首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The elemental composition of high temperature ash (750°C) and forms of S were studied in 25 coal seams from the Escucha Formation (Middle Albian) in the Teruel Mining District, northeast Spain. The principal analytical method was ICP-MS, but ICP-ES was also used in the determination of some trace elements. The analytical data show wide ranges of trace element cotnents among the coal seams studied, even in the vertical profile of a single coal seam. These wide ranges of the trace element concentrations are attributed to both syngenetic and epigenetic processes.When a comparison was made between the average trace element contents of the Teruel Mining District coals, and those of the average content in worldwide coals, the Teruel coals show slightly higher concentrations of Be and U, and lower concentrations of Ba, Cd, Mn, Pb, Sr and Zr. Further, three main groups of trace elements were differentiated on the basis of the inorganic/organic association: (1) trace elements with inorganic affinity; Ba, Ce, Co, Cr, La, Mn, Ni, Rb and Zr. Between these, Ba, Ce, Cr and Rb show a well defined correlation with the clay mineral content, and Co and Ni with pyritic-S content; (2) trace elements with an intermediate (mixed) affinity; As, Cd, Cu, Dy, Er, Eu, Gd, Ge, Ho, Lu, Mo, Nd, Pb, Pr, Sb, Sm, Sr, Tb, Th, Tm, U, Yb and Zn. In this group, As, Cd, Cu, Ge, Mo, Th, U and Zn show a weak trend associated with the mineral matter and Sr with the organic matter; and (3) Be shows an organic affinity. The high mineral matter content (21.3% HTA) of the Teruel coals may account for the great number of elements with inorganic affinity. This classification represents a general trend, but the results show that the affinities of some trace elements (e.g. As, Sb and Zn) may vary from one coal seam to another in the Teruel Mining District.  相似文献   

2.
山西平朔安太堡露天矿9号煤层中的微量元素   总被引:12,自引:0,他引:12       下载免费PDF全文
庄新国  曾荣树 《地球科学》1998,23(6):583-588
使用ICP-AES方法对安太堡露天矿9号煤层中的微量元素进行了系统测定,检测出53种微量元素,将研究煤样的平均微量元素质量分数与世界范围微量元素平均质量分数相比较,煤样中Li,Ga,Sr,Zr,Nb,Sn和Ta具有较高的富集,而Cr,Co,Ni,Ge,Rb,Y,Cs和Ba具有较低的富集,研究资料表明不同微量元素在垂向剖面上其质量分数具有不同的分布特征。经相关分析表明:(1)与镜质组含量相关的元素有  相似文献   

3.
With the aim of better understanding geochemistry of coal, 71 Late Permian whole-seam coal channel samples from western Guizhou Province, Southwest China were studied and 57 elements in them were determined. The contents of Al, Ca, Co, Cr, Cu, Fe, Ga, Hf, K, Li, Mn, Mo, Nb, Ni, Sn, Ta, Ti, Th, U, V, Zr, and REEs in the Late Permian coals from western Guizhou Province are higher than the arithmetic means for the corresponding elements in the US coals, whereas As, Ba, Br, F, Hg, P, Se, and Tl are lower. Compared to common Chinese coals, the contents of Co, Cr, Cu, Ga, Hf, Li, Mn, Mo, Ni, Sc, Sn, Ti, U, V, Zn, and Zr in western Guizhou coals are higher, and As, F, Hg, Rb, Sb, Tl, and W are lower. Five groups of elements may be classified according to their mode of occurrence in coal: The first two, Group A, Tm–Yb–Lu–Y–Er–Ho–Dy–Tb–Ce–La–Nd–Pr–Gd–Sm, and Group B, As–Sr–K–Rb–Ba–F–Ash–Si–Sn–Ga–Hf–Al–Ta–Zr–Be–Th–Na, have high positive correlation coefficients with ash yield and they show mainly inorganic affinity. Some elements from Group B, such as Ba, Be, Ga, Hf, and Th, are also characterized by significant aluminosilicate affinity. In addition, arsenic also exhibits high sulfide affinity (rS–Fe>0.5). The elements, which have negative or lower positive correlation coefficients with ash yield (with exceptions of Bi, Cs, Nb, Mn, Se, and Ti), are grouped in other four associations: Group C, Cr–V–Mo–U–Cd–Tl; Group D, Hg–Li–Sc–Ti–Eu–Nb–Cs–W; Group E, Bi–Sb; and Group F, Co–Ni–Cu–Pb–Zn–Mg–Se–Ca–Mn–S–Fe. The correlation coefficients of some elements, including Co, Cr, Cu, Fe, Hg, Li, Mo, Ni, P, S, Sc, U, V, and Zn, with ash yield are below the statistically significant value. Only Cr and Cu are negatively correlated to ash yield (−0.07 and −0.01, respectively), showing intermediate (organic and inorganic) affinity. Manganese and Fe are characterized by carbonate affinity probably due to high content of epigenetic veined ankerite in some coals. Phosphorus has low correlation coefficients with any other elements and is not included in these six associations. There are five possible genetic types of enrichment of elements in coal from western Guizhou Province: source rock, volcanic ash, low-temperature hydrothermal fluid, groundwater, and magmatic hydrothermal inputs.  相似文献   

