首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Surface sediment samples from 17 sites in the Yantai coastal area, the northern Yellow Sea, China, combined with a sediment core were employed for geochemical and chronological analyses for the purpose of characterizing the temporal and spatial distribution of trace metals in sediments and their implications for anthropogenic processes. The results indicated that the spatial distribution of trace metals (Cr, Ni, Ti, Pb, As, Zn, Mn and Cu) in surface sediments was significantly contributed by the sewage discharges along the Yantai coast, and the coastal currents played a major role for transporting the pollutants to offshore. The temporal concentrations of trace metals in the sediment core based on the chronology determined by a combination of radionuclide 137Cs and 210Pb activity demonstrated that trace metal concentrations increased step-wisely over the last ca. 100 years, corresponding to the intensity of anthropogenic processes in the Yantai area. The high levels of Cu and As before the late 1970s indicated the agricultural emission from the application of pesticides. While, all the high-trace metal concentrations since the early 1980s could be seen as diagnostic indictors of increasing industrialization, urbanization and sewage discharge in the Yantai area. Although the potential ecological risk evaluation of trace metals in the coastal area suggests low-potential ecological risk at present, some trace metals, such as As and Pb need particular attention due to their slight contamination.  相似文献   

2.
In order to assess pollutants and impact of environmental changes along the Egyptian Red Sea coast, seven recent and Pleistocene coral species have been analyzed for Zn, Pb, Mn, Fe, Cr, Co, Ni, and Cu. Results show that the concentration of trace elements in recent coral skeletons is higher than those of Pleistocene counterpart except for Mn and Ni. In comparison with recent worldwide reefs, the present values are less than those of Central America coast (iron), Gulf of Aqaba, Jordan (lead, copper), Gulf of Mannar, India (chromium, zinc, manganese), Costa Rica, Panama (chromium, nickel), North-west coast of Venezuela and Saudi Arabia (copper). The present values are higher than those of Gulf of Aqaba, Jordan (iron, zinc, manganese), Gulf of Mannar, India (lead, cobalt, nickel), North-west coast of Venezuela (lead, zinc, chromium, manganese), Australia (copper, nickel, zinc, manganese). The highest values were recorded in Stylophora pistillata (iron, lead and copper), Acropora cytherea (cobalt), Pocillopora verrucosa (zinc) and the lowest concentrations were recorded in Goniastrea pectinata (iron, chromium, copper and nickel), Favites pentagona (lead, zinc and manganese), and Porites lutea (cobalt). The differences in metals content among the studied species are attributed to differences in microstructure and microarchitecture.  相似文献   

3.
This study deals with the geochemical nature of distribution, enrichment of total trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) in bulk sediments and its association with sediment texture, carbonates and organic carbon. Sixty surface sediment samples were collected during two different seasons in 2002 and 2003 along the coastal regions in three transects from Nagapattinam town, north of Point Calimere in southeast coast of India. The sediments are mostly sandy silt and are dominated by the carbonate content. Organic carbon distribution indicates that they are brought in by the minor river input. Enrichment of trace metals is clearly identified by the domination of Pb, Zn, Cd with high values than the average crustal values and comparison of trace metals from other coastal regions in the southeast coast of India. Statistical analysis clearly indicates that Fe and Mn control the distribution of trace metals and are concentrated in the finer particles and organic carbon fraction. The increase in concentration signifies the need for regular monitoring of the offshore coastal region in southeast coast of India which was recently destroyed by the 2004 December tsunami event, and which is also located near the Sethu Samuthram Ship Canal Project.  相似文献   

4.
In order to monitor the heavy metals effect coming from both human activities and natural inputs on coral reef environments of the Egyptian Red Sea coast, metal concentrations in thirty- eight coral reef species and nearby sediment samples collected from seven studied sites were analyzed. Four sites represent impacted areas; included from south to north Hamrawein, Safaga and Hurghada Harbours and Ras El-Behar Area. Wadi El-Gemal represents natural input area while Qola'an and Kalawye Reefs are the control areas. Heavy metal contents were measured in both coral skeletons and nearby marine sediments. Both impact areas as well as natural inputs area recorded the highest values of metals compared with the control ones. However, heavy metal contents recorded high values in sediments of Hamrawein Harbour, while coral species recorded high values in Wadi El-Gemal area. Generally, metal variations in coral reef species reflect natural conditions and human activity. On the other hand, there are no clear relationships between concentrations of heavy metals in coral reef species and those in sediments.  相似文献   

