首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Near-liquidus phase relationships of a spinel lherzolite-bearing olivine melilitite from Tasmania were investigated over a P, T range with varying , , and . At 30 kb under MH-buffered conditions, systematic changes of liquidus phases occur with increasing ( = CO2/CO2 +H2O+olivine melilitite). Olivine is the liquidus phase in the presence of H2O alone and is joined by clinopyroxene at low . Increasing eliminates olivine and clinopyroxene becomes the only liquidus phase. Further addition of CO2 brings garnet+orthopyroxene onto the liquidus together with clinopyroxene, which disappears with even higher CO2. The same systematic changes appear to hold at higher and lower pressures also, only that the phase boundaries are shifted to different . The field with olivine- +clinopyroxene becomes stable to higher with lower pressure and approaches most closely the field with garnet+orthopyroxene+clinopyroxene at about 27 kb, 1160 °C, 0.08 and 0.2 (i.e., 6–7% CO2+ 7–8% H2O). Olivine does not coexist with garnet+orthopyroxene+clinopyroxene under these MH-buffered conditions. Lower oxygen fugacities do not increase the stability of olivine to higher and do not change the phase relationships and liquidus temperatures drastically. Thus, it is inferred that olivine melilitite 2927 originates as a 5% melt (inferred from K2 O and P2O5 content) from a pyrolite source at about 27kb, 1160 dg with about 6–7% CO2 and 7–8% H2O dissolved in the melt. The highly undersaturated character of the melt and the inability to find olivine together with garnet and orthopyroxene on the liquidus (in spite of the close approach of the respective liquidus fields) can be explained by reaction relationships of olivine and clinopyroxene with orthopyroxene, garnet and melt in the presence of CO2.  相似文献   

2.
Two metamorphic isograds cut across graphitic schist near Pecos Baldy, New Mexico. The southern isograd marks the first coexistence of staurolite with biotite, whereas the northern isograd marks the first coexistence of andalusite with biotite. The isograds do not record changes in temperature or pressure. Instead, they record a regional gradient in the composition of the metamorphic fluid phase. Ortega Quartzite, which contains primary hematite, lies immediately north of the graphitic schist. Mineral compositions within the schist change gradually toward the quartzite, reflecting gradients in and . The chemical potential gradients, locally as high as 72 cal/m in and 9 cal/m in , controlled the positions of the two mapped isograds. The staurolite-biotite isograd records where fell below 0.80, at near 10–23 bars; the andalusite-biotite isograd records where fell below 0.25, at near 10–22 bars. Dehydration and oxidation were coupled by graphite-fluid equilibrium.The chemical potential gradients apparently formed during metamorphism, as graphite in schist reacted with hematite in quartzite. Local oxidation of graphite formed CO2 which triggered dehydration reactions along the schistquartzite contact. This process created a C-O-H fluid which infiltrated into overlying rocks. Upward infiltration, local fluid-rock equilibration and additional infiltration proceeded until the composition of the infiltrating fluid evolved to that in equilibrium with the infiltrated rock. This point occurs very close to the staurolite-biotite isograd. Pelitic rocks structurally above this isograd show no petrographic evidence of infiltration, even though calculations indicate that volumetric fluid/rock ratios may have exceeded 15 and thin, rare calc-silicate beds show extensive K-metasomatism and quartz veining.  相似文献   

3.
In the Rogers Pass area of British Columbia the almandine garnet isograd results from a reaction of the form: 5.31 ferroan-dolomite+8.75 paragonite+4.80 pyrrhotite+3.57 albite+16.83 quartz+1.97 O2=1.00 garnet+16.44 andesine+1.53 chlorite+2.40 S2+1.90 H2O+10.62 CO2. The coefficients of this reaction are quite sensitive to the Mn content of ferroan-dolomite.Experimental data applied to mineral compositions present at the isograd, permits calculation of two intersecting P, T equilibrium curves. P=29088–39.583 T is obtained for the sub-system paragonite-margarite (solid-solution), plagioclase, quartz, ferroan-dolomite, and P=28.247 T–14126 is obtained for the sub-system epidote, quartz, garnet, plagioclase. These equations yield P=3898 bars and T=638° K (365° C). These values are consistent with the FeS content of sphalerite in the assemblage pyrite, pyrrhotite, sphalerite and with other estimates for the area.At these values of P and T the composition of the fluid phase in equilibrium with graphite in the system C-O-H-S during the formation of garnet is estimated as: bars, bars, bars, bars, bars, bars, bars, bars, , bars, bars.  相似文献   