4.
A test comparing concentrations of 57 chemical elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr) determined by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 294 samples of the same bottled water (predominantly mineral water) sold in the European Union in glass and PET bottles demonstrates significant (Wilcoxon rank sum test, α = 0.05) differences in median concentrations for Sb, Ce, Pb, Al, Zr, Ti, Th, La, Pr, Fe, Zn, Nd, Sn, Cr, Tb, Er, Gd, Bi, Sm, Y, Lu, Dy, Yb, Tm, Nb and Cu. Antimony has a 21× higher median value in bottled water when sold in PET bottles (0.33 vs. 0.016 μg/L). Glass contaminates the water with Ce (19× higher than in PET bottles), Pb (14×), Al (7×), Zr (7×), Ti, Th (5×), La (5×), Pr, Fe, Zn, Nd, Sn, Cr, Tb (2×), Er, Gd, Bi, Sm, Y, Lu, Yb, Tm, Nb and Cu (1.4×). Testing an additional 136 bottles of the same water sold in green and clear glass bottles demonstrates an important influence of colour, the water sold in green glass shows significantly higher concentrations in Cr (7.3×, 1.0 vs. 0.14 μg/L), Th (1.9×), La, Zr, Nd, Ce (1.6×), Pr, Nb, Ti, Fe (1.3×), Co (1.3×) and Er (1.1×).  相似文献   

5.
The concentration of trace elements and their distribution in the late Permian coal in the Heshan coal field, Guangxi Autonomous Region, were analysed in this paper. The late Permian coal of the Heshan mining district was developed in a low energy and shallow, confined carbonate platform. Heshan coal is a low volatile bituminous coal characterized by a high sulphur content, ranging between 2.0% and 8.2%. Compared with the worldwide average content of the trace elements in coal, the content of some trace element in the study coal is markedly high (Bi, Ce, Cr, Cs, Cu, Ga, Hf, Sr, Ta, Th, U, V, W, Y, Zr, La, Mo, Nb and Sc).The trace element associations were investigated by means of intracorrelation analysis. Some elements, such as Cl, F and Sr are found in coal in association with the carbonate minerals. V, Cr, Zn, Mo, Ni and As contents in coal vary significantly amongst the coal samples. They are mainly concentrated in the lower part of the coal #4 upper of Suhe and Lilan mines and the coal #4 lower of Dong mine, and these possibly occurring in minerals such as arsenide and sulphide. The content of U in Heshan coal is high and is mainly concentrated at the upper and the lower parts of the coal seam and it is associated with mineral assemblages with Ba, Mo, V, Ni, Zn, Rb and Cr. Furthermore, La and Ce are highly correlated with those found in phosphate minerals and Pb, Sc, Ga, Th, Y and Sn to those in aluminosilicate minerals. The enrichment of some elements such as V, Cr, Zn, Mo, Ni, Rb as well as total sulphur and iron in the lower part of most coal seams might be associated with the formation of soil horizon before the accumulation of peat in the basin. Some other elements such as Cl, F, Sr and Ca are locally concentrated in the top of specific coal seams as a result of the leaching from overlying carbonates.  相似文献   

