首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
林晓英  曾溅辉 《现代地质》2010,24(6):1157-1163
自然地质条件下不同气源的天然气体由于其组成不同,对天然气水合物的成藏条件产生不同影响。以2个常规天然气样品为例,在中国石油大学自行研制的水合物成藏一维模拟实验装置上进行了水合物成藏模拟实验,并对实验前后的原始气样、水合物形成后的游离气、分解气进行了气体组分分析。实验结果表明:水合物分解气中CH4、N2含量降低,而C2H6、C3H8、iC4H10、nC4H10、CO2含量增大,游离气中各组分的变化趋势刚好相反,这意味着同等的温度压力条件下,C2H6、C3H8、iC4H10、nC4H10、CO2等与CH4、N2相比更易于形成水合物;通过计算分解气体各组分相对于原始气体的相对变化量发现,在实验温度压力条件下(高压釜温度范围为4~10 ℃,气体进口压力为5 MPa),烃类气体与水结合形成水合物的能力由甲烷、乙烷、丙烷、异丁烷依次增加;由于不同烃类气体与水合物结合的条件不同,导致水合物形成过程中气体组分发生分异,水合物中甲烷含量减少、湿气含量增大,而游离气中气体变化相反,在自然地质条件下形成由水合物稳定带上部溶解气带、水合物稳定带及下部游离气带(或常规气藏)甲烷含量呈中-低-高特点,湿气和二氧化碳含量呈低-高-中的三层结构分布模式,因此,同一气源气体在不同带内表现出不同的气体组分特征。  相似文献   

2.
介绍一个预测不同温度、压力、盐度和沉积物毛细管孔径条件下甲烷水合物 溶液 气体多相平衡模型。该模型以Van der Waals和 Platteeuw热力学模型、量子力学从头算粒子相互作用势能、DMW 92状态方程和Pitzer电解质理论为基础,能在很宽广温压范围内预测温度、压力、盐度和毛细管力对甲烷水合物形成和分解的影响。通过对比本模型的预测结果与实验数据,可知本模型能够准确地预测海水和多孔介质中甲烷水合物的相平衡条件。对于一定盐度下多孔介质中甲烷水合物的形成温压条件的在线计算可浏览: www.geochem model.org/models.htm。  相似文献   

3.
利用自行研制的高温高压反应釜,在不同温度、压力和矿化度条件下测试CO2在地层水中的溶解度。实验结果表明:温度一定的条件下,CO2在水中的溶解度随压力的增加而增加;压力一定的条件下,CO2在水中溶解度的主要变化趋势为随温度的增加而降低,当温度大于100℃、压力在22 MPa左右时,CO2在地层水中的溶解度将发生异常,出现低压(小于22 MPa)时随温度的增加而降低,高压(大于22 MPa)时随温度的增加而略微升高;在温度压力都一定的条件下,CO2在水中的溶解度随矿化度的增加而降低。并且,在新测得的实验数据和已有的实验数据的基础上,通过修正PR-HV状态方程中的参数,建立了一个能够精确计算CO2在水中溶解度的模型;并将该模型与其他模型对比。对比结果表明,该模型计算精度最高,平均相对误差仅为2.69%。  相似文献   

4.
在定容条件下,实验研究了甲烷水合物在含水量不同的多孔海泥中的生成特性。所使用的海泥平均孔径为12178 nm,总孔容为4997×10-2 ml/g,比表面积为16412 m2/g。所用海泥样品含水量为40%,实验的温度范围为27415~28115 K,初始生成压力范围为102~144 MPa。实验结果表明,甲烷水合物在海泥中的生成速率以及气体消耗量随着初始压力的增加而增大,随着温度的降低而增大。海泥的复杂孔隙结构能够促进水合物的成核,但会降低水的最终转化率,其作用随着温度的升高与压力的降低而增大。  相似文献   

