首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new nonlinear monotone finite volume method for diffusion equation and its application to two-phase flow model. We consider full anisotropic discontinuous diffusion or permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which provides the conventional seven-point stencil for the discrete diffusion operator on cubic meshes. We show that the quality of the discrete flux in a reservoir simulator has great effect on the front behavior and the water breakthrough time. We compare two two-point flux approximations (TPFA), the proposed nonlinear TPFA and the conventional linear TPFA, and multipoint flux approximation (MPFA). The new nonlinear scheme has a number of important advantages over the traditional linear discretizations. Compared to the linear TPFA, the nonlinear TPFA demonstrates low sensitivity to grid distortions and provides appropriate approximation in case of full anisotropic permeability tensor. For nonorthogonal grids or full anisotropic permeability tensors, the conventional linear TPFA provides no approximation, while the nonlinear flux is still first-order accurate. The computational work for the new method is higher than the one for the conventional TPFA, yet it is rather competitive. Compared to MPFA, the new scheme provides sparser algebraic systems and thus is less computational expensive. Moreover, it is monotone which means that the discrete solution preserves the nonnegativity of the differential solution.  相似文献   

2.
We present the latest enhancement of the nonlinear monotone finite volume method for the near-well regions. The original nonlinear method is applicable for diffusion, advection-diffusion, and multiphase flow model equations with full anisotropic discontinuous permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which reduces to the conventional two-point flux approximation (TPFA) on cubic meshes but has much better accuracy for the general case of non-orthogonal grids and anisotropic media. The latest modification of the nonlinear method takes into account the nonlinear (e.g., logarithmic) singularity of the pressure in the near-well region and introduces a correction to improve accuracy of the pressure and the flux calculation. In this paper, we consider a linear version of the nonlinear method waiving its monotonicity for sake of better accuracy. The new method is generalized for anisotropic media, polyhedral grids and nontrivial cases such as slanted, partially perforated wells or wells shifted from the cell center. Numerical experiments show noticeable reduction of numerical errors compared to the original monotone nonlinear FV scheme with the conventional Peaceman well model or with the given analytical well rate.  相似文献   

3.
This article presents a new positivity-preserving finite-volume scheme with a nonlinear two-point flux approximation, which uses optimization techniques for the face stencil calculation. The gradient is reconstructed using harmonic averaging points with the constraint that the sum of the coefficients included in the face stencils must be positive. We compare the proposed scheme to a nonlinear two-point scheme available in literature and a few linear schemes. Using two test cases, taken from the FVCA6 benchmarks, the accuracy of the scheme is investigated. Furthermore, it is shown that the scheme is linearity-preserving on highly complex corner-point grids. Moreover, a two-phase flow problem on the Norne formation, a geological formation in the Norwegian Sea, is simulated. It is demonstrated that the proposed scheme is consistent in contrast to the linear Two-Point Flux Approximation scheme, which is industry standard for simulating subsurface flow on corner-point grids.  相似文献   

4.
We present a new family of flux continuous, locally conservative, finite volume schemes applicable to the diagonal and full tensor pressure equations with generally discontinuous coefficients. For a uniformly constant symmetric elliptic tensor field, the full tensor discretization is second order accurate with a symmetric positive definite matrix. For a full tensor, an M-matrix with diagonal dominance can be obtained subject to a sufficient condition for ellipticity. Positive definiteness of the discrete system is illustrated. Convergence rates for discontinuous coefficients are presented and the importance of modeling the full permeability tensor pressure equation is demonstrated.  相似文献   

5.
We present an a priori stability and convergence analysis of a new mixed discontinuous Galerkin scheme applied to the instationary Darcy problem. The analysis accounts for a spatially and temporally varying permeability tensor in all estimates. The proposed method is stabilized using penalty terms in the primary and the flux unknowns.  相似文献   

