首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
超高压变质岩的塑性流变学   总被引:1,自引:1,他引:0  
钟增球  索书田 《现代地质》2007,21(2):203-212
岩石流变作用是大陆造山作用的基本特征,超高压岩石的形成和折返过程也是大陆深俯冲带内物质的复杂流变过程。要深入理解大陆造山带的造山作用和大陆壳岩石的深俯冲和折返动力学过程,必须对大陆地壳及地幔岩石的流变学进行深入研究。岩石圈流变学的主要研究内容主要包括流变学分层性、变形分解和应变局部化及大陆壳岩石部分熔融作用的流变学效应等。应用岩石圈流变学的基本原理和方法,分析了大别-苏鲁超高压变质带中超高压变质岩的塑性流变特点,探讨了超高压变质岩形成和折返过程的塑性流变学。  相似文献   

2.
迄今为止,非撞击型超高压变质作用均发生在陆- 陆碰撞造山带,这在东半球许多地点已被证实。超高压变质岩石以含柯石英和金刚石包体的榴辉岩和榴辉岩相变质岩石为代表,形成的温压环境为650~800℃,2.6~3.5Pa。研究证明大多数超高压岩石原岩是陆壳火山——沉积岩系,因此推断大陆深俯冲作用曾经发生。而超高压岩石现今又出露地表或浅表,意味着它们又从深部折返至地表。陆壳岩石深俯冲和折返机制已成为大陆动力学研究的热点,但认识莫衷一是。争论的焦点是陆壳俯冲的深度到底多大可以形成超高压岩石?是什么机制使其发生深俯冲而又折返到浅表?本文通过世界上出露规模最大的超高压变质带——大别山碰撞过程的动力学分析,探讨非规  相似文献   

3.
陆—陆点碰撞与超高压变质作用   总被引:13,自引:1,他引:13       下载免费PDF全文
迄今为止,非撞击型超高压变质作用均发生在陆陆碰-撞造山带,这在东半球许多地点已被证实,超高压变质岩石以含柯石英和金刚石包体的榴辉岩和榴辉岩相变质岩石为代表,形成的温压环境为650-800℃,2.6-3.5GPa,研究证明大多数超高压岩石原是陆壳火山-沉积岩系,因此推断大陆深俯冲作用曾经发生,而超高压岩石现今又出露地表或浅表,意味着它们又从深部折返至地表,陆壳岩石深储冲和折返机制已成为大陆动力学研究的热点,但认识莫衷一是,争论的焦点是陆壳俯冲的深度到底多大可以形成超高压岩石?是什么机制使其发生深俯冲而又折返到浅表?本文通过世界上出露规模最大的超高压变质带-大别山碰撞过程的动力学分析,探讨非规则边界的碰撞引起的构造附加压力对超高压石形成的影响作用。模拟计算表明,大陆板块的早期碰撞,会引起碰撞附近的局部应力集中现象(平均压力较周围增大了5-9倍),构造压力在超高压中所占的比例约为20%-35%,由此推测,大别山高压-超高压岩石形成深度可能为65-80km。为此本文提出超高压岩石新成因模式-大陆点碰撞模式。这种模式符合力学基本原理,也符合地质记录和地质过程,可以解释为什么超高压岩石并非沿碰撞造山带全线存在,而是出现某些特定部位。本文提出喜马拉雅山撞带的东西犄角是典型的点碰撞区域,陆壳岩石的超高压变质作用均发生在这两个特定的部位。  相似文献   

4.
超高压变质岩生成问题中解决低密度大陆地壳深俯冲力学机制是一个关键问题。虽然俯冲地幔岩石可以裹携十几千米乃至几十千米尺度的陆壳块体到超高压变质深度,大规模的陆壳深俯冲需要特殊的构造条件。新西兰南岛北端研究表明,俯冲大洋板块能携带宽度达150km左右的窄条陆壳克服浮力达到超高压变质深度,而大陆板块碰撞的主体则浮在岩石圈上形成走滑断层。苏鲁-大别可能曾存在类似的构造条件:苏鲁西侧俯冲海洋板片首先拖曳苏鲁陆壳俯冲到超高压变质深度;随后大别以西俯冲大洋板片拖曳大别至超高压变质深度,而陆壳浮力导致苏鲁陆壳停止俯冲,飘浮的陆壳被北推而形成郯庐断裂;秦岭陆陆碰撞造山后大别超高压陆壳也折返;秦岭作为典型造山带,虽然不排除零星超高压变质的可能,但不具备大规模超高压变质的条件。  相似文献   