5.
多步分解法初步研究石英砂中甲烷水合物p-T稳定条件   总被引:1,自引:0,他引:1  
设计加工了一套研究海底沉积物水合物稳定条件实验装置,采用多步加热分解的方法对不同孔隙度的石英砂沉积物甲烷水合物相态平衡点(p-T稳定条件)进行了初步研究。为校验实验装置和实验方法,首先对甲烷水合物在十二烷基硫酸钠(SDS)溶液中的生成和分解过程进行了研究,获得的实验数据与文献数据吻合得很好。在此基础上,以4种不同粒径(96~180μm、180~380μm、212~380μm和380~830μm)的石英砂为介质,分别研究了甲烷水合物的p-T稳定条件。结果表明,实验测得的数据与纯水溶液中的结果基本一致,说明在实验所用的不同粒径石英砂构成的孔隙尺度内,毛细管作用对水合物相态点的影响可以忽略。  相似文献   

6.
对含动力学抑制剂的聚合醇钻井液水合物抑制性进行了实验研究。实验结果表明,加入PVP的水基聚合醇钻井液能够有效抑制甲烷水合物的生成,而PVP(K90)的抑制效果明显优于PVP(K30)。在温度为0℃、初始压力为18 MPa的条件下,只需向水基聚合醇钻井液中添加1%的PVP(K90),就能够确保循环管路中20 h内不会生成水合物。  相似文献   

7.
蔺林林  郭会荣  郝璇  黄忆琦 《地球科学》2014,39(11):1584-1592
乙烷和甲烷是深部天然气藏中的重要组成部分, 精确测量其扩散系数对于正确理解深部页岩储层中的烃类气体的分布运移及其分异具有重要意义.目前乙烷在水中的扩散系数数据局限在低压和283~333K温度范围内, 缺少天然气储层高温高压条件下的数据.本研究利用显微激光拉曼光谱, 在高压透明毛细管中原位观测了20MPa下273~393K温度范围内乙烷在纯水中的扩散, 测定了各温度下的扩散系数, 并用Speedy-Angell指数方程拟合出乙烷扩散系数D(乙烷)(m2/s)与温度T(K)之间的关系式: D(C2H6)=D0[(T/Ts)-1]γ, 式中: D0=13.8055×10-9m2/s, Ts=237.4K, γ=1.7397.相同温度压力条件下, 测得的乙烷的扩散系数小于甲烷的扩散系数.据此计算了2种气体通过低渗透盖层的扩散量的差异, 发现甲烷和乙烷溶解扩散的分异程度随盖层厚度、扩散时间而显著变化.   相似文献   

8.
为提高煤层CH4抽采效率,利用自主研发的实验系统,模拟超临界CO2在深部煤层中驱替CH4的过程,开展了不同温度和注入压力条件下原煤试样中超临界CO2渗流、吸附及驱替CH4实验。结果表明:在恒定温度条件下,随着超临界CO2注入压力逐渐增大,煤体渗透率提高,CO2吸附量增加。超临界CO2注入压力和温度对驱替效果影响显著。不同温度条件下,当超临界CO2注入压力从8 MPa增至12 MPa,CH4驱替量平均增长了0.076 cm3/g,CH4驱替效率增加了17%~23%,超临界CO2置换体积比呈线性递减趋势;相同注入压力条件下,温度每升高10℃,驱替效率平均增加8%,置换体积比平均下降0.5。研究结果为高效抽采煤层CH4和实现CO2封存提供理论依据。   相似文献   

9.
伍向阳  段体玉  杨伟  孙樯 《岩石学报》2008,24(1):171-175
本文描述了合成的Ⅰ型甲烷水合物高压下拉曼光谱测定结果。甲烷水合物用细粒冰和甲烷气在温度0℃~9℃和压力18MPa下历时2天合成,在金刚石压腔里进行了原位的显微观察和拉曼光谱测定。一组温度25℃和压力范围132~901MPa下的拉曼光谱数据显示,样品的光谱呈左高右低的双峰结构,左谱峰位置范围为2904.4~2907.2cm~(-1),右谱峰位置范围为2915~2922cm~(-1),谱峰位置随压力变化,典型光谱的左右谱峰强度比近似为3:1,系典型的Ⅰ型结构特征;这说明甲烷水合物在较高压力下也能保持Ⅰ型结构。作为比较,甲烷气和溶解水中的甲烷的拉曼光谱也进行了测定,它们的拉曼光谱特征与Ⅰ型甲烷水合物的明显不同。  相似文献   