6.
《Applied Geochemistry》1999,14(1):27-39
One hundred and fifty Norwegian bedrock groundwater samples, from Bergen and from Vestfold (Oslofjord), have been analysed by ICP-MS techniques at two laboratories for a large suite of trace elements including rare earth elements (REEs) and Y. The bedrock lithologies include granites (dominated by the Permian Drammen Granite) and Permian latites/rhomb porphyries from Oslofjord, and Caledonian/Precambrian granitic and gneissic lithologies in the Bergen area. The REEs show good correlation with each other, with the exception of Eu. REEs generally show a weak negative correlation with pH. REE concentrations are highest in waters in acidic lithologies and generally decrease with increasing atomic weight. Yttrium, La, Ce and Nd are the most abundant REEs in the waters, with median concentrations exceeding 0.1 μg/l. On crustal (PAAS)-normalised plots, distinct geochemical signatures are observed for the different lithologies. Most groundwaters exhibit negative Eu anomalies on such plots, except for latitic waters from the Oslo area which show a positive Eu anomaly. Aquifer host-rock-normalised plots for groundwaters from Vestfold indicate minor enrichment in heavier REEs and depletion in Ce during water–rock interaction.  相似文献   

7.
The La Luna Formation (Maraca section), Maracaibo Basin, was studied by means of V and Ni analysis of the bitumen, total organic carbon (TOC), total sulfur (St), major elements (Si, Al, Fe, Mg, Mn, Ca, Ti, Na, K, P), trace elements (V, Ni, Co, Cr, Cu, and Zn), and electron microprobe analysis (EPMA) of the whole rock, and St, major elements (Si, Al, Fe, Mg, Mn, Ca, Ti, Na, K, P), trace elements (V, Ni, Co, Cr, Cu, Zn, Mo, Ba, U, Th) and rare earth elements (La, Ce, Nd, Sn, Eu, Th, Yb, Lu) of the carbonate-free fraction. The results are discussed based on the organic and inorganic association of trace elements and their use as paleoenvironmental indicators of sedimentation. An association between V and organic matter is suggested by means of correlation between V and Ni vs. TOC, the use of EPMA (whole rock) and V and Ni concentrations (carbonate-free fraction), whereas Ni is found in the organic matter and the sulfide phase. Fe is present as massive and framboidal pyrite, whereas Zn precipitates into a separate phase (sphalerite), and Ni, Cu and, in some cases, Zn, can be found as sulfides associated with pyrite. Concentrations of V and Ni (bitumen), TOC, St, V, Ni, Cr, Cu and Zn (whole rock), U, Th, Mo (carbonate-free fraction) are indicative of changes in the dysoxic sedimentation conditions in the chert layers (TOC, St, V, Ni, Cu and low Zn and V/Cr <4) to euxinic anoxic conditions in the argillaceous limestone (TOC, St, V, Ni, Cu and high Zn and V/Cr >4). In the sequence corresponding to the argillaceous limestone, variations in the concentrations of TOC, St, V, Ni, Zn, Cu and Cr (whole rock) can be observed, also suggesting variable sedimentation conditions. The following is proposed: (i) sedimentation intervals under euxinic conditions associated with high contribution and/or preservation of organic matter, allowing a high concentration level of V and Ni in the organic phase and the accumulation of Cu, Zn and Ni (in a smaller proportion) in the sulfide phase; (ii) sedimentation intervals under anoxic conditions and in the presence of relatively lower H2S, which allowed lower concentrations of V and Ni in the organic phase and higher concentrations of Cu, Zn, and Ni in the sulfide phase. Rare earth elements (REE) concentrations exhibit a marked increase in Ce, Nd, Sm, Eu, Y and Lu for the QM-3 interval, relative to Post-Archean Average Shale (PAAS). REE enrichment in shales has been related to the presence of phosphate minerals such as monazite or apatite. However, these minerals were not detected through XRD or EPMA in the whole rock or in the carbonate-free fraction. The association of REE with organic matter is suggested due to the absence of phosphate minerals, although assessment of these elements require further analysis.  相似文献   