4.
Under hydrous conditions the stability field of the assemblage Mg-cordierite+K feldspar+quartz is limited on its low-temperature side by the breakdown of cordierite+K feldspar into muscovite, phlogopite and quartz, whereas the high-temperature limit is given by eutectic melting. The compatibility field of the assemblage ranges from 530° C to 745° C at 1 kbar , from 635 to 725° C at 3 kbars , from 695 to 725° C at 5 kbars and terminates at 5.5 kbars . Most components not considered in the model system will tend to restrict this field even more. However, the condition < P total will increase the range of stable coexistence drastically, making the assemblage common at elevated temperatures from contact metamorphic rocks up to intermediate pressure granulites of appropriate bulk composition.  相似文献   

5.
Trace element analyses of 1-atm and high-pressure experiments show that in komatiite and peridotite, the olivine (OL)/liquid (L) distribution coefficient for Al2O3 ( ) increases with pressure and temperature. Olivine in equilibrium with liquid accepts as much as 0.2 wt% Al2O3 in solution at 6 GPa. Convergence to equilibrium compositions at this high level is shown by cation diffusion of Al into synthetic forsterite crystals of low-Al contents in the presence of melt. Convergence to low-Al equilibrium compositions at lower P and T is shown by diffusion of Al out of synthetic forsterite with high initial Al content. Isobaric and isothermal experimental data subsets reveal that temperature and pressure variations both have real effects on . Variation in silicate melt composition has no detectable effect on within the limited range of experimentally investigated mixtures. Least-squares regression for 24 experiments, using komatiite and peridotite, performed at 1 atm to 6 GPa and 1300 to 1960°C, gives the best fit equation: Increase in with increasingly higher-pressure melting is consistent with incorporation of a spinel-like component of low molar volume into olivine, although other substitutions possibly involving more complex coupling cannot be ruled out. High P-T ultrabasic melting residues, if pristine, may be recognized by the high calculated from microprobe analyses of Al2O3 concentrations in residual olivines and estimated Al2O3 concentration in the last liquid removed. In general the low levels of Al in natural olivine from mantle xenoliths suggest that pristine residues are rarely recovered.  相似文献   

6.
Ignimbrites from the central North Island consist mainly of glass or its devitrified product (70–95%); their phenocryst mineralogy is varied and includes plag., hyp., ti-mag., ilm., aug., hblende, biot., san., qtz, ol., with accessory apatite, zircon and pyrrhotite. The Fe-Mg minerals can be used to divide the ignimbrites into four groups with hyp.+aug. reflecting high quench temperatures and biot.+hblende +hyp.+aug., low quench temperatures. Oxygen fugacities lie above the QMF buffer curve and even in ignimbrites with low crystal contents the solid phases apparently buffered fO2. Some ignimbrites contain the assemblage actinolite, gedrite, magnetite and hematite, reflecting post-eruption oxidation. The mineralogy also allows estimation of using pyrrhotite and thence , . The assemblage biotite-sanidine can be used to estimate and thence . Water fugacity is calculated in a variety of ways using both biotite and hornblende as well as the combining reaction . It is high and approaches P total in most ignimbrites (~4kb) but is lower in unwelded pumice breccias. Comparison of temperature estimates using mineral geothermometers for the various phenocryst phases suggests that the ignimbrite magmas showed temperature differences of 60–100 °C and pressure differences of several kilobars. Individual magma chambers therefore, would have extended over several kilometres vertically. The chemical potential of water may have been constant through the magma.  相似文献   

7.
Near-liquidus melting experiments were performed on a high-K latite at fO2's ranging from iron-wustite-graphite (IWG) to nickel-nickel oxide (NNO) in the presence of a C-O-H fluid phase. Clinopyroxene is a liquidus phase under all conditions. At IWG , the liquidus at 10 kb is about 1,150° C but is depressed to 1,025° C at NNO and . Phlogopite and apatite are near-liquidus phases, with apatite crystallizing first at pressures below 10 kb. Phlogopite is a liquidus phase only at NNO and high . Under all conditions the high-K latites show a large crystallization interval with phlogopite becoming the dominant crystalline phase with decreasing temperature. Increasing fO2 affects phlogopite crystallization but the liquidus temperature is essentially a function of . The chemical compositions of the near-liquidus phases support formation of the high-K latites under oxidizing conditions (NNO or higher) and high . It is concluded from the temperature of the H2O-saturated liquidus at 10 kb, the groundmass: crystal ratio and presence of chilled latite margins around some xenoliths that the Camp Creek high-K latite magma passed thru the lower crust at temperatures of 1,000° C or more.  相似文献   