10.
李兆麟 《地学前缘》2000,7(1):271-285
热液金刚石压腔 (HDAC)是 2 0世纪末发展起来的一种高温高压及低温高压实验技术。它可在 - 180~ 12 0 0℃ ,10 0~ 10 0 0 0MPa水热体系进行实验 ,并具直观实验全过程的特点。文中首次运用HDAC在水体系中对哀牢山花岗岩进行了熔融实验 ,在显微镜下观察到花岗岩熔融过程 ,其初熔温度为 712 88~ 714 87℃ ,压力为 2 2 5MPa ,熔融温度为 759 54~76 0 0 0℃ ,压力为 30 0MPa。重点介绍了国外运用HDAC进行冰的高压相、水体系中伟晶岩矿物溶解、可燃有机岩、石油及岩石热解、高压下矿物包裹体均一温度测定及甲烷水合物合成实验研究新成果。甲烷水合物在永久冻土带及大陆坡、海底高原、海底沉积物等地质环境广泛分布 ,储量大 ,可成为 2 1世纪人类使用的新能源。目前世界主要国家的科学家除致力于该资源勘探外 ,还运用不同方法进行甲烷水合物的合成研究 ,以了解其形成条件及性质。开发和应用甲烷水合物具有重大意义 ,为促进我国此项工作开展 ,文中作了重点介绍。  相似文献   

11.
对祁连山冻土区天然气水合物钻井岩心游离气样品开展研究,测试烃类气体的组分和碳氢同位素,判断天然气水合物的气体成因类型及成藏模式。结果显示烃类气体组分复杂,除甲烷外,还含有较高的乙烷、丙烷等重烃组分。甲烷碳同位素分布范围最广,气体成因来源相对简单,没有明显受到次生改造作用的影响。该区天然气水合物属于热解成因,判断来自深部的三叠统尕勒得寺组烃源岩。本研究可为我国高原冻土天然气水合物勘探和开发提供理论依据。  相似文献   

12.
美国天然气水合物研究计划介绍   总被引:9,自引:0,他引:9  
以美国近年来提出的天然气水合物研究计划和项目申请书为基础,介绍美国科学家在天然气水合物研究领域中所关心的关键科学与技术问题和研究焦点,供我国天然气水合物研究者在项目设计和开展研究工作时参考。美国天然气水合物研究关注的重点科学问题主要集中在 4个方面:天然气水合物的物理与化学特性研究;天然气水合物开采技术研究;天然气水合物灾害-安全性与海底稳定性研究;天然气水合物在全球碳循环中的作用研究。在研究方法上主要采取天然气水合物区的现场地质地球化学观测、实验室合成和测定及计算模拟,特别关注与水合物和油气冷泉相关的生命过程及与水合物的相互作用研究。  相似文献   

13.
笼状水合物拉曼光谱特征与结构水合数的耦合关系   总被引:3,自引:0,他引:3  
为了探讨不同气体组分和环境介质对形成笼状结构类型水合物和水合数的影响, 开展了一元体系 (CH4、CO2、C3H8 )和二元体系(CH4 +CO2、CH4 +C3H8、CH4 +N2 )的水合物生成结晶充填过程、结晶构型和动力学特性分析, 并对生成的水合物进行了拉曼光谱分析。结果表明单组分甲烷充填小孔穴 512和大孔穴 512 62 形成Ⅰ型笼状结构水合物(SⅠ), 二氧化碳和丙烷只占据大孔穴 512 64 形成Ⅱ型笼状结构水合物 (SⅡ ); 而二元混合组分中小孔穴中只充填有甲烷, 而没有CO2、N2 和C3H8。应用反褶积的ν1 对称谱带测定了CH4 分子在Ⅰ型结构大孔穴和小孔穴中的相对占有率,并根据谱带的面积比(对应于小孔穴与大孔穴)计算了平衡条件下甲烷水合物孔穴占有率及其耦合的水合数, 认为气体分子的大小不仅影响它所充填的孔穴形态和类型, 而且影响水合物生成的结构类型和水合数。  相似文献   