5.
大别山碰撞造山带的地球动力学   总被引:33,自引:4,他引:33  
王清晨  林伟 《地学前缘》2002,9(4):257-265
大别山碰撞造山带的形成和其中超高压变质岩的形成折返具有统一的动力学过程。对大别山超高压变质岩形成 -折返的研究表明 ,大别山的超高压变质作用是冷大陆地壳被前导洋壳下拽而持续俯冲的结果。超高压变质岩的折返是多阶段的。第一阶段 (2 30~ 2 10Ma)在低地温梯度 (约10℃ /km)下发生同俯冲折返 ;第二阶段 (2 10~ 170Ma)的折返由深俯冲板片的断离引发 ,浮力开始起作用 ;第三阶段 (170~ 12 0Ma) ,以区域性岩浆活动、穹隆伸展构造活动和深剥蚀沉积为特征。从分析超高压变质岩的形成折返过程入手 ,以侏罗纪末作为时间参照点 ,以合肥盆地的侏罗系顶界作为当时的地理参照点 ,根据不同岩石单元中岩石的形成深度和碰撞造山中的位移状态 ,可把大别山碰撞造山带划分为原位系统、准原位系统、异位系统和热穹隆改造系统等结构单位。陆陆碰撞造山带形成的物理学前提是俯冲陆壳物质的低密度 ,而最终形成造山带的直接动力学过程则是深俯冲板片的断离及其引发的一系列近垂向运动的地质过程。  相似文献   

6.
大陆俯冲化学地球动力学   总被引:37,自引:4,他引:33  
李曙光 《地学前缘》1998,5(4):211-234
碰撞造山带陆壳岩石中柯石英和金刚石的发现证明在碰撞造山过程中,一侧陆壳可俯冲到地幔深度。在这一俯冲过程中,随着温度、压力的升高,俯冲陆壳岩石必然会发生一系列地球化学变化,并会与周围的地幔物质发生不同形式和程度的相互作用。认识这些地球化学变化及相互作用,并以此制约大陆壳俯冲的动力学过程是陆壳俯冲化学地球动力学的主要研究内容和目标。文中以大别山陆壳俯冲为例,总结了陆壳俯冲化学地球动力学研究的主要进展。已有的研究表明在大别山造山带,扬子陆块是在二叠纪末—三叠纪初开始向华北陆块下俯冲,并在230~218Ma达到峰期超高压变质作用。该俯冲板块可能在200~190Ma断离,从而使陆壳俯冲终止。伴有超高压变质作用的陆壳深俯冲作用可能仅在两个较大陆块碰撞时才发生。超高压岩石的折返至少经历了两次快速抬升。最初一次是在陆壳俯冲时期(228~210Ma),超高压岩石由逆冲构造推至中地壳并构造就位于角闪岩相围岩中;第二次是在俯冲板块断离之后(200~190Ma)由浮力推动超高压岩石与其围岩一起快速抬升。在俯冲过程中,俯冲陆壳可以析出流体交代改造上覆楔形地幔。该富集地幔在俯冲陆壳断离之后可发生部分熔融,产生具有Nb,Zr,Ti亏损及?  相似文献   