8.
Iron chlorites with compositions intermediate between the two end-members daphnite (Fe5Al2Si3O10(OH)8) and pseudothuringite (Fe4Al4Si2O10(OH)8) were synthesized from mixtures of reagent chemicals. The polymorph with a 7 Å basal spacing initially crystallized from these mixtures at 300 °C and 2 kb after two weeks. Conversion to a 14 Å chlorite required a further 6 weeks at 550 °C. Shorter conversion times were required at higher water pressures. The products contained up to 20% impurities.The maximum equilibrium decomposition temperature for iron chlorite, approximately 550 °C at 2kb, is at an between assemblages (1) and (2) listed below. Synthetic iron chlorite will break down by various reactions with variable P, T, and fugacity of oxygen. For the composition FeAlSi = 523, the sequence of high temperature breakdown products with increasing traversing the magnetite field for P total = =2kb is: (1) corierite+ fayalite+hercynite; (2) cordierite+fay alite+magnetite; (3) cordierite+magnetite+quartz; (4) magnetite+mullite+quartz. Almandine should replace cordierite in assemblages (1) and (2) but it did not nucleate. The significance of the relationship between iron cordierite and almandine in this system is discussed.At water pressures from 4 to 8.5 kb and at the nickel-bunsite buffer, iron chlorite+quartz break down to iron gedrite+magnetite with temperature 550 to 640 °C along the curve. At temperatures 50 °C greater and along a parallel curve, almandine replaces iron gedrite. For on this buffer curve, almandine is unstable below approximately 4 kb for temperatures to approximately 750 °C.  相似文献   

9.
In the 6 component system CaO-MgO-Al2O3-SiO2-CO2-H2 with 9 solid phases (quartz, plagioclase, epidote, tremolite, talc, chlorite, magnesite, calcite, dolomite) and a fluid phase, all 17 possible fluid-absent reactions have been set up and balanced. Using molar entropy and volume data for the solid phases, these reactions are arranged in P-T space about the 8 possible fluid-absent invariant points after the method of Schreinemakers. Field observations in Ordovician greenschist facies basic volcanics at Sofala N.S.W., indicate that neither talc+epidote nor magnesite+calcite are stable under the conditions of metamorphism. Assuming these conditions to apply to the theoretical study here, the fluid-absent invariant points are arranged in a relative fashion with fluid-absent reactions subdividing P-T space into smaller areas.A scheme which permits a fluid of composition (i.e. a fluid containing CO2 and H2O together with other components), is modeled by treating H2O as a mobile component independent of CO2, and by allowing values that lie off the locus of binary H2O-CO2. Taking into account that neither talc+epidote nor magnesite +calcite is to be permitted, the fluid scheme is used to set up and balance all 39 possible fluid-bearing reactions. These are then arranged about 20 valid fluid-bearing invariant points in space after the method of Korzhinskii and Sehreinemakers.A characteristic solid phase assemblage is defined for each P-T area using chemographic relations inherent from the fluid-absent boundary reactions. The fluid-bearing invariant points that have a solid assemblage compatible with the characteristic assemblage in a particular P-T area are stable within the P-T regime of that area. When these stable fluidbearing invariant points are arranged in a relative fashion in space, they outline a fluid grid which can be used to study the possible effects of local variation in X fluid over the particular P-T regime.Symbols Used U chemical potential - S entropy - V molar volume - n coefficient of a phase in a reaction - X mole fraction - T temperature - P pressure - F number of degrees of freedom - C number of components - p number of phases - s solid - slope of reaction - 1 quartz - 2 plagioclase - 3 epidote - 4 tremolite - 5 talc - 6 chlorite - 7 dolomite - 8 magnesite - 9 calcite  相似文献   