6.
Practical expressions are given for the nine components of the block-scale permeability tensor of a thin block. These expressions are derived from the local-scale continuity equation and Darcy's law in an anisotropic layered porous medium. The flow problem is separated in a bottom-flux problem and a top-flux problem, both of which can be solved in essentially the same way. The bottom-flux problem has been worked out in detail, and has been separated in two parts: a vertical potential difference and a horizontal potential difference part. Each is solved with a different approach specially designed for it. Depth-averaged expressions are obtained first, after which block-scale expressions are obtained by assuming a constant depth-averaged flux. In the zeroth order, this results in the well-known Dupuit approximation in geohydrology, and the vertical equilibrium (VE) approximation in petroleum reservoir engineering. The novelty of the theory presented here stems from the application of a perturbation technique to obtain first-order corrections to these well-known results. The local-scale laws are applied in the coordinate system coinciding with the principal axes of the local-scale permeability tensor. Only in this coordinate system the local-scale permeability tensor has zero off-diagonal components. However, since the porous medium is imperfectly layered, the first-order corrections show that the off-diagonal components of the block-scale permeability tensor are not zero. Furthermore, the block-scale permeability tensor is generally nonsymmetric, which implies that a coordinate system in which the off-diagonal terms disappear does not exist.  相似文献   

7.
Subsurface flow models can exhibit strong full-tensor anisotropy due to either permeability or grid nonorthogonality effects. Upscaling procedures, for example, generate full-tensor effects on the coarse scale even for cases in which the underlying fine-scale permeability is isotropic. A multipoint flux approximation (MPFA) is often needed to accurately simulate flow for such systems. In this paper, we present and apply a different approach, nonlinear two-point flux approximation (NTPFA), for modeling systems with full-tensor effects. In NTPFA, transmissibility (which provides interblock connections) is determined from reference global flux and pressure fields for a specific flow problem. These fields can be generated using either fully resolved or approximate global simulations. The use of fully resolved simulations leads to an NTPFA method that corresponds to global upscaling procedures, while the use of approximate simulations gives a method corresponding to recently developed local–global techniques. For both approaches, NTPFA algorithms applicable to both single-scale full-tensor permeability systems and two-scale systems are described. A unified framework is introduced, which enables single-scale and two-scale problems to be viewed in a consistent manner. Extensive numerical results demonstrate that the global and local–global NTPFA techniques provide accurate flow predictions over wide parameter ranges for both single-scale and two-scale systems, though the global procedure is more accurate overall. The applicability of NTPFA to the simulation of two-phase flow in upscaled models is also demonstrated.  相似文献   

8.
9.
We present a new version of the local discontinuous Galerkin method which is capable of dealing with jump conditions along a submanifold ΓLG (i.e., Henry’s Law) in instationary Darcy flow. Our analysis accounts for a spatially and temporally varying, non-linear permeability tensor in all estimates which is also allowed to have a jump at ΓLG and gives a convergence order result for the primary and the flux unknowns. In addition to this, different approximation spaces for the primary and the flux unknowns are investigated. The results imply that the most efficient choice is to choose the degree of the approximation space for the flux unknowns one less than that of the primary unknown. The only stabilization in the proposed scheme is represented by a penalty term in the primary unknown.  相似文献   

10.
The problem of calculating equivalent grid block permeability tensors for heterogeneous porous media is addressed. The homogenization method used involves solving Darcy's equation subject to linear boundary conditions with flux conservation in subregions of the reservoir and can be readily applied to unstructured grids. The resulting equivalent permeability tensor is stable as defined relative to G-convergence. It is proposed to use both conforming and mixed finite elements to solve the local problems and compute approximations from above and below of the equivalent permeability, respectively. Comparisons with results obtained using periodic, pressure and no-flux boundary conditions and the renormalization method are presented. A series of numerical examples demonstrates the effectiveness of the methodology for two-phase flow in heterogeneous reservoirs.  相似文献   