7.
张泽明  董昕  贺振宇  向华 《岩石学报》2013,29(5):1713-1726
喜马拉雅造山带是印度与亚洲大陆碰撞作用的产物,正在进行造山作用,是研究板块构造的天然实验室.高压和超高压变质岩分布在喜马拉雅造山带的核部.这些变质岩具有不同的形成条件、形成时间和形成过程,为印度与亚洲碰撞带的几何学、运动学和动力学提供了重要的限定.含柯石英的超高压变质岩产出在喜马拉雅造山带的西段,它们形成在古新世与始新世之间(53~46Ma),为印度大陆西北边缘高角度超深俯冲作用的产物,并经历了快速俯冲与快速折返过程.在约5 Myr内,超高压变质岩从>100km的地幔深度折返到了中地壳深度,且仅仅叠加角闪岩相退变质作用.高压榴辉岩产出在喜马拉雅造山带中段,形成时间约为45Ma,为印度大陆低角度深俯冲作用的产物,经历了至少20Myr的长期折返过程,叠加麻粒岩相退变质作用和部分熔融.高压麻粒岩产出在喜马拉雅造山带的东端,是印度大陆东北缘近平俯冲作用的产物,峰期变质作用时间约为35Ma,经历了约20Myr的长期折返过程,叠加了麻粒岩相和角闪岩相退变质作用,并伴随有多期部分熔融.因此,喜马拉雅造山带的变质作用具有明显的时间与空间变化,显示出大陆深俯冲与折返过程的差异性,以及大陆碰撞造山带形成机制的多样性.  相似文献   

8.
大别山超高压变质岩形成深度的同位素限制   总被引:8,自引:0,他引:8  
大别山超高压变质岩形成深度是各国地质学家十分关心的问题。它不仅影响对碰撞造山带形成机制和演化过程的认识,而且影响对地球深部状况及地球动力学的研究。该文对大别山超高压变质岩已有同位素资料进行了分析与讨论。大别山榴辉岩的εNd为-6.2~-17,εSr为18~42,且显示明显的Nd同位素的不平衡现象。大别山榴辉岩的氧同位素组成研究表明,这些榴辉岩的原岩在超高压变质前,不同程度地与贫18O的大气降水(或海水)发生过氧同位素交换,且在超高压变质过程中依然保留了这些痕迹。除一个样品外,大别-苏鲁地区的榴辉岩的3He/4He比值都落在0.79×10-7~9.35×10-7范围内,显示陆壳岩石来源He的重要贡献。所有Sr-Nd、O和He同位素研究均表明:超高压变质岩保存着表壳岩石原岩的同位素特征,而未显示变质时受到地幔物质的明显影响。对于超高压变质岩的上述同位素特征,有人认为是由于大别山造山带俯冲和折返的速度太快造成的。由于造山带俯冲和折返的速度太快,表壳岩石原岩变质时来不及与地幔物质发生交换,故没有留下地幔物质参与的痕迹。该研究认为这种解释有些勉强,因为大别造山带俯冲和折返时间至少需要15Ma.在如此长的时间内,在100多公里地幔深处高于700℃的高温下发生超高压变质作用,表壳岩石原岩不可能不与地幔物质发生同位素交换。相反,如果认为大别山超高压变质岩就在地壳内形成,则大别山超高压变质岩同位素的所有特征就很好解释了。   相似文献   

9.
南苏鲁造山带根部的物质组成及变质作用   总被引:25,自引:0,他引:25  
在南苏鲁地区,大陆造山带根部主要由5种不同化学成分的岩石类型组成,分别以石榴石橄榄岩、榴辉岩、片麻岩、石英岩和大理岩为代表。它们的原岩是古老的花岗质侵入岩、表壳岩和基性一超基性侵入岩,并一起经历了超高压变质作用。正变质的花岗质片麻岩是超高压变质带的主要组成部分,构成了花岗质和奥长花岗质岩石组合,不同于典型的TTG岩系。变质火山岩具有双峰式火山岩地球化学特征,很可能形成于大陆裂谷环境。除幔源石榴石橄榄岩以外,其他各种岩石都具有可变的、但均低于正常变质岩的氧同位素值,表明其原岩曾在地壳浅部发生了不同程度的水—岩交换作用,并在整个超高压变质过程中保持其米级尺度的不均匀性。新的温、压计算结果表明,石榴石橄榄岩的形成条件可能是1100—1200℃和6.5—8.0GPa,地热梯度等于或小于5℃/km,即以前认为变质作用不可能达到的“禁区”。  相似文献   