14.
温度和压力是保持天然气水合物不分解的2个重要参数。依据热物理力学理论和理想气体特性,通过计算机模拟0℃以上甲烷水合物和二氧化碳水合物在不同温度-压力条件下的分解,得到甲烷水合物分解P-T平衡相图,探讨了钻探获取陆域天然气水合物取样温压关系。  相似文献   

15.
Gas hydrate measurements at Hydrate Ridge using Raman spectroscopy   总被引:1,自引:0,他引:1  
Oceanic gas hydrates have been measured near the seafloor for the first time using a seagoing Raman spectrometer at Hydrate Ridge, Oregon, where extensive layers of hydrates have been found to occur near the seafloor. All of the hydrates analyzed were liberated from the upper meter of the sediment column near active gas venting sites in water depths of 770-780 m. Hydrate properties, such as structure and composition, were measured with significantly less disturbance to the sample than would be realized with core recovery. The natural hydrates measured were sI, with methane as the predominant guest component, and minor/trace amounts of hydrogen sulfide present in three of the twelve samples measured. Methane large-to-small cage occupancy ratios of the hydrates varied from 1.01 to 1.30, in good agreement with measurements of laboratory synthesized and recovered natural hydrates. Although the samples visually appeared to be solid, varying quantities of free methane gas were detected, indicating the possible presence of occluded gas in a hydrate bubble fabric.  相似文献   

16.
海底天然气水合物分解与甲烷归宿研究进展   总被引:5,自引:1,他引:5  
综述了近年来天然气水合物分解与甲烷归宿等方面的研究成果。天然气水合物的汇聚与地质构造或地层圈闭有关,其溶解受物质转换控制,分解则受热转换控制。水合物释放甲烷的运移方式包括分散式、中心式和大规模排放式。缺氧氧化和耗氧氧化是甲烷在海洋环境中的2种主要转化方式。天然气水合物释放甲烷的最终归宿主要为:①重新形成天然气水合物;②形成化能自养生物群落和沉淀出碳酸盐沉积;③与氧发生氧化后转变为CO2;④直接排放进入到大气中。沉积物中的微构造、化能自养生物群落、自生碳酸盐矿物及其碳氧同位素组成是水合物释放事件的指纹记录。  相似文献   

17.
The stable isotope values of carbon (δ13Cmethane) and hydrogen (δ2Hmethane) from methane molecules trapped in gas hydrates are useful for differentiation of methane from microbial and thermal origins, providing valuable information during hydrocarbon exploration. Recent studies have reported catalysis of methane hydrates when smectite clays and biosurfactants are present in hydrate-hosting sediments, but catalytic influences on the values of δ13Cmethane and δ2Hmethane are not well documented. In this study, pressure vessel methane hydrates were formed from solutions in contact with smectite clays (montmorillonite and nontronite) and biosurfactants (rhamnolipids and surfactin). Experiments show less than 1‰ differences in values of δ13Cmethane between free and encaged molecules and up to 10‰ variations in values of δ2Hmethane between free and encaged molecules. Notably, methane consumption increased in methane hydrates formed from solutions containing biosurfactants and biosurfactant–smectite mixtures. Results presented here indicate that a hydrate formed in the presence of smectite clays and biosurfactants are characterized by small shifts in free and encaged values of δ13Cmethane and δ2Hmethane and do not complicate interpretation of gas origin. In contrast, methane consumption in hydrates formed under the catalytic effect of smectite clays and biosurfactants modifies gas wetness, obscures gas origin and complicates interpretation of thermal maturity.  相似文献   

