首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
黄河源区高寒植被主要特征初探   总被引:3,自引:2,他引:1  
位于青藏高原东北部多年冻土与季节冻土交错带的黄河源区高寒生态环境及其变化一直备受关注. 气候变暖、冻土退化条件下,为了解黄河源区不同冻土区植被状况,在源区布设了4个场地:查拉坪(CLP,源区南部连续低温多年冻土区);扎陵湖南岸(ZLH,源区中南部岛状多年冻土区);麻多乡(MDX,源区西部的不连续多年冻土区);鄂陵湖北岸(ELH,源区中北部季节冻土区). 结合植被调查和场地监测,分析了源区各冻土区植被的差异. 结果显示:总体上低温多年冻土区植被盖度、多样性指数高,表现为连续多年冻土区(查拉坪)>不连续多年冻土区(麻多乡)>季节冻土区(鄂陵湖北岸),其中岛状多年冻土区(扎陵湖南岸)例外,该场地平均盖度最低,多样性指数介于查拉坪和麻多乡之间,局部植被退化较严重. 均匀度指数均表现为扎陵湖南岸最高,查拉坪次之. 地上生物量调查结果显示:查拉坪>麻多乡>扎陵湖南岸>鄂陵湖北岸,且鄂陵湖北岸出现指示植被退化的植物. 尽管黄河源区高寒植被研究为理解冻土退化条件下的生态环境变化提供了一些基础数据,评估气候变化和冻土退化的生态和水文效应需要更系统的调查和监测研究.  相似文献   

2.
气候变暖对黄河源区生态环境的影响   总被引:13,自引:2,他引:13  
黄河源区位于多年冻土区,严酷寒冷的气候条件和冻土共同构建成一种特殊的冻结水环境,使地下水类型和水文地质结构均发生变化,与非冻土区有显著的差别,形成特殊的水文地质区。近几十年来,由于全球性气候温变暖,出现大面积冻土退化,以及过度放牧、鼠害加剧等原因,造成草场退化,沙漠化趋势日渐明显,严重地冲击着黄河河源区的水源养涵功能,导致黄河在源头段多次出现断流。通过水平衡计算,探讨了气候变暖对黄河源区多年冻土退化的影响,并阐述了冻结层上水环境变化和人类活动对生态环境的影响。  相似文献   

3.
黄河源区生态环境恶化的地质原因及发展演化趋势   总被引:4,自引:0,他引:4  
黄河源区生态环境恶化的地质原因之一是现代地质作用增强.形成了以荒漠化为主的草地资源退化与下垫面改变.地区水一气一热平衡破坏;二是因冻土退化、萎缩.引起水环境变异.导致多层面与综合成因的生态环境恶化;三是人为及鼠类活动对源区生态环境恶化起着推波助澜的作用。  相似文献   

4.
黄河源区冻土对植被的影响   总被引:8,自引:1,他引:7  
黄河源区由于近年来气候变化的影响,打破了高寒植被与冻土环境之间稳定的适应性关系,由此引发了一系列生态环境退化的现象.在黄河源区多年野外工作的基础上,定量分析了冻土与植被之间的关系.研究表明:多年冻土埋深通过影响浅层土壤含水量影响植被生长的,多年冻土的埋深与浅层土壤含水率和植被的覆盖率具有良好的相关性规律.冻土埋深<2 m时,冻土埋深决定浅层土壤含水率,成为影响植被的生长主要因素;埋深>2 m时,冻结层上水水位低、补给量少,冻结层上水水量小,毛细上升高度不能达到植被根系分布的浅层土壤中,植被生长环境干旱化,多数植被生长受限制,这时只有少量根系发达的耐旱植被存活,覆盖率小,一般不超过35%.因此,2 m的多年冻土埋深为“生态冻土埋深”.近20 a来,黄河源区地温长期处于增温状态,多年冻土出现表层融化,形成深埋的或少冰的冻土等现象;部分地带完全融化消失,连续多年冻土变成不连续冻土或岛状冻土.多年冻土退化后,土壤含水量减少,导致植被物种更替、“黑土滩”等退化现象.  相似文献   