10.
Thermal aureoles surrounding intrusions of the Nain complex, Labrador, contain many unique or unusual mineral assemblages in aluminous gneisses and granulites, ironstones, and ultramafic rocks. Some of the limiting assemblages are (in addition to feldspars±pyrrhotite±ilmenite±graphite ±biotite±magnetite): Ga-Ol-Hy-Sp, Ga-Cd-Hy-Sp, Ga-Hy-Ol-Qz, Cd-Hy-Os-Qz, Ga-Cd-Sp-Si, Cd-Sp-Co-Si, Ga-Ol-Hy-Sp, Ga-Cd-Hy-Sp, Hy-Ol-Qz-Aug, and Ol-Hy-Sp(±Chl±Ca-amph±Aug). On the basis of some of these assemblages are (in addition to feldspars±pyrrhotite±ilmenite±graphite from 3.7–6.6 kbar and temperatures from 645–915 ° C. The paucity of hydrous phases, the preponderance of Ksp-Plag-Qz or even Cd-Ksp-Qz without evidence of a melt at these temperatures, the stable occurrence of osumilite, and the common presence of graphite suggest that was extremely low. The presence of graphite-pyrrhotite, the compositions of ilmenites, the compositions of coexisting Fe-Ti oxides, and other mineralogical data indicate the was relatively low and, despite the wide range in bulk compositions and rock types, may have followed an approximately buffered trend. It is possible that the magmas of the Nain complex may have acted as an external buffer for the aureole rocks. The unique nature of these mineral assemblages appears to be a function of the extremely low .  相似文献   

11.
The partition of iron and magnesium between cordierite and garnet depends on as well as temperature. The apparently conflicting experimental data on the values of K D may be reconciled by considering the pertaining during the different experiments.  相似文献   

12.
The proportions of species in a C-O-H-S fluid in equilibrium with graphite, pyrite and pyrrhotite were calculated for a range of pressure, temperature and conditions, using the equilibrium constants and mass balance method, for ideal and non-ideal mixing in the fluid. Under typical metamorphic conditions, H2O, CO2, CH4 and H2S are the principal fluid species with H2S favored by higher temperatures, lower pressures and lower conditions. The dominance of H2S in the fluid at high temperatures leads to values of becoming significantly less than 1, and causes hydrous minerals to dehydrate at lower temperatures than the case when . The production of H2S-bearing fluids provides a mechanism for the selective transfer of sulfur from a graphite-pyrite-pyrrhotite bearing pelite into a pluton via a fluid phase, without requiring wholesale melting and assimilation of rocks. Such a process is feasible if a magma is intruded by stoping, which allows a significant volume of pelite country rock to be raised rapidly to temperatures approaching that of the magma. H2S-bearing fluids produced from graphite-pyrite-pyrrhotite pelites (due either to magmatic intrusion or regional metamorphism) may also mobilize ore-forming metals as sulfide complexes.  相似文献   

13.
Thermodynamic calculations, modified after Nicholls et al. (1971), which relate the activity of silica in a lava to the temperature and pressure conditions at which the lava could be in equilibrium with a mantle mineral assemblage, have been extended to H2O-bearing magmas by using published experimental data to derive the dependence of on the weight fraction of H2O dissolved in a magma. A petrogenetic grid has been calculated which gives the P-T conditions under which a magma with a given at its liquidus at 1 atm could equilibrate with a mantle mineral assemblage containing olivine (ol) and orthopyroxene (opx) for different amounts of H2O in the magma at its source. This grid is in good agreement with the results of experimental studies as summarized by Green (1971) and Brey and Green (1975). The results show that the pressure at which a given magma composition can equilibrate with ol + opx increases for increasing amounts of H2O dissolved in the magma at depth.In addition, experimental data have been used to calculate the effect of olivine crystallization and removal on the in the residual liquid to assess the effect of low-pressure differentiation on . The results show that if 20 % olivine is added to a basalt magma, its calculated pressure of equilibration with ol+opx increases by 4–5 kbar for a given temperature. The calculated effects of olivine removal and H2O addition on are reasonably consistent with the silicate mixing model of Burnham (1975).Thermodynamic calculations of this type may be useful for assessing the internal consistency of certain experimental data, and in extrapolating the results to other magma compositions. The application of these calculations to determining the possible depth of origin of natural lavas appears to be limited primarily by the difficulty in determining in a lava at its liquidus temperature.  相似文献   