18.
In the present study, we have developed a numerical method which can simulate the dynamic behaviour of a seabed ground during gas production from methane hydrate‐bearing sediments. The proposed method can describe the chemo‐thermo‐mechanical‐seismic coupled behaviours, such as phase changes from hydrates to water and gas, temperature changes and ground deformation related to the flow of pore fluids during earthquakes. In the first part of the present study, the governing equations for the proposed method and its discretization are presented. Then, numerical analyses are performed for hydrate‐bearing sediments in order to investigate the dynamic behaviour during gas production. The geological conditions and the material parameters are determined using the data of the seabed ground at Daini‐Atsumi knoll, Eastern Nankai Trough, Japan, where the first offshore production test of methane hydrates was conducted. A predicted earthquake at the site is used in the analyses. Regarding the seismic response to the earthquake which occur during gas production process, the wave profiles of horizontal acceleration and horizontal velocity were not extensively affected by the gas production. Hydrate dissociation behaviour is sensitive to changes in the pore pressure during earthquakes. Methane hydrate dissociation temporarily became active in some areas because of the main motion of the earthquake, then methane hydrate dissociation brought about an increase in the average pressure of the fluids during the earthquake. And, it was this increase in average pore pressure that finally caused the methane hydrate dissociation to cease during the earthquake. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Natural gas hydrates have been hailed as a new and promising unconventional alternative energy, especially as fossil fuels approach depletion, energy consumption soars, and fossil fuel prices rise, owing to their extensive distribution, abundance, and high fuel efficiency. Gas hydrate reservoirs are similar to a storage cupboard in the global carbon cycle, containing most of the world’s methane and accounting for a third of Earth’s mobile organic carbon. We investigated gas hydrate stability zone burial depths from the viewpoint of conditions associated with stable existence of gas hydrates, such as temperature, pressure, and heat flow, based on related data collected by the global drilling programs. Hydrate-related areas are estimated using various biological, geochemical and geophysical tools. Based on a series of previous investigations, we cover the history and status of gas hydrate exploration in the USA, Japan, South Korea, India, Germany, the polar areas, and China. Then, we review the current techniques for hydrate exploration in a global scale. Additionally, we briefly review existing techniques for recovering methane from gas hydrates, including thermal stimulation, depressurization, chemical injection, and CH4–CO2 exchange, as well as corresponding global field trials in Russia, Japan, United States, Canada and China. In particular, unlike diagenetic gas hydrates in coarse sandy sediments in Japan and gravel sediments in the United States and Canada, most gas hydrates in the northern South China Sea are non-diagenetic and exist in fine-grained sediments with a vein-like morphology. Therefore, especially in terms of the offshore production test in gas hydrate reservoirs in the Shenhu area in the north slope of the South China Sea, Chinese scientists have proposed two unprecedented techniques that have been verified during the field trials: solid fluidization and formation fluid extraction. Herein, we introduce the two production techniques, as well as the so-called “four-in-one” environmental monitoring system employed during the Shenhu production test. Methane is not currently commercially produced from gas hydrates anywhere in the world; therefore, the objective of field trials is to prove whether existing techniques could be applied as feasible and economic production methods for gas hydrates in deep-water sediments and permafrost zones. Before achieving commercial methane recovery from gas hydrates, it should be necessary to measure the geologic properties of gas hydrate reservoirs to optimize and improve existing production techniques. Herein, we propose horizontal wells, multilateral wells, and cluster wells improved by the vertical and individual wells applied during existing field trials. It is noteworthy that relatively pure gas hydrates occur in seafloor mounds, within near-surface sediments, and in gas migration conduits. Their extensive distribution, high saturation, and easy access mean that these types of gas hydrate may attract considerable attention from academia and industry in the future. Herein, we also review the occurrence and development of concentrated shallow hydrate accumulations and briefly introduce exploration and production techniques. In the closing section, we discuss future research needs, key issues, and major challenges related to gas hydrate exploration and production. We believe this review article provides insight on past, present, and future gas hydrate exploration and production to provide guidelines and stimulate new work into the field of gas hydrates.  相似文献   

20.
天然气水合物开采数值模拟的参数敏感性分析   总被引:5,自引:1,他引:4  
天然气水合物是储量巨大的一种新型能源,如何有效地开采是关键问题。基于降压开采的机理,建立了一维数学模型,利用自编的数值模拟软件进行了天然气水合物开采过程中的参数敏感性分析;通过与Yousif研究结果进行对比,验证了本模型的正确性。在此基础上,分析了渗透率、初始天然气水合物饱和度及生产压力对开采效果的影响。研究发现,渗透率越大、初始饱和度越低、生产压力越低,天然气水合物分解越快,分解前缘的移动速度越快。研究结果对天然气水合物的实际开采提供了理论支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号