5.
黄河源区地下水位下降对生态环境的影响   总被引:17,自引:6,他引:11  
黄河源区1:250000区域环境地质调查资料与以往资料的对比表明,黄河源区区域地下水位近几十年来呈现明显的下降趋势,主要表现在:地下水露头泉口下移,河谷区民井地下水位下降及山前冲洪积扇前缘泄出带下移.多年冻土的退化直接导致了冷生隔水层的下移,从而引起区域地下水位的下降.区域地下水位的下降导致生态水位下降,包气带土壤层的含水量减少,使该区出现植被草场退化、生物多样性减少、沼泽湿地萎缩、鼠害猖獗、荒漠化加剧及黄河断流等生态环境问题.  相似文献   

6.
青藏高原冻土及水热过程与寒区生态环境的关系   总被引:65,自引:36,他引:29  
吴青柏  沈永平  施斌 《冰川冻土》2003,25(3):250-255
从青藏高原冻土及水热过程出发,利用青藏高原活动层监测数据,讨论了冻土水热过程与植被生长环境的关系,比较了季节冻土区与多年冻土区水热过程的差异及与植被的关系,同时讨论了不同草地生态冻融过程的变化.结果表明,冻土及水热过程与寒区生态环境有着密切的关系,冻土及水热过程不仅控制着地表状态的变化,影响着植被的发育程度,同时二者之间也存在着强烈的相互作用的关系.一旦地表条件被破坏,干扰了冻土水热过程与地表植被生长间的平衡关系,将引起生态环境的退化,出现荒漠化,甚至沙漠化.  相似文献   

7.
青藏高原高寒区草地生态环境系统退化研究   总被引:38,自引:6,他引:32  
青藏高原高寒地区的草地生态环境是高原生态环境的重要组成部分.近几十年来,在人类活动的强烈干扰和自然环境变化的影响下,高寒草地生态环境严重退化.在退化草地选取典型样地,调查研究了草地退化后土壤水文过程、土壤结构、植被状况等的变化.结果表明:高原高寒地区草场退化以后,土壤水文过程都发生改变,植被退化越严重土壤含水量变化越强烈、土壤入渗过程越快.退化草地的植被群落演替变化明显,优势种群退化严重,植物个体出现了小型化现象.水土流失日趋严重,土壤贫瘠化、沙化、荒漠化增强,鼠虫害等自然灾害频繁.  相似文献   

8.
青海高原中、 东部多年冻土及寒区环境退化   总被引:17,自引:13,他引:4  
近年来, 随着全球气候变暖和人类社会经济活动的增强, 处于季节冻土向片状连续多年冻土过渡区的青海高原中、 东部多年冻土退化显著. 巴颜喀拉山南坡清水河地区岛状冻土分布南界向北萎缩5 km; 清水河、 黄河沿、 星星海南岸、 黑河沿岸、 花石峡等岛状冻土和不连续多年冻土出现融化夹层和不衔接多年冻土, 有些地区冻土岛和深埋藏多年冻土消失, 多年冻土上限下降、 季节冻结深度变浅; 片状连续多年冻土地温升高、 冻土厚度减薄. 1991-2010年巴颜喀拉山南北坡不连续多年冻土分布下界分别上升90 m和100 m, 1995-2010年布青山南北坡不连续多年冻土分布下界分别上升80 m和50 m. 造成冻土退化的主要原因为气候变暖, 使得地表年均温度由负变正, 冻结期缩短, 融化期延长, 冻/融指数比缩小. 伴随着冻土退化, 高寒环境也显著退化, 地下水位下降, 植被覆盖度降低, 高寒沼泽湿地和河湖萎缩, 土地荒漠化和沙漠化造成了地表覆被条件改变.  相似文献   

9.
以青藏高原多年冻土区3种高寒草地植被为研究对象,设置6个样地,并结合附近活动层观测场环境因子数据,定量分析生物量与环境因子的关系.结果表明,各高寒草地地下生物量对总生物量的贡献率最大,而地下生物量在0~10cm集中分布;对于总生物量和地下生物量,各因子影响程度大小次序为:土壤盐分土壤含水量空气温度,而对地上生物量,依次为土壤含水量土壤盐分空气温度;土壤温度同生物量存在负相关关系.同时,伴随多年冻土退化,活动层表层不同深度(10~50cm)土壤温度明显升高,含水量逐渐降低,土壤盐分不断增加,从而使高寒草地植被类型出现由高寒沼泽草甸、高寒草甸至高寒草原的逆向演替过程,群落总盖度及生物量均表现出明显降低的趋势.  相似文献   