5.
Air-sea interfacial solutions have characteristically high concentrations of trace metals, microorganisms, organic compounds, and solids relative to bulk solutions. The potential for the chemical interaction of an array of trace metals in the interfacial regions with complexing organic ligands and adsorbing solid surfaces has been evaluated through the use of an equilibrium computer model. Computations suggest that higher interfacial accumulations of copper and lead may occur relative to cadmium and mercury. These results are found to be generally compatible with available field data describing trace metal interfacial accumulation. The forms of metals found to be partitioned between bulk and interfacial solutions are consistent with the hypothesis that solid surface adsorption and dissolved organic complexation reactions bring about metal enrichment at the surface microlayer.  相似文献   

6.
Texture, mineralogy, and major and trace element geochemistry of 26 coastal dune sand samples were studied to determine the provenance and tectonic environment of two dune fields close to the beaches of Safaga (SF) and Quseir (QS) at the Egyptian Red Sea coast. Onshore winds generate fine, moderate, moderately-well to well-sorted, coarse-skewed to near-symmetrical dune sands with mesokurtic distributions. Winds pick up and transport grains from nearby beach sands and alluvial deposits into a wide Red Sea coastal plain at the border of the beach. The mineralogical (Qt–Ft–Lt) and geochemical composition of the sands, indicate that SF and QS coastal dune sands are mature and influenced by quartz-rich sands. The average CIA values in SF and QS coastal dune sands are low relative to the range of the PAAS, suggesting an arid climate and a low intensity of chemical weathering. The SF and QS coastal dune sand samples are plotted in the recycled orogen and partly in craton interior fields suggesting recycled older sedimentary and partly metamorphic-plutonic sources. The high content of quartz with shell debris and carbonates in coastal dune sands support the recycled sedimentary beach and alluvial sand sources. The dominance of heavy minerals like amphiboles (hornblende) and biotite in the coastal dune sands also supports the effect of metamorphic-plutonic source rocks. The new tectonic discriminant-function diagrams suggest that the coastal dune sands were deposited in a passive margin of a synrift basin. The results provide a good evidence for the extension in the Red Sea rift system during Oligocene-post Pliocene, which is consistent with the general geology of Egypt.  相似文献   

7.
The purpose of this study was to investigate the concentration levels of heavy metals in different species of the main three marine algal divisions from the Gulf of Aden coastal waters, Yemen. The divisions included Chlorophyta—green plants (Halimeda tuna, Rhizoclonium kochiamum, Caldophora koiei, Enteromorpha compressa, and Caulerpa racemosa species), Phaeophyta—brown seaweeds (Padina boryana, Turbinaria elatensis, Sargassum binderi, Cystoseira myrica, and Sargassum boveanum species), and Rhodophyta—red seaweeds (Hypnea cornuta, Champia parvula, Galaxaura marginate, Laurencia paniculata, Gracilaria foliifere, and species). The heavy metals, which included cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), Iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn), and vanadium (V) were measured by Atomic Absorption Spectrophotometer (AAs). The concentrations of heavy metals in all algal species are in the order of Fe >> Cu > Mn > Cr > Zn > Ni > Pb > Cd > V > Co. The results also showed that the uptake of heavy metals by different marine algal divisions was in the order of Chlorophyta > Phaeophyta > Rhodophyta. These heavy metals were several order of magnitude higher than the concentrations of the same metals in seawater. This indicates that marine alga progressively uptake heavy metals from seawater.  相似文献   