8.
The geochemistry of trace elements in the underground and open-pit mine of the Goze Delchev subbituminous coal deposit have been studied. The coals in both mines are highly enriched in W, Ge and Be, and at less extent in As, Mn and Y as compared with the world-wide Clarkes for subbituminous coals. Ni and Ti are also enhanced in the underground coals, and Zr, Cr and Mo in the open-pit mine coals.Characteristic for the trace element contents in the deposit is a regular variation with depth. The following patterns were distinguished for profile I: a — the element content decreases from the bottom to the top of the bed paralleling ash distribution (Fe, Co, As, Sb, V, Y, Mo, Cs, REE, Hf, Ta, Th, P and Au); b — Ge and W are enriched in the near-bottom and near-top coals; c — in the middle part of the bed the content of K and Rb is maximal, while that of U is slightly enriched; d — Ba content decreases from the top to the bottom of the bed. In profile II, W and Be contents decrease from the bottom to the top. The near-bottom, and especially the near-roof samples of profile IV are highly enriched in Ge, while for W the highest is the content of the near-bottom sample.Ge, Be, As, Mn, Cl and Br are mainly organically associated. The organic affiliation is still strong for Co, B, Sr, Ba, Sb, U, Th, Mo, La, Ce, Sm, Tb and Yb in the underground coals, and Fe, Co, Na, W, Sr, Y and Ag in the coals from the open-pit mine. K, Rb, Ti, Zr, Hf and Ta are of dominant inorganic affinity. The chalcophile and siderophile elements correlate positively with Fe and each other and may be bound partly with pyrite or other sulphides and iron containing minerals.Compared statistically by the t-criteria, the elements Na, Li, Cu, Zn, Pb, Cr, Ni, Co, Mo, Fe and Be are of higher content in the open-pit mine. Tungsten is the only element of higher concentration in the underground mine. The contents of Ge, As, Sr, V, Mn, Y, Zr and P are not statistically different in both mines.It was supposed that there were multiple sources of the trace elements in the deposit. The source of the highly enriched elements (W, Ge, Be, and As) most probably were the thermal waters in the source area. The contemporary mineral springs are of high content of these elements. Another source were the hosting Mesta volcanic rocks, which are enriched in Sb, Mo, Hf, U, Th, As, Li and Rb. Some of the volcanics were hydrothermally altered and enriched or depleted of many elements. Thus, the hydrothermal solutions were also suppliers of elements for the coals. It is obvious that the contents, distribution and paragenesis, of the trace elements in both Goze Delchev coals reflect the geochemical specialization of the source area, including rocks, paleo- and contemporary thermal waters.  相似文献   

9.
文章以西藏墨竹工卡县邦铺钼(铜)矿床辉钼矿为研究对象,采用高精度电感耦合等离子质谱( ICPMS)对辉钼矿进行了稀土和微量元素测试.测试结果显示辉钼矿具有轻稀土富集的右倾配分模式,轻重稀土内部分馏明显.辉钼矿稀土元素不同程度地出现铕负异常和铈负异常现象,分析得出其铕负异常可能是继承了成矿流体自身铕亏损的特征,而铈负异常...  相似文献   

10.
Major, trace and rare earth elements (REE) concentration of the Eocene limestones, Jaisalmer Basin, Rajasthan, India are analysed to reconstruct the depositional conditions and to identify sources of REEs. Among the major oxides, CaO is the dominant oxide followed by SiO2 in the studied limestones. Trace element Ba dominates over the other trace elements and it shows negative correlation with CaO. The Sr, occurring in small concentration, shows positive correlation with CaO. Other trace elements such as V, Zr, Sc, Y, Rb, Ni, Pb Co, Cu, U occur in small concentrations. The studied limestones show a positive correlation of ΣREE with Fe2O3, Ni, Th, Sc, and Y. These limestones possess sea-water like shale-normalized REE + Y pattern with light REE depletion, slight Gd enrichment, slightly positive La anomaly, positive Y anomaly, positive Eu anomaly, negative Ce anomaly and superchondritic Y/Ho ratio from 23.12 to 28.57. The dominance of CaO and low percentage of MgO suggest that mineral phase is calcite and there is absence of dolomitization. The occurrence of SiO2 and Al2O3 in appreciable percentages may be because of the siliciclastic input during the limestone precipiatetion. The low concentration of Uranium (0.4-3.7) and authigenic Uranium (Average Total U-Th/3 value = 0.74) indicate that the studied limestones were precipitated in oxic condition from seawater. The depletion of LREE suggests that the limestones were precipitated from the seawater. The positive correlation of ΣREE with Al2O3 Fe2O3, Ni, Th, Sc, and Y and negative correlation with CaO suggest an input of siliciclastic sediments from the land during limestone precipitation. The negative Ce anomaly, slightly positive La anomaly, slight Gd enrichment, positive Y anomaly, and positive Eu anomaly also suggest that the limestone was precipitated from the seawater with some siliciclastic input from continent. The low values of the Y/Ho ratio (23.12 to 28.57) in the studied limestones suggest some modification of the seawater by the input of freshwater in a coastal environment. The REEs of the studied limestones are correlable with the shallow sea water REEs with exception of a few elements. We envisage a coastal/shallow marine depositional environment where mixing of the continental material in sea water appears feasible.  相似文献   