11.
The problem of calculating equivalent grid block permeability tensors for heterogeneous porous media is addressed. The homogenization method used involves solving Darcy's equation subject to linear boundary conditions with flux conservation in subregions of the reservoir and can be readily applied to unstructured grids. The resulting equivalent permeability tensor is stable as defined relative to G-convergence. It is proposed to use both conforming and mixed finite elements to solve the local problems and compute approximations from above and below of the equivalent permeability, respectively. Comparisons with results obtained using periodic, pressure and no-flux boundary conditions and the renormalization method are presented. A series of numerical examples demonstrates the effectiveness of the methodology for two-phase flow in heterogeneous reservoirs.  相似文献   

12.
In this paper, we introduce a novel stochastic model for the permeability tensor associated with stationary random porous media. In the light of recent works on mesoscale modeling of permeability, we first discuss the physical interpretation of the permeability tensor randomness. Subsequently, we propose a nonparametric prior probabilistic model for non‐Gaussian permeability tensor random fields, making use of the information theory and a maximum entropy procedure, and provide a physical interpretation of the model parameters. Finally, we demonstrate the capability of the considered class of random fields to generate higher levels of statistical fluctuations for selected stochastic principal permeabilities. This unique flexibility offered by the parameterization of the model opens up many new possibilities for both forward simulations (e.g. for uncertainty propagation in predictive simulations) and stochastic inverse problem solving. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
We present a general compositional formulation using multi-point flux mixed finite element (MFMFE) method on general hexahedral grids. The mixed finite element framework allows for local mass conservation, accurate flux approximation, and a more general treatment of boundary conditions. The multi-point flux inherent in MFMFE scheme allows the usage of a full permeability tensor. The proposed formulation is an extension of single and two-phase flow formulations presented by Wheeler and Yotov, SIAM J. Numer. Anal. 44(5), 2082–2106 (35) with similar convergence properties. Furthermore, the formulation allows for black oil, single-phase and multi-phase incompressible, slightly and fully compressible flow models utilizing the same design for different fluid systems. An accurate treatment of diffusive/dispersive fluxes owing to additional velocity degrees of freedom is also presented. The applications areas of interest include gas flooding, CO 2 sequestration, contaminant removal, and groundwater remediation.  相似文献   

14.
本文提出了一种既能反映裂隙岩体的渗透特性,又相对准确的确定裂隙岩体渗透张量的方法。首先通过裂隙在空间展布状况的测量,用统计学方法初步确定裂隙岩体的渗透张量,获得渗透主值及主方向,然后根据野外压水试验得到的岩体透水率,利用巴布什金公式计算各试段岩体的渗透系数,求出修正系数,从而得到研究区裂隙岩体的修正渗透张量。并运用上述方法对蒲石河抽水蓄能电站上水库坝址区裂隙岩体的渗透张量进行了计算。结果表明,该方法能较好地刻画裂隙岩体渗透性的各向异性特征,可为岩体渗透性分区及防渗帷幕的优化提供科学依据。  相似文献   

15.
Summary Determination of Permeability in Anisotropic Rock-Masses From Integral SamplesA method is presented which makes it possible to characterize the permeability of a rock mass as an anisotropic magnitude — i. e. to determine its permeability tensor — from a characterization of its fracturing by means of integral samples.For the purpose, a theory is developed by means of which the permeability tensor can be calculated from the attitudes and openings of the fractures and — if infillings are present — also from their coefficient of permeability. All these magnitudes are determined in integral samples, it being assumed that the sampled fractures are continuous and plane, and have the same characteristics as the section of the fractures present in the samples. Possible deviations with respect to this assumption are taken into account by means of correcting factors derived from the results of pressure tests in situ. The permeability tensor of a rock mass at a point can be determined from a single integral sample, provided this is representative of the fracturing.Results of the application of the method are presented, which show it to look very promising.With 16 Figures  相似文献   