10.
对全球28个超高压变质岩产地的地质对比研究发现,超高压变质带的发育,与弧-陆和陆-陆碰撞造山带关系密切。碰撞造山带多发育于活动的大陆边缘。在那里,冷的陆壳物质可以深俯冲到另一个相对稳定的未俯冲的板块之下,其深度可以超过90~120 km,在高压达>2.5 GPa和温度约600℃或更高条件下,导致超高压特征矿物如,柯石英、金刚石等的生成。在空间分布上,超高压变质带集中于欧亚大陆及其周缘,澳洲和北美目前尚未有报道。从时代上看,超高压变质带多出现于显生宙,前寒武纪只有晚元古代(泛非运动期)少数两例。说明以超高压变质带为特征的碰撞造山作用,是显生宙以来,陆壳增生达到一定的规模后,才出现的构造体制;Rodinia和Pangea古大陆的裂解,使地温梯度降低,从而有利于超高压变质带的生成。  相似文献   

11.
扬子板块俯冲加积杂岩的初步研究   总被引:5,自引:0,他引:5  
根据大别—苏鲁造山带浅变质岩系的地质产状,本文将其与高压—超高压岩石一起作为大陆板块俯冲的加积杂岩来考虑,发现它们在岩石类型、变质时代和原岩性质等方面具有一定的可比性,因此可看作为扬子板块大陆俯冲的加积杂岩。由此根据板块俯冲的加积楔模型,对浅变质岩系的形成和演化过程进行了地球动力学解释,结果对扬子板块俯冲及其与华北板块碰撞的俯冲带和缝合带位置提供了制约。  相似文献   

12.
苏鲁造山带超高压变质岩岩石学、氧同位素、流体包裹体和名义上无水矿物的研究表明,流体-岩石相互作用在大陆地壳的俯冲与折返过程中起到多重的重要作用,并形成了复杂的流体演化过程:(1)大陆表壳岩通过与高纬度大气降水的交换作用被广泛水化,并获得了异常低的氧同位素成分;(2)在水化陆壳物质的俯冲过程中发生了一系列的进变质脱水反应,所释放的流体主要结合进了高压、超高压含水矿物和名义上无水超高压矿物;(3)在超高压变质过程中,以水为主的变质流体通过选择性的吸收使其盐度逐渐升高,并在峰期出现高密度、高盐度的H2O或CO2-H2O流体。有机质的分解反应在局部形成了以CO2、N2、CH4或它们的混合物为主要成分的变质流体;(4)名义上无水超高压矿物的结构水出溶是早期退变质流体的主要来源,并在局部富集形成了高压变质脉体;(5)透入性的中、低盐度水流体活动使超高压变质岩通过一系列的水化反应转变成角闪岩相变质岩;(6)沿韧性剪切带和脆性破碎带的强烈水流体活动为绿片岩相退变质作用和低压石英脉的形成提供了变质流体;(7)可变盐度的H2O或CO2-H2O流体是整个超高压变质岩形成与折返过程中的主要流体,但局部的流体.岩石相互作用形成了非极性的变质流体。  相似文献   

13.
造山带岩石中一些特殊矿物出溶结构或显微结构的认定与研究,不仅成为识别该岩石是否经历超高压变质的可靠标志之一,而且在限定陆壳俯冲深度及其动力学演化过程等研究方面发挥着重要作用,因而长期受到地球科学家的高度关注.  相似文献   

14.
南苏鲁造山带的超高压变质岩及岩石化学研究   总被引:10,自引:0,他引:10  
在南苏鲁造山带核部,古老的表壳岩和花岗质侵人岩经历了三叠纪的超高压变质作用,在超高压变质岩石抬升过程中经历了强烈的角闪岩相退变质作用改造。据岩相学和岩石化学研究,可以区分出六大类典型超高压变质岩:榴辉岩、石榴石橄榄岩、石英硬玉岩、石榴石多硅白云母片岩、硬玉石英岩和石榴石绿辉石文石岩。这些岩石的角闪岩相退变质产物分别是斜长角闪岩、蛇纹岩、长英质片麻岩、长石石英云母片岩、石英岩和大理岩。地球化学研究揭示,榴辉岩的原岩很可能是形成在大陆内部构造环境的拉斑玄武岩,而石榴石橄榄岩可能是起源于亏损的残余地幔。石英硬玉岩原岩包括正变质的花岗岩和奥长花岗岩、副变质的酸性火山碎屑岩和长石石英砂岩。大面积分布的古老花岗岩很可能是形成在大陆或大陆边缘环境。长石石英云母片岩、石英岩和大理岩的原岩为沉积岩,与副变质的长英质片麻岩和基性火山岩—起构成了古老的表壳岩组合。双峰式的酸性和基性火山岩组合的存在也证明部分表壳岩是形成在大陆环境。因此,可以推测南苏鲁造山带核部的超高压变质岩原岩为形成在大陆板内环境的沉积岩—酸性和基性火山岩—花岗岩和奥长花岗岩建造。  相似文献   