11.
通过野外调研发现,秦岭造山带山阳地区水沟口组黑色岩系主要由黑灰色微晶灰岩、炭质泥板岩、灰白色粘土岩、黑灰色含炭-钙质硅板岩、灰黑色含炭泥质硅板岩及浅红色硅质板岩组成;岩系中磷结核及重晶石纹层常见。采用等离子质谱仪(ICP-MS)方法对岩系的稀土元素及微量元素测定,结果显示岩系中成矿物质含量丰富(如V、Mo、Ni、Ba、Pb、Zn、U、Ag、Cu、Cd、Tl、Bi和Cr等元素的平均含量是地壳丰度的几倍到几十倍),稀土元素和微量元素的含量与磷质、炭质以及钡关系密切;稀土模式曲线基本平行显示其成因相同;泥质和硅质岩类是主要的含矿岩性;不同程度的δEu正异常、中到弱的δCe负异常及相应的稀土、微量元素比值如Ce/La、V/(V+Ni)等指示岩石形成于干燥缺氧环境并有热水物质加入,La/Yb-Ce/La图解及La/Yb-REE图解表明岩系与海相沉积及基性岩成因关系密切。结合岩系的地质特征认为:山阳地区水沟口组黑色岩系形成于被动陆缘的一种干燥缺氧的深水-半深水滞留断陷局限海盆,期间热液(水)活动频繁、低等浮游生物发育,对岩系中矿物质的富集具有非常重要的意义。  相似文献   

12.
The paper summarizes data on the geochemistry of metaterrigenous rocks from 26 reference Archean territories: the Pilbara and Yilgarn blocks; Isua and Akilia complexes; Wittwatersrand, Swaziland, Pongola, and Yellowknife supergroups; Khapchanskaya and Gimol’skaya groups; Kan, Sharyzhalgai, Chupa, Slyudyanka, and Onot complexes; etc. The general sets of data points and the calculated median values of the concentrations of trace elements and their ratios are compared to those of Archean and post-Archean shales. In Ce/Cr-Co/Hf, Eu/Eu*-GdN/YbN, Ce/Cr-Th/Sc, Th/Sc-Sc, Th-La, La/Sm-Sc/Th, Yb-GdN/YbN, Th/Sc-Cr, Ni-Cr, and some other diagrams, the fields in which the most data points of Archean metaterrigenous rocks group are outlined. The results of this research indicate that there are no values of geochemical parameters that are inherent only in Archean or only in post-Archean fine-grained terrigenous rocks. Within 80–85% confidence levels, most individual compositions of Archean metaterrigenous rocks are characterized by the following geochemical parameters: (1) Th/Sc < 0.6–0.7, (2) Ce/Cr < 0.6, and (3) Eu/Eu* > 0.70–0.75. If the median values are used, these ranges can be further constrained to (i) Th/Sc < 0.55, (ii) Ce/Cr < 0.4, (iii) Cr/Th > 25, and (iv) Th < 12 ppm. Compared to PAAS, Archean metaterrigenous rocks are characterized by higher median concentrations of Cr and Ni and the Eu/Eu*, Sc/Th, Cr/Th, and Co/Hf ratios, whereas the Nb, La, Ce, Yb, Hf, Th, and U concentrations and the La/Sm and Ce/Cr ratios of PAAS are, conversely, lower. The median values of the LaN/YbN ratios of reference Archean terranes can be either higher or lower than in PAAS, likely depending on the proportions of various rock types in the sources of the terrigenous material. The medians of the GdN/YbN ratios of ~60% of the reference Archean metaterrigenous terranes in our databank are slightly higher than the GdN/YbN ratios of PAAS. The median values of the LaN/SmN ratios of Archean terrigenous rocks are mostly slightly lower than the typical PAAS ratios.  相似文献   