10.
黄河源生态环境变化与成因分析   总被引:54,自引:25,他引:29  
王根绪  沈永平 《冰川冻土》2000,22(3):200-205
以70年代、80年代和90年代3个时期的卫星影像资料为基础,结合野外调查,对70年代以来黄河源区生态环境演变过程及趋势进行了对比分析,并依据时期的气候变化、人为活动强度分析,对该区域生态环境变化的产生原因进行探讨,研究结果表明,与70年代相比,80年代和90年代以高寒沼泽草甸、高寒草罗和高山草原化草甸为代表的主要生态体系均呈明显退化,尤其90年代中期以来,高寒草原与高寒草甸植被退化剧烈,荒漠化发展  相似文献   

11.
长江源区高寒生态与气候变化对河流径流过程的影响分析   总被引:24,自引:5,他引:19  
近40 a来长江源区气候变化剧烈,是青藏高原增温最为显著的地区之一,高寒生态系统与冻土环境不断退化.采用多因素逐次甄别方法与半经验理论方法相结合,基于多年冻土的不同植被覆盖降水-径流观测场观测试验结果,分析了长江源区气候-植被-冻土耦合系统中各要素变化对河川径流的不同影响.结果表明:近40 a来长江源区河川径流呈持续递减趋势,年均径流量减少了15.2%,频率>20%的径流量均显著减少,而>550 m3·s-1的稀遇洪水流量发生频率增加;气候变化与高寒草甸覆盖变化对源区径流变化的影响较大,分别占5.8%和5.5%;气候与植被覆盖变化对径流的显著影响是与冻土耦合作用的结果,但冻土环境与冰川变化对径流的贡献尚不能准确评价.高寒沼泽湿地和高寒草甸生态系统对于源区河川径流的形成与稳定起到关键作用,这两类生态系统的显著退化是驱动河川径流过程中变差增大、降水-径流系数减少以及洪水频率增加的主要原因.保护源区高寒草甸与独特的高寒湿地生态,对于维护源区水涵养功能和流域水安全意义重大.  相似文献   

12.
姚正毅  李晓英  董治宝 《冰川冻土》2015,37(5):1245-1256
通过分析黄河源区玛多县沙漠化的成因和过程,结果表明,玛多县沙漠化成因类型有三种,分别为固定沙丘/古沙丘活化、滑塌陡坎及风蚀斑块,其形成都与多年冻土退化相关.在固定沙丘或古沙丘分布区,冻土退化导致热融沉陷,形成沉陷坑,沉陷坑边缘形成拉裂缝或陡坎,使下伏松散沙露出.在斜坡上,冻土退化形成滑塌陡坎,使底层土壤从侧面暴露.在平坦的冲积平原,差异性冻胀和融沉导致草皮拉裂,形成积水坑洼,冻土退化导致土壤变干,土壤的底层暴露.下伏风成沉积物暴露后,遭受风蚀,形成侧向凹槽,致使上部土体坍塌,使更多的风成沉积物暴露,这些过程的不断重复,使风蚀坑、陡坎、风蚀斑块扩大相连,最终形成流动沙丘、风蚀劣地、戈壁等地貌.  相似文献   

13.
为阐明青藏高原多年冻土区高寒草甸退化过程中土壤粒径分布(PSD)非均匀性和异质性的变化特征, 在青藏高原长江源区, 根据高寒草甸的退化梯度, 选取了未退化区域、 轻度退化区域、 中度退化区域、 重度退化区域和极重度退化区域, 测定了高寒草甸退化过程中土壤的粒径分布、 饱和导水率、 孔隙度与有机质含量. 运用多重分形理论, 并结合土壤颗粒分布与土壤理化特性等参数的相关性进行分析, 为高寒草甸退化对长江源高寒土壤性质变化的影响的定量研究提供一种精确的分析方法. 结果表明: 随着青藏高原多年冻土区高寒草甸退化程度的增加, 土壤颗粒呈粗粒化趋势, 多重分形参数中容量维数(D0)随之增大, 表征PSD宽度随之增大; 信息维数(D1)、 信息维数/容量维数(D1/D0)、 关联维数(D2)、 奇异谱宽(Δα)可从不同角度反映的土壤PSD的非均匀性与局部异质性随着高寒草甸退化有先增大后减小的趋势, 中度退化区域的土壤PSD不均匀性最大. 研究发现, 研究区土壤多重分形参数与细砂含量、 土壤的孔隙度、 有机质含量具有较明显的相关性. 多重分形参数能准确描述高寒草甸退化过程中土壤粒径分布的细微差别, 可作为反映土壤性质的潜在指标.  相似文献   