15.
大别地块超高压变质省的构造变形研究   总被引:9,自引:0,他引:9  
索书田 《地学前缘》1999,6(4):255-262
构造解析的基本目的是建立构造事件造成的地质体几何学、运动学、动力学和流变学。大陆碰撞造山带内含柯石英及微粒金刚石等矿物组合的超高压(UHP) 变质岩的形成和折返,是极为复杂的地球动力学过程。与世界上已知大多数超高压变质带相似,中国大别地块内超高压变质省现今观察到的主体构造形式,主要是在碰撞或超高压变质峰期后伸展体制下形成的。通过对大别超高压变质省内伸展组构及挤压( 碰撞) 组构的鉴别、分析,结合有关超高压变质带构造学研究领域的简略综述指出,在揭示超高压变质带的形成及折返动力学过程中,构造解析的思维和工作方法是行之有效的  相似文献   

16.
扬子板块俯冲的构造加积楔   总被引:44,自引:2,他引:44  
在总结大洋板块俯冲形成加积楔的基础上,对大别-苏鲁造山带内部及北缘浅变质岩进行了系统的研究,指出它们是扬子大陆板块俯冲的构造加积楔,这些浅变质岩既有产出在造山带北缘,也有少量出露在超高压变质带的内部,它们均形成于前印支期扬子板块北缘,主体为低绿片岩相变质的复理石相沉积岩和少量侵入岩,并遭受了与造山带超高 为质岩相同的加里东-印支期构造热事件的改造,具有板块俯冲过程中被刮削下来的构造残睛-加积楔的形成机制和特征。垂向剖面上,这些浅变质岩原岩主要由表层浅海复理石相沉积岩系和下伏陆壳基底岩石(花岗质侵入体-变质中基性杂-岩大理岩组合)两部分组成,而超高压变质岩原岩主要为扬子板块北缘的俯冲击壳基底岩石,将构造加积楔形成理论纳入到印支期扬了变质岩及构造加积楔形成过程的时空耦合关系,确定子扬子板块俯冲加积楔不同构造部位浅变质岩的构造组合特点,探讨了扬子板块俯冲过程中构造加积楔形成的动力学过程。  相似文献   

17.
中国中央造山带内两个超高压变质带关系   总被引:8,自引:1,他引:8       下载免费PDF全文
中国中央造山带内至少发育两个超高压变质带,一个是南阿尔金-柴北缘-北秦岭超高压变质带,超高压峰期变质年龄为早古生代(500~400 Ma),代表扬子与中朝克拉通间的深俯冲和碰撞带;另一个是研究程度较高的大别-苏鲁超高压和高压变质带,峰期变质年龄主体是三叠纪(250~220 Ma),代表扬子克拉通内部的陆内大陆深俯冲和碰撞带。对东秦岭看丰沟及香坊沟的变质岩片详细岩石学和构造学研究以及先期造山带尺度的构造、岩石和年代学研究资料分析证明,南阿尔金-柴北缘-北秦岭超高压变质带,向东不能与大别-苏鲁超高压和高压变质带的任一部分相连,包括南大别和西北大别超高压及高压变质岩石。相反,大别-苏鲁超高压及高压变质带,向西经桐柏山,横过南襄盆地延伸到南秦岭的西峡及商南一带。仅在东秦岭-大别山范围内,两个超高压变质带分别位于南丹断裂系南北两侧,沿造山带近平行延展,之间被一系列以断裂或剪切带为边界的岩石构造岩片相隔,不能构成横贯中国中部统一的巨型超高压变质带。任何有关中国中央造山带构造格架及构造演化模型的建立,均应考虑其内部发育两个时代和功能不同的超高压变质带。  相似文献   