13.
西藏多不杂矿集区斑岩铜矿地球化学指标研究   总被引:2,自引:0,他引:2  
多不杂矿集区位于西藏改则县北部,是近些年发现的超大型斑岩型铜矿床,在以多不杂为中心,东西长约30km,南北宽约10km的范围内,包括多不杂、波龙、色那、拿顿、拿若、尕尔勤和铁格龙7个矿区。本文在前人工作的基础上,通过对矿集区钻孔岩芯样品地球化学数据进行旋转正交因子处理和成矿元素Cu与稀土元素La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y、微量元素U、Th的相关性分析,发现轻重稀土元素均在Cu矿(化)体部位相对富集。另外微量元素U、Th(尤其是Th),与金属元素Cu含量随深度的变化也存在一定的对应关系,在Cu矿化部位相对富集。研究表明稀土元素La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y与微量元素U、Th可能是一种潜在有效的矿产勘查地球化学指标。  相似文献   

14.
The Allan Lake carbonatite, found in 1977 by an airborne gamma-ray spectrometric survey, is a small (about 0.4 km2), unexposed, ankeritic-sideritic, REE-enriched carbonatite. Minor phases include biotite silico-carbonatite, orthoclase-dolomite carbonatite, apatite-rich carbonatite and narrow zones of intense chloritization. A poorly exposed fenitized aureole dominated by abundant hematitic veining and minor acmite-bearing veins grades into a brecciated border zone surrounding the carbonatite. Radial, breccia, lamprophyre and hematite-rich dykes are present within the fenitic aureole.Glacial erosion has produced a dispersal train of lithologically distinctive till which covers an area of approximately 10 km2 and is characterized by anomalous (10–20 times background), concentrations of Ba, Nb, Th, Ce, La, Zn, Mn and Fe; and elevated (5–10 times background) concentrations of Y, P, Cu, Pb, Mo, Co and U. This dispersal train is detectable by airborne and ground gamma-ray spectrometry, till geochemistry, boulder mapping and biogeochemistry.  相似文献   

15.
Measurement of the major and trace elements were carried out on the Lower Cretaceous limestones interbedded in the volcano-sedimentary Alisitos Formation, northwestern México to understand the source of rare earth elements (REEs) and paleo-redox conditions. The five limestone beds (from the base up, Unit 5 to Unit 9) of the Alisitos Formation show large variations in SiO2 content (0.9–27.9%). A low concentration of CaO is observed in Unit 6 and Unit 8, and high content of CaO is observed in Unit 5, Unit 7 and Unit 9. The limestones are depleted in many trace elements with respect to Post-Archaean Australian Shale (PAAS), whereas Sr shows slight enrichment when compared to PAAS. The concentrations of ΣREE are higher in Unit 6 and Unit 8 (37.4 ± 7.5; 46.6 ± 19.4; respectively) than Unit5, Unit7, and Unit 9 (9.1 ± 3.2; 11.3 ± 9.4; 4.2 ± 2.5; respectively). The limestones of the Alisitos Formation show a non-seawater-like REE + Y pattern with positive Eu anomalies relative to PAAS (0.95–2.47). Variations in ΣREE, Al2O3, Zr, Sc, REE + Y patterns, and Y/Ho ratios are influenced mainly by the amount of terrigenous materials. The variations in the Eu/Eu*, La/Sc and La/Co suggest that the terrigenous materials included in the lower four limestone beds (from Unit 5, Unit 6, Unit 7 and Unit 8) were likely contributed by intermediate to felsic rocks whereas terrigenous materials from Unit 9 were derived from mafic to intermediate source rocks. The slightly negative to slightly positive Ce anomalies in the studied limestones resulted from variations in the bottom water oxygenation. This was also corroborated by V/Cr and Ni/Co ratios suggesting that the depositional environments experienced large fluctuations in oxygenation conditions ranging from oxic to anoxic conditions during the deposition of limestones of the Alisitos Formation.  相似文献   