8.
Concentrations of Fe, Mn, Zn, Cu, Pb, Ni, and Cd were measured in several species and genera of Recent benthic foraminifera from three coastal lagoons, namely Abu-Shaar, Umm al-Huwaytat, and Marsa Shuni lagoons located along the Egyptian Red Sea coast. Spatially significant differences in the metal concentrations of benthic foraminifera were recorded among different sites. However, some foraminiferal species display deformation in their coiling, general shape of chambers and the apertures. Abu-Shaar and Umm al-Huwaytat lagoons are virtually influenced by anthropogenic activities while Marsa Shuni lagoon is affected by natural inputs. Benthic foraminifer shows high concentrations of Fe and Mn, especially in Umm al-Huwaytat lagoon. Foraminiferal black tests support this result and reflect selectivity for iron absorption. Among the metals analyzed, Cd, Pb, and Cu showed significant high concentrations in benthic foraminifera at the study areas. The anthropogenic activities and natural inputs are responsible for the abnormalities in benthic foraminifera. Therefore, benthic foraminifera can be used as a good indicator of the environmental changes.  相似文献   

9.
In Mabahiss Bay, north Hurghada City, Red Sea, Egypt, the bathymetric measurements show the irregular topography of the bottom. The bottom sediments are mainly composed of sand fractions (average 73.5%). Gravel and sand contents decrease with depth. On the other hand, silt and clay percents show indirect relation with depth. Abnormally, there are some spots found near the coast where the percent of both silt and clay increases. They also show carbonate sediments (average 90.15%) increasing toward the bay center. The narrow belt adjacent to the shore area has lower carbonate content reflecting the effect of clastic sediments input into the area. The sediments in the study area have more than one source as indicated from the results of the mechanical analysis. Wide range of grain size distributions, clay spots and low carbonate content near the shore indicate change in the nature of sedimentary environment (i.e., pollution) which may be caused by land filling accompanied with urbanization and building of touristic resorts and centers. The organic matter content in the sediments is much higher than that of the other areas in the Red sea (average 4.8%) with considerable accumulation in the inner most parts of the bay. This may be due to relative abundance of organic productivity, direct discharge of domestic waste in some spots along the coast of the study area, and/or local contamination of hydrocarbons (i.e., tar balls thrown out on shore by weak waves through the few inlets of the study area). The average concentrations of lead, nickel, copper, and cadmium are 44, 34, 51, and 3.1?ppm, respectively. The suggested origin of these metals is either organic (localized oil pollution), or using of antifouling and anticorrosive paints from fishing and tourist boats. Other metals, particularly manganese (average 77?ppm), cobalt (average 51?ppm), and zinc (average 16?ppm) as well as sodium (average 0.32%) and potassium (av. 0.10%) show a common trend of increasing concentration toward the outermost parts of the bay. Some parts along shoreline have increasing concentrations, even if these parameters having a common trend of increase towards the center of the bay. This may be either due to sewage and wastewaters discharges from many outlets of tourist centers and fishermen and cargo boats, and/or terrestrial sediments input. Direct comparison of the present levels of heavy metals in Mabahiss Bay with other published data along the Red Sea and Gulf of Suez shows that the study area has higher concentrations. Dredging, land filling, localized oil pollution, using of antifouling and anticorrosive paints from fishing and tourist boats (where the bay is used as harbor for many of fishermen and cargo boats), sewage, variable amounts of municipal wastewater from many outlets of tourist centers considered to be the sources of pollution within Mabahiss bay. There are many effects of pollution on Mabahiss Bay environment among which: (1) death of fishes, seaweeds, birds, marine mammals, etc., (2) damage of beaches and other recreational areas, (3) damage of marine ecosystem by eliminating or decreasing population of certain species, (4) hazard to human from ingesting contaminated food, and more.  相似文献   

10.
Wadi alluvial aquifers located along coastal areas of the Middle East have been assumed to be suitable sources of feed water for seawater reverse osmosis facilities based on high productivity, connectedness to the sea for recharge, and the occurrence of seawater with chemistry similar to that in the adjacent Red Sea. An investigation of the intersection of Wadi Wasimi with the Red Sea in western Saudi Arabia has revealed that the associated predominantly unconfined alluvial aquifer divides into two sand-and-gravel aquifers at the coast, each with high productivity (transmissivity?=?42,000 m2/day). This aquifer system becomes confined near the coast and contains hypersaline water. The hydrogeology of Wadi Wasimi shows that two of the assumptions are incorrect in that the aquifer is not well connected to the sea because of confinement by very low hydraulic conductivity terrigenous and marine muds and the aquifer contains hypersaline water as a result of a hydraulic connection to a coastal sabkha. A supplemental study shows that the aquifer system contains a diverse microbial community composed of predominantly of Proteobacteria with accompanying high percentages of Gammaproteobacteria, Alphaproteobacteria and Deltaproteobacteria.  相似文献   