18.
构造分析结合变质作用PTt轨迹和同位素年代学资源指出,现今观察到的大别-苏鲁超高压-高压变质带区域构造框架,主要是在印支期中-朝与扬子克拉通斜向碰撞及超高压-高压变质作用期后伸展体制下形成的(200-170Ma)。构造样式类似于北美科迪勒拉型变质核杂岩并发育多层低缓角度地壳尺度的伸展拆离带。几何形态表现为大型穹窿或小型穹窿群。区域伸展构造叠加于先期碰撞或挤压构造之上,控制了超高压和高压变质岩石的空间分布。大规模的近水平韧性伸展流动,是在超高压-高压变质岩石从地幔深处折返到中、下地壳层次及角闪岩相环境下发生的。广泛的减压部分熔融作用反映的壳-幔动力学过程和地壳热结构的变化,是促使造山带从挤压体制向伸展体制转换的因素之一。证明造山带尺度的地壳伸展和薄化作用,在超高压和高压变质岩石折返到地表动力学过程中,曾起过重要作用。  相似文献   

19.
崔军文  王连捷  唐哲民  史金松 《地质学报》2006,80(12):1944-1951,插4
俯冲作用作为高压—超高压变质岩带形成的重要机制之一,俯冲块体的运动速度和强度将是制约其形成和演化的重要构造因素,借助于板块俯冲作用的研究探讨高压—超高压变质岩带的形成过程,对研究苏鲁高压—超高压变质岩带的形成机制和动力学建模,是一种有益的尝试。俯冲作用最显观的构造效应是俯冲地块前缘陆表面和Moho的强烈下插,导致山前坳陷带的形成和陆壳的加积、增厚。数值模拟的初步研究表明,俯冲地块的平移速度与山前坳陷带的坳陷量和坳陷速度及Moho的下弯量和下弯速度大致呈正相关关系,表明两者是俯冲过程中重要的壳内活动性构造界面。俯冲块体作为高压—超高压变质带深俯冲作用的运动载体,俯冲块体内部构造界面的运移,间接反映了高压—超高压变质带的形成过程和运动速度的变化,数值模拟结果似乎表明陆表面和Moho有可能成为探讨高压—超高压变质岩带形成过程和深俯冲作用的重要标志。俯冲块体内部的构造应力场也是制约和影响高压—超高压变质带形成过程的重要构造因素之一,模拟计算表明,俯冲过程中俯冲地块的壳内应力场较为稳定,始终以挤压应力为主导,俯冲作用强度仅影响应力大小,而不改变壳内应力场的应力分布。可见,高压—超高压变质岩带基本形成于挤压构造应力场环境...  相似文献   

20.
中国超高压变质岩十五年研究进展   总被引:10,自引:2,他引:10       下载免费PDF全文
王清晨 《地球学报》2001,22(1):11-16
本文对20世纪80年代以来中国超高压变质岩研究的历史做了简要回顾,列举了该领域的5项重要进展,即:①发现了大批超高压变质岩,使中国的大别山-苏鲁超高压变质岩带成为世界之最;②通过细致的矿物学研究,确认低密度的陆壳岩石可以被俯冲到地下200多公里深处,经历超高压变质作用;③多种同位素体系定年结果表明,大别山-苏鲁超高压变质作用是在中生代早期扬子板块俯冲到中朝板块之下时发生的;④对超高压变质岩中O、C、H等同位素的研究进一步表明,超高压变质作用过程中并无大规模流体活动,大气水的O同位素成分可被带到地幔深处而不改变;⑤通过对岩石学、矿物学、年代学、构造地质学、地球物理学等多学科资料的综合研究,提出了超高压变质地体的多阶段折返模式。文中对目前超高压变质岩研究中的几个争论焦点做了归纳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号