16.
Oil‐source correlation studies have demonstrated that the crude oils in the Ordos Basin were mainly derived from organic‐rich lacustrine mudstones of the Yanchang Formation. The sedimentology, petrology and organic geochemistry of these mudstones have been studied intensively, but their trace and rare earth element (REE) characteristics have received little attention. In this paper, we present trace and rare earth element data of the Upper Triassic Yanchang Formation mudstones in the southern Ordos Basin to constrain the palaeoenvironment, provenance and depositional setting. Our results show that the REE and trace element concentrations of the Yanchang Formation mudstones are higher than those of the upper continental crust (UCC). The Sr contents and Sr/Ba and Y/Ho ratios of these mudstones indicate the absence of a marine transgression during the sedimentation of the Upper Triassic mudstones. The depositional environment of the Upper Triassic mudstones was slightly oxic as evidenced by the values of Eu/Eu*, Ce/Ce*, Ceanom, δU, U/Th, V/Cr and Ni/Co. The UCC‐normalized distribution pattern of REEs, spider diagrams, the ratios of related elements, the bivariate diagrams of Th/Sc–Zr/Sc and La/Th–Hf and the ternary plots of La–Th–Sc and Th–Sc–Zr/10 signify that the provenances of the Chang9–7 mudstones were mainly derived from a continental island arc, whereas the provenances of the Chang6–3 mudstones were mainly derived from a mixture of continental island arc and active continental margin, and the latter contain less recycled materials. Combined with the previous studies of detrital zircon dating and petrography of the Yanchang Formation sandstones in the southern Ordos basin, we propose that the Qinling orogenic belt served as one of the primary source regions occurring between the Chang7 and Chang6 periods, corresponding to the initial uplift of the west Qinling Mountains due to the collision between the Yangtze and North China blocks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The quartz vein-type gold deposits are widely hosted by the Neoproterozoic (Xiajiang Group) epimeta- morphic clastic rock series in southeastern Guizhou Province, China. The Zhewang gold deposit studied in this paper occurs in the second lithologieal member of the Pinglue Formation of the Xiajiang Group. Trace element geochemis- try of host rocks, quartz veins and arsenopyrite has revealed that ore-forming fluid was enriched in sulphophile ele- ments such as Au, Ag, As, Sb, Pb and Zn, and simultaneously concentrated some magmaphile elements such as W and Mo, which probably provides some evidence for multi-stage mineralization or overprinting of magmatic hydro- therm. Quartz veins and arsenopyrite were characterized by depletion in HFSE and enrichment in LREE. Hf/Sm, Nb/La and Th/La imply that the ore-forming fluid was probably a NaC1-H20 solution system enriched in more C1 than F; Th/U values reflect the strong reducibility of the ore-forming fluid, coincident with the sulfide assemblages. The values of Co/Ni reflect that magmatic fluids may have partly participated in the ore-forming process and Y/Ho values have proved that the ore-forming fluid was associated with metamorphism and exotic hydrotherm which has reformed former quartz veins during late mineralization. The concentrations of REE, Eu anomalies and Ce anomalies of this deposit display that ore-forming elements mainly were derived from host rocks and possibly from a mixed deep source, and the ore-forming fluid was mixed by dominant metamorphic fluid and minor other sources. The physical-chemical conditions of ore-forming fluid changed from the initial stage to the late stage. The metamorphic fluid is responsible for the mineralization. Therefore, the Zhewang gold deposit is classified as a quartz vein-type gold deposit which may have been reformed by magmatic fluids during the late stage.  相似文献   

18.
王双  杨瑞东 《古地理学报》2018,20(2):285-298
贵阳花溪燕楼剖面下三叠统大冶组微量元素及稀土元素地球化学特征分析表明: U、V、Mo的含量及U/Th、V/Th、Mo/Th的比值,大于澳大利亚后太古代页岩(PAAS)的含量和比值。V/(V+Ni)、V/Cr、Ni/Co、V/Sc以及MoEF/UEF等氧化还原敏感元素的参数特征及其含量显示,大冶组一段处于缺氧-贫氧环境,大冶组二段处于贫氧—氧化环境。研究区经PAAS标准化的稀土配分模式比较平坦,根据大冶组的δCe及Ce/La的参数特征,认为早三叠世整体处于海洋环境;大冶组底部呈现明显Eu正异常,表明受火山热液作用影响明显;可见早三叠世贫氧环境可能与火山作用频发有关。大冶组上部表现微弱Eu正异常,说明火山作用的影响减弱。基于双壳类化石的结构及生活方式分析认为Claraia营外栖足丝固着的生活方式,属于贫氧生物,壳类化石结构只表现棱柱状外壳层和复杂交错纹层状珍珠层,其生活环境应为水动力条件较弱的浅水区。  相似文献   