11.
Dissolved Cu, Ni, and Zn were measured in the surface coastal waters of Jeddah, eastern Red Sea during October 2004 and April 2005. High values of trace metals, particularly Zn, were recorded in the Southern Corniche area close to a sewage effluent indicating a significant contribution from the wastewater. Concentrations of trace metals decreased northward and southward under the effect of dilution. Another hot spot was also observed in the vicinity of Jeddah Desalination Plant (JDP) during April 2005 indicating a possible contribution from the JDP to trace metal contents in the study area. Trace metals were correlated to salinity, nutrients and particulate organic carbon (POC). The good association between Zn and reactive silicate and Ni and ammonium is attributed to simultaneous biological utilization and regeneration. The behavior of copper suggested adsorption of Cu onto the POC during October 2004 whereas in April 2005 the most important process seems to be desorption of Cu from the particulate materials.  相似文献   

12.
The coastal marine atmosphere adjacent to large urban and industrial centers is in general strongly impacted by pollution emissions, resulting in high loading of pollutants in the ambient air. Among the airborne substances are certain trace elements from a variety of emission sources that can serve as micronutrients to marine organisms in coastal waters. High concentrations of such elements in coastal air can result in enhanced air-to-sea deposition fluxes to coastal waters. They could also be transported over the open ocean, affecting the composition of the remote marine atmosphere and then ocean ecosystems. To provide better understanding of the extent of air-to-sea deposition processes on the New Jersey coast, a heavily polluted coastal region on the US East Coast, a synthesis of observation data was carried out for selected trace elements, including Fe, Cd, Cr and Cu, derived from measurements of both size-segregated and bulk aerosol particles, as well as precipitation around the New Jersey coast. The atmospheric input of Hg was also estimated based on measurement data. Results indicated that the total deposition fluxes of most trace elements were higher in Northern coastal NJ compared to Southern coastal NJ, reflecting the differences in the source strengths of these element emissions between the two coastal regions. Dry deposition processes were more significant for common dust-derived elements, particularly Fe and Al, compared with their wet deposition fluxes. However, the processes of precipitation scavenging appeared to be more important for the elements that were often enriched in fine particles including Zn, Cu, Pb and Ni. The removal of Hg from the ambient air was overwhelmingly dominated by atmospheric wet deposition. In the future, atmospheric measurements at more sites on the NJ coast should be performed simultaneously to reduce the spatial and temporal uncertainties associated with atmospheric deposition fluxes estimated in this study.  相似文献   

13.
Unlike lower latitude coastlines, the estuarine nearshore zones of the Alaskan Beaufort Sea are icebound and frozen up to 9 months annually. This annual freezing event represents a dramatic physical disturbance to fauna living within intertidal sediments. The main objectives of this study were to describe the benthic communities of Beaufort Sea deltas, including temporal changes and trophic structure. Understanding benthic invertebrate communities provided a baseline for concurrent research on shorebird foraging ecology at these sites. We found that despite continuous year-to-year episodes of annual freezing, these estuarine deltas are populated by a range of invertebrates that represent both marine and freshwater assemblages. Freshwater organisms like Diptera and Oligochaeta not only survive this extreme event, but a marine invasion of infaunal organisms such as Amphipoda and Polychaeta rapidly recolonizes the delta mudflats following ice ablation. These delta sediments of sand, silt, and clay are fine in structure compared to sediments of other Beaufort Sea coastal intertidal habitats. The relatively depauperate invertebrate community that ultimately develops is composed of marine and freshwater benthic invertebrates. The composition of the infauna also reflects two strategies that make life on Beaufort Sea deltas possible: a migration of marine organisms from deeper lagoons to the intertidal and freshwater biota that survive the 9-month ice-covered period in frozen sediments. Stable isotopic analyses reveal that both infaunal assemblages assimilate marine and terrestrial sources of organic carbon. These results provide some of the first quantitative information on the infaunal food resources of shallow arctic estuarine systems and the long-term persistence of these invertebrate assemblages. Our data help explain the presence of large numbers of shorebirds in these habitats during the brief summer open-water period and their trophic importance to migrating waterfowl and nearshore populations of estuarine fishes that are the basis of subsistence lifestyles by native inhabitants of the Beaufort Sea coast.  相似文献   