16.
A numerical procedure to determine the equivalent permeability tensor of a fractured rock is presented, using a stochastic REV (Representative Elementary Volume) concept that uses multiple realizations of stochastic DFN (Discrete Fracture Network) models. Ten square DFN models are generated using the Monte Carlo simulations of the fracture system based on the data obtained from a site characterization program at Sellafield, Cumbria, UK. Smaller models with varying sizes of from 0.25 m×0.25 m to 10 m×10 m are extracted from the generated DFN models and are used as two-dimensional geometrical models for calculation of equivalent permeability tensor. The DFN models are also rotated in 30º intervals to evaluate the tensor characteristics of calculated directional permeability. Results show that the variance of the calculated permeability values decreases significantly as the side lengths of the DFN models increase, which justifies the existence of a REV. The REV side length found in this analysis is about 5 m and 8 m with 20% and 10% acceptable variations, respectively. The calculated directional permeability values at the REV size have tensor characteristic that is confirmed by a close approximation of an ellipse in a polar plot of the reciprocal of square roots of the directional permeability.
Ki-Bok MinEmail: Phone: +46-8-7907919Fax: +46-8-7906810
  相似文献   

17.
We propose a new single-phase local upscaling method that uses spatially varying multipoint transmissibility calculations. The method is demonstrated on two-dimensional Cartesian and adaptive Cartesian grids. For each cell face in the coarse upscaled grid, we create a local fine grid region surrounding the face on which we solve two generic local flow problems. The multipoint stencils used to calculate the fluxes across coarse grid cell faces involve the six neighboring pressure values. They are required to honor the two generic flow problems. The remaining degrees of freedom are used to maximize compactness and to ensure that the flux approximation is as close as possible to being two-point. The resulting multipoint flux approximations are spatially varying (a subset of the six neighbors is adaptively chosen) and reduce to two-point expressions in cases without full-tensor anisotropy. Numerical tests show that the method significantly improves upscaling accuracy as compared to commonly used local methods and also compares favorably with a local–global upscaling method.  相似文献   

18.
Cracks on a natural soil surface provide preferential pathways for water infiltration and contaminant solute transport. Before the mechanical property and permeability of cracked soil can be studied, a crack network model must first be established. Based on statistical analysis of crack geometry from field observations, a new method of representing a 3D crack network was developed. A horizontal plane of a crack network was derived using the Voronoi diagram. Each vertical crack was idealized as an inverted triangular prism. The 3D permeability tensor was determined by modeling the water flow through the crack network. A computer program was developed to generate a 3D crack network automatically and compute the permeability tensor of cracked soil at different depths. The model was verified by comparing the measured permeability and computed permeability of cracked soil. The results showed that the computed permeability was consistent with the measured permeability.  相似文献   

19.
A sequential solution procedure is used to simulate compositional two-phase flow in porous media. We employ a multiphysics concept that adapts the numerical complexity locally according to the underlying processes to increase efficiency. The framework is supplemented by a local refinement of the simulation grid. To calculate the fluxes on such grids, we employ a combination of the standard two-point flux approximation and a multipoint flux approximation where the grid is refined. This is then used to simulate a large-scale example related to underground CO2 storage.  相似文献   

20.
Accurate modeling of fluid flow through sedimentary units is of great importance in assessing the performance of both hydrocarbon reservoirs and aquifers. Most sedimentary rocks display structure from the mm or cm scale upwards. Flow simulation should therefore begin with grid blocks of this size in order to calculate effective permeabilities for larger structures. In this paper, we investigate several flow models for sandstones, and examine their impact on the calculation of effective permeability for single phase flow. Crossflow arises in some structures, in which case it may be necessary to use a tensor representation of the effective permeability. We establish conditions under which tensors are required, e.g., in crossbedded structures with a high bedding angle, high permeability contrast, and laminae of comparable thickness. Cases where the off-diagonal terms can be neglected, such as in symmetrical systems, are also illustrated. We indicate how the method of calculating tensor permeabilities may be extended to model multiphase flow in sedimentary structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号