14.
青藏高原多年冻土区典型高寒草地生物量对气候变化的响应   总被引:15,自引:3,他引:12  
多年冻土区冻土生态系统对气候变化极其敏感,利用在长江黄河源区实测的高寒草甸和高寒草原植被生物量数据以及青藏高原降水、气温以及地温等的空间分布规律,建立了长江黄河源区高寒草甸与高寒草原等主要高寒生态系统地上与地下现存生物量对气候要素变化的多元回归模型.预测分析表明:如果未来10 a气温增加0.44℃·(10a)-1,在降水量不变的情况下,高寒草甸和高寒草原地上生物量分别递减2.7%和2.4%,如果同时降水量小幅度增加8 mm·(10a)-1,则地上生物量可基本保持现状水平略有减少;在气温增加2.2℃·(10a)-1,在降水量不变的情况下,高寒草甸和高寒草原地上生物量年分别平均减少达6.8%和4.6%,如果同期降水量增加12 mm·(10a)-1,高寒草甸地上生物量可基本维持现状水平略有增加,而高寒草原地上生物量则递增5.2%.高寒草原植被地上生物量对气候增暖的响应幅度显著小于高寒草甸,而对降水增加的响应程度大于高寒草甸.明确高寒草地植被生物量随气候变化的演变趋势,对于青藏高原生态环境保护和研究气候变化对青藏高原生态系统碳循环和河源区水循环的影响具有重要意义.  相似文献   

15.
In the source regions of the Yangtze and Yellow Rivers of China, glaciers, frozen ground, the hydrological system, and alpine vegetation have changed over the past decades years. Climatic causes of these variations have been analyzed using mean monthly air temperature and monthly precipitation between 1956 and 2000, and monthly evaporation from φ20 evaporation pans between 1961 and 1996. In the source region of the Yangtze River, lower temperature and plentiful precipitation during the 1960s and continuing into the early 1980s triggered a glacier advance that culminated in the early 1990s, while a robust temperature increase and precipitation decrease since 1986 has forced glaciers to retreat rapidly since 1995. Permafrost degradation is another consequence of the climatic warming. The variations in the hydrological system and alpine vegetation are controlled mainly by the climate during the warm season. Warmer and drier summer climate is the major cause of a degradation of the vegetation, desiccation of the high-cold marshland, a decrease in the areas and numbers of lakes and rivers in the middle and north source regions of the Yangtze and Yellow Rivers, and a reduction in surface runoff in the source region of the Yangtze River for the last 20 years. The causes of eco-environmental change in Dari area, near the outlet from the source area of the Yellow River, are different from those elsewhere in the study area. A noticeable reduction in runoff in the source region of the Yellow River and degradation of alpine vegetation in Dari area are closely related to the permafrost degradation resulting from climate warming.  相似文献   

16.
Based on three phases of satellite-image data and field investigation results collected between 1976 and 1996, climate changes and intensity of human activity were studied for the time period to investigate the causes responsible for the region's environmental changes. The results show that, compared with the data for the 1970s, the eco-environment in the source region of the Yellow River degraded markedly from the 1980s to the 1990s. Degradation was most prominent from the mid-1990s onward, with significant degradation of high-cold grassland and high-cold meadow vegetation, and also a rapid expansion of desertification. The area of degraded vegetation increased from 24.5% in the 1980s to 34.5% of total grassland and high-cold meadow in the 1990s. The rate of land desertification increased from 3.96% in the 1980s to 34.72% in the 1990s. The main reasons for these changes include the intensity of overgrazing (which was very high), and the climate in this region which is becoming drier and warmer, resulting in a gradual degradation of the permafrost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号