14.
Microphenocrystic pyrrhotites were observed in the glassy groundmass of two dacite rocks from Satsuma-Iwojima, southwest Kyushu, Japan. It suggests that the dacite magma was saturated with respect to pyrrhotite at the time of eruption, and thus the sulfur contents in the groundmass can be taken as the solubility of sulfur in the dacite magma. The solubility of sulfur in the dacite rocks thus calculated is 65 to 72 ppm sulfur at the estimated conditions of T=900±50°C, and atm.  相似文献   

15.
Aenigmatite is common in many trachytes, phonolites and agpaitic nepheline syenites. Petrographic evidence suggests that the aenigmatite in these rocks arises by the reaction of Ti-magnetite with a peralkaline silica-undersaturated liquid, and it is postulated that a no-oxide field, where aenigmatite is stable, exists in alkaline undersaturated magmas. This field is similar to that found in silicic liquids but lies below the FMQ buffer curve in space and is probably confined within narrow limits of temperature and oxygen fugacity. The hydrated equivalent of aenigmatite is possibly astrophyllite and the latter mineral is frequently associated with Na-amphiboles in natural rocks. This suggests that the stability field of astrophyllite is similar to that of Na-amphiboles with respect to temperature and .  相似文献   

16.
The Al-in-hornblende barometer, which correlates Altot content of magmatic hornblende linearly with crystallization pressure of intrusion (Hammarstrom and Zen 1986), has been calibrated experimentally under water-saturated conditions at pressures of 2.5–13 kbar and temperatures of 700–655°C. Equilibration of the assemblage hornlende-biotite-plagioclase-orthoclasequartz-sphene-Fe-Ti-oxide-melt-vapor from a natural tonalite 15–20° above its wet solidus results in hornblende compositions which can be fit by the equation: P(±0.6 kbar) = –3.01 + 4.76 Al hbl tot r 2=0.99, where Altot is the total Al content of hornblende in atoms per formula unit (apfu). Altot increase with pressure can be ascribed mainly to a tschermak-exchange ( ) accompanied by minor plagioclase-substitution ( ). This experimental calibration agrees well with empirical field calibrations, wherein pressures are estimated by contact-aureole barometry, confirming that contact-aureole pressures and pressures calculated by the Al-in-hornblende barometer are essentially identical. This calibration is also consistent with the previous experimental calibration by Johnson and Rutherford (1989b) which was accomplished at higher temperatures, stabilizing the required buffer assemblage by use of mixed H2O-CO2 fluids. The latter calibration yields higher Altot content in hornblendes at corresponding pressures, this can be ascribed to increased edenite-exchange ( ) at elevated temperatures. The comparison of both experimental calibrations shows the important influence of the fluid composition, which affects the solidus temperature, on equilibration of hornblende in the buffering phase assemblage.  相似文献   

17.
The positions of the liquidi and the near-liquidus phases of olivine-melilitite+CO2 have been determined under MH-buffered and furnace-buffered conditions up to 40 kb. It is found that CO2 alone lowers the liquidus compared to dry conditions, yet its influence is minor compared to H2O. The major role of CO2 is to favour the growth of orthopyroxene and garnet over that of olivine at least at high pressures. CO2-contents of glasses from experiments just above the liquidus (MH-buffered) were determined as 5.1 % at 10kb; 7.5 % at 20kb, 9.3 % at 30kb and 10–11 % (estimated) at 40 kb. Experiments on (pyrolite –40 % olivine)+H2O+CO2 show that CO2 occurs under mantle conditions as carbonate under subsolidus conditions and dissolved in a melt above the solidus. At 30kb, the solidus lies between 1,000 ° C and 1,050 ° C for vapour-saturated conditions, at and at .  相似文献   

18.
Eclogites are found as lenses or layers in the Precambrian gneiss terrain of the Bitlis Massif in eastern Turkey. Kyanite-eclogites from the region of Gablor Hill in the Bitlis Massif exhibit relatively minor alteration, and consist of garnet, omphacite, kyanite, zoisite, calcic amphibole, phengite, rutile and quartz. In terms of geological setting and mineral compositions, Gablor eclogites are very similar to eclogites from high-grade gneiss terrains. Metamorphic conditions during the eclogite crystallisation are determined as 625±35° C and 16±3 kbars. The coexistence of white mixa, omphacite and kyanite constrains between 0.4 and 1. Primary calcic amphiboles from the Gablor eclogites exhibit conflicting textures, indicating stable coexistence with, as well as growth from omphacite and garnet. This is explained by a buffering reaction between amphibole, garnet, omphacite, zoisite and kyanite during the eclogite crystallisