) and a foreland stage (sediments > 2 km thick). With the two-layered lithosphere model, we conclude that the subcrustal layer underwent predominant extension (by a factor of 1.2–2.0 vs. 1.1–1.4 in the crust). The goal of numerical experiments is to demonstrate that deep troughs can form in the continental crust under its finite extension. Unlike the oceanic rifting models, this modeling shows no complete destruction or rupture of the continental crust during the extension. The 2D numerical simulation shows the possibility of considerable basement subsidence near the central axis and explains why mafic dikes are concentrated on the basin periphery.  相似文献   

18.
The Ordovician Sierras Pampeanas, located in a continental back-arc position at the Proto-Andean margin of southwest Gondwana, experienced substantial mantle heat transfer during the Ordovician Famatina orogeny, converting Neoproterozoic and Early Cambrian metasediments to migmatites and granites. The high-grade metamorphic basement underwent intense extensional shearing during the Early and Middle Ordovician. Contemporaneously, up to 7000 m marine sediments were deposited in extensional back-arc basins covering the pre-Ordovician basement. Extensional Ordovician tectonics were more effective in mid- and lower crustal migmatites than in higher levels of the crust. At a depth of about 13 km the separating boundary between low-strain solid upper and high-strain lower migmatitic crust evolved to an intra-crustal detachment. The detachment zone varies in thickness but does not exceed about 500 m. The formation of anatectic melt at the metamorphic peak, and the resulting drop in shear strength, initiated extensional tectonics which continued along localized ductile shear zones until the migmatitic crust cooled to amphibolite facies P–T conditions. P–T–d–t data in combination with field evidence suggest significant (ca. 52%) crustal thinning below the detachment corresponding to a thinning factor of 2.1. Ductile thinning of the upper crust is estimated to be less than that of the lower crust and might range between 25% and 44%, constituting total crustal thinning factors of 1.7–2.0. While the migmatites experienced retrograde decompression during the Ordovician, rocks along and above the detachment show isobaric cooling. This suggests that the magnitude of upper crustal extension controls the amount of space created for sediments deposited at the surface. Upper crustal extension and thinning is compensated by newly deposited sediments, maintaining constant pressure at detachment level. Thinning of the migmatitic lower crust is compensated by elevation of the crust–mantle boundary. The degree of mechanical coupling between migmatitic lower and solid upper crust across the detachment zone is the main factor controlling upper crustal extension, basin formation, and sediment thickness in the back-arc basin. The initiation of crustal extension in the back-arc, however, crucially depends on the presence of anatectic melt in the middle and lower crust. Consumption of melt and cooling of the lower crust correlate with decreasing deposition rates in the sedimentary basins and decreasing rates of crustal extension.  相似文献   

19.
The Tsushima Basin is located in the southwestern Japan Sea, which is a back-arc basin in the northwestern Pacific. Although some geophysical surveys had been conducted to investigate the formation process of the Tsushima Basin, it remains unclear. In 2000, to clarify the formation process of the Tsushima Basin, the seismic velocity structure survey with ocean bottom seismometers and airguns was carried out at the southeastern Tsushima Basin and its margin, which are presumed to be the transition zone of the crustal structure of the southwestern Japan Island Arc. The crustal thickness under the southeastern Tsushima Basin is about 17 km including a 5 km thick sedimentary layer, and 20 km including a 1.5 km thick sedimentary layer under its margin. The whole crustal thickness and thickness of the upper part of the crust increase towards the southwestern Japan Island Arc. On the other hand, thickness of the lower part of the crust seems more uniform than that of the upper part. The crust in the southeastern Tsushima Basin has about 6 km/s layer with the large velocity gradient. Shallow structures of the continental bank show that the accumulation of the sediments started from lower Miocene in the southeastern Tsushima Basin. The crustal structure in southeastern Tsushima Basin is not the oceanic crust, which is formed ocean floor spreading or affected by mantle plume, but the rifted/extended island arc crust because magnitudes of the whole crustal and the upper part of the crustal thickening are larger than that of the lower part of the crustal thickening towards the southwestern Japan Island Arc. In the margin of the southeastern Tsushima Basin, high velocity material does not exist in the lowermost crust. For that reason, the margin is inferred to be a non-volcanic rifted margin. The asymmetric structure in the both margins of the southeastern and Korean Peninsula of the Tsushima Basin indicates that the formation process of the Tsushima Basin may be simple shear style rather than pure shear style.  相似文献   

20.
Shallow and deep sources generate a gravity low in the central Iberian Peninsula. Long-wavelength shallow sources are two continental sedimentary basins, the Duero and the Tajo Basins, separated by a narrow mountainous chain called the Spanish Central System. To investigate the crustal density structure, a multitaper spectral analysis of gravity data was applied. To minimise biases due to misleading shallow and deep anomaly sources of similar wavelength, first an estimation of gravity anomaly due to Cenozoic sedimentary infill was made. Power spectral analysis indicates two crustal discontinuities at mean depths of 31.1 ± 3.6 and 11.6 ± 0.2 km, respectively. Comparisons with seismic data reveal that the shallow density discontinuity is related to the upper crust lower limit and the deeper source corresponds to the Moho discontinuity. A 3D-depth model for the Moho was obtained by inverse modelling of regional gravity anomalies in the Fourier domain. The Moho depth varies between a mean depth of 31 km and 34 km. Maximum depth is located in a NW–SE trough. Gravity modelling points to lateral density variations in the upper crust. The Central System structure is described as a crustal block uplifted by NE–SW reverse faults. The formation of the system involves displacement along an intracrustal detachment in the middle crust. This detachment would split into several high-angle reverse faults verging both NW and SE. The direction of transport is northwards, the detachment probably being rooted at the Moho.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号