19.
塔里木盆地下寒武统玉尔吐斯组是国内已发现的最优质海相烃源岩(TOC=29.8%),但针对该层段开展的古环境地球化学研究较匮乏.选取柯坪地区于提希剖面,开展野外勘查、薄片鉴定、主微量元素及总有机碳含量测试,探究富有机质烃源岩形成环境.研究表明,玉尔吐斯组岩石富集了包括V、U、Ni、Ba、Mo、Cu、Zn等微量元素;其底部硅质页岩展现的“负Ce异常、正Y异常、正Eu异常”的左倾稀土配分模式,较低的Ce/Ce*(均值0.45),较高的Y/Ho(均值39.77)和极高的Eu/Eu*(均值35.32)与重晶石、磷结核等,表明塔里木地台北缘在早寒武世初期处于硫化还原和强烈热液活动的海水背景.氧化还原指标U/Al、V/Al、Th/U、V/Sc及Mo-U共变分析,揭示了早寒武世塔里木地台北缘是开阔海;同时,海水经历了“硫化缺氧(玉尔吐斯组A组Th/Uavg=0.070)→次氧化(B组Th/Uavg=1.21;C组Th/Uavg=0.62;D组Th/Uavg=1.21)→硫化缺氧(肖尔布拉克组Th/Uavg=0.13)”的变化过程;并具备较高的古生产力(TOCmax=17.2%,玉尔吐斯组ex-Baavg=8 634.85×10-6)和有利的有机质保存条件.据此,建立了玉尔吐斯组“周期性缺氧事件-热液活动-沿岸上升洋流”背景的缓坡型海相烃源岩发育模式.研究可为塔里木盆地深层-超深层远景油气资源评价与我国西北地区早寒武世古环境演化研究提供重要科学参考.   相似文献   

20.
The REE-Ti silicate chevkinite has been recognised previously in Miocene ignimbrites from Gran Canaria, and in correlative offshore syn-ignimbrite turbidites. We have estimated the partition coefficients of REE, Y, Zr and Nb for chevkinite and co-existing peralkaline rhyolitic (comendite) glass using synchrotron-XRF-probe analyses (SYXRF) in order to evaluate the role of this mineral in the REE budget of felsic peralkaline magmas. The Zr/Nb ratio of the chevkinite is 1.55–1.7, strongly contrasting with Zr/Nb of 6.5 in the associated glass. Zr shows a three-fold enrichment in chevkinite relative to the residual melt, whereas Nb is enriched by a factor >10. The enrichment of Ce and La in chevkinite is even more significant, namely 19 wt(%) Ce and 12 wt(%) La, compared to 236 ppm Ce and 119 ppm La in the glass. Chevkinite/glass ratios are 988±30 for La, 806±30 for Ce, 626±30 for Pr, 615±40 for Nd, 392±50 for Sm, 225±30 for Eu, 142±25 for Gd, 72±20 for Dy. For trace elements, we derived KdTE of 74±25 for Y, >8 for Hf, >50 for Th, 15±5 for Nb and 3.55±0.4 for Zr. Mineral/glass ratios for co-existing titanite are 28±10 for La, 86±20 for Ce, 98±30 for Pr, 134±35 for Nd, 240±50 for Sm, 50±20 for Eu, 96±25 for Gd, 82±25 for Dy, 99±30 for Y, 45±10 for Nb and 3±0.5 for Zr. Based on these data, the removal of only 0.05 wt% of chevkinite from a magma with initially 300 ppm Ce would deplete the melt by 93 ppm to yield 207 ppm Ce in the residual liquid. Chevkinite thus appears, when present, to be the controlling mineral within the LREE budget of evolved peralkaline magmas.Editorial responsibility: I. Parsons
Valentin R. TrollEmail: Phone: +353-1-6083856Fax: +353-1-6081199
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号