14.
The tsunami sediments deposited after the December 2004 tsunami were sampled immediately in the coastal environment of Tamil Nadu State on the southeast coast of India. Fifty-four sediment samples were collected and 14 representative samples were selected to identify the level of metal contamination in tsunami sediments. The results indicate that the sediments are mainly of fine to medium-grained sand and contain significantly high contents of dissolved salts in sediments (Na+, K+, Ca+2, Mg+2, Cl) in water-soluble fraction due to seawater deposition and evaporation. Correlation of acid leachable trace metals (Cr, Cu, Ni, Co, Pb, Zn) indicate that Fe-Mn oxyhydroxides might play an important role in controlling their association between them. Enrichment of trace metals is observed in all the locations with reference to the background samples. High values of trace metals in the southern part of the study area are due to the large-scale industries along the coast, and they are probably anthropogenic in nature and of marine origin, which could cause serious environmental problems.  相似文献   

15.
A study was conducted to investigate the trace metal pollution of water and sediments of downstream of Tsurumi River, Yokohama, Japan. Twenty samples of water and sediments were collected from the river starting from Tokyo bay side up to the junction point of the Yagami River. Results show that the mean concentrations of chromium, cupper and nickel in water greatly exceed (>100 times) the surface water standard. The concentration of molybdenum and lead was also higher than standard values while iron and manganese was lower than that of surface water standard. The mean concentration of zinc, cupper, cadmium, lead, chromium, vanadium, bromine and iodine was 381.1, 133.0, 1.0, 40.8, 102.9, 162.0, 71.5 and 10.6 μg/g sediments, respectively and was greatly exceed the average worldwide shale concentrations and average Japanese river sediment values. However, mean concentration of arsenic, nickel and strontium was 11.0, 36.6 and 164.6 μg/g sediments, respectively which was lower than the average shale value. Other analyzed trace metals, including barium, zirconium, rubidium, yttrium, tin, antimony, cesium, lanthanum, cerium, praseodymium and neodymium were detected in river sediments; the concentration of which was close to the Japan’s river sediment average values. Pollution load index values of the sites of the studied area ranged from 1.24 to 7.65 which testify that the river sediments are polluted. The PLI value of the area was, however, high (6.53) as the concentration of trace metals like zinc, cupper, cadmium, lead and chromium were very high and were the major pollutants.  相似文献   

16.
Heavy metal contamination and its indexing approach for river water   总被引:9,自引:2,他引:7  
The objective of the study is to reveal the seasonal variations in the river water quality with respect to heavy metals contamination. To get the extend of trace metals contamination, water samples were collected from twelve different locations along the course of the river and its tributaries on summer and the winter seasons. The concentrations of trace metals such as cadmium, cromium, copper, cobalt, iron, manganese, nickel, lead, mercury and zinc were determined using atomic absorption spectrophotometer. Most of the samples were found within limit of Indian drinking water standard (IS: 10500). The data generated were used to calculate the heavy metal pollution index of river water. The mean values of HPI were 36.19 in summer and 32.37 for winter seasons and these values are well below the critical index limit of 100 because of the sufficient flow in river system. Mercury and chromium could not be traced in any of the samples in the study area.  相似文献   

17.
In the present study sediment and water samples collected from Kowsar Dam reservoir in Kohkiluye and Boyerahmad Province, southwest of Iran, are subjected to bulk digestion and chemical partitioning. The concentrations of nickel, lead, zinc, copper, cobalt, cadmium, manganese and iron in water and bed sediment were determined by atomic absorption spectrometry. The concentrations of metals bounded to five sedimentary phases were estimated. On this basis, the proportions of natural and anthropogenic elements were calculated.The anthropogenic portion of elements are as follows: zinc (96 %)> cobalt (88 %)> iron (78 %)> magnesium (78 %)> nickel (78 %)> copper (66 %)> lead (63 %)> cadmium (59 %). The results show sediment contamination by nickel, cadmium and lead, according to the world aquatic sediments and mean earth crust values. Manganese and copper have strong association with organic matter and are of high portion of sulfide bounded ions. Finally, The degree of sediment contamination was evaluated using enrichment factor, geo-accumulation index (Igeo) and pollution index (IPoll). The sediments were identified to be of high cadmium and lead pollution index. The pattern of pollution intensity according to enrichment factor is as follows; manganese (1.25) < copper (1.63) < zinc (1.93) < cobalt (2.35) < nickel (3.83) < lead (12.63) < cadmium (78.32). Cluster analysis was performed in order to assess heavy metal interactions between water and sediment. Accordingly, nickel, cadmium and copper are earth originated. Zinc, copper and manganese are dominated by pH. All the elemental concentrations in water and sediment are correlated except for sedimental copper.  相似文献   

18.
Increased offshore development in the Alaskan Arctic has stimulated interest in assessing potential impacts to the environment before the onset of any adverse effects. Concentrations of trace metals in sediments are used in this paper to provide one sensitive indicator of anthropogenic inputs from offshore activity over the past several decades. Sediments in coastal waters of the western Beaufort Sea are patchy with respect to sediment granulometry, organic carbon content, and concentrations of trace metals. However, results for surface sediments and age-dated cores show that nearly all samples contain natural concentrations of Ag, Ba, Be, Co, Cr, Cu, Hg, Ni, Pb, Sb, Tl, V and Zn, with metal/Al ratios that have been constant for many decades. Metal concentrations for incoming river-suspended matter compare well with sediment metal values and, along with vertical distributions in sediments, show no discernible diagenetic impacts that distort the sedimentary record for metals, except for Mn, As and possibly Cd. Slightly elevated concentrations of Ba, Hg, Ag, Sb and Zn were observed in a total of eight instances or in only 0.7% of the 1,222 data points for metals in surface sediments.  相似文献   

19.
This study focuses on the diagenetic sequence under marine and meteoric conditions as well as isotopes and trace metals contamination in Quseir and Gebel Zeit areas along the Egyptian Red Sea coast through a series of modern and fossil corals, Porites lutea and Favites pentagona. The diagenetic sequence begins with deposition of thin fringes of syntaxial aragonite and micritic high-magnesian calcite in the modern corals to completely altered Porites and partially altered Favites to low-magnesium calcite in the oldest Pleistocene unit. Average δ18O and δ13C values of Pleistocene corals in the two studied areas were lower than those of modern corals. Values of modern corals and lower fossil unit indicated coralline limestone, while those of middle and upper fossil units indicated fresh water influences. Average values of trace metals in modern corals were higher than those of Pleistocene counterpart except for Mn. Modern coral samples recorded enrichment in the average values of Pb, Zn, and Mn at Quseir area and enrichment in Co, Cu, and Ni at Gebel Zeit area. This may be attributed mostly to different tourist activities, landfill due to increase urbanization and nearby of Quseir area from the old phosphate harbor at El Hamrawin area, as well as oil exploration and production activities in the Gulf of Suez area. Also, results indicated that most samples of Porites have high concentration of trace metals than in Favites, especially in Cu, Zn, Mn, and Pb. This may due to high amounts of intergranular porosity and high total surface area of Porites in contrast to Favites.  相似文献   

20.
Sediments from the Mackenzie Valley — two suspended and one river bottom — were analyzed for major and minor elements, mineralogy, particle size, and ability to release trace metals when subjected to mild leaching. Copper and zinc in suspended sediments and cadmium in bottom sediment occurred largely (70 to 84 percent for Cu, 72 to 98 percent for Zn, 75 to 81 percent for Cd) in a form that could not easily be separated from the sediments by 0.1M HC1 and EDTA solutions. Cadmium was present in suspended sediments in low concentrations, and was present totally in sorbed leachable form. Iron, manganese, cobalt and chromium were separable from the particulate phase by mild leaching. It was found that approximately 70 hours were required for an apparent steady state concentration to be attained in such leachings. Reaction of these sediments with Beaufort Sea water (salinity 22.3 parts per thousand) indicated that both iron and manganese were released from sediments to sea water to a very small degree. Copper, lead, and zinc, however, were absorbed by sediments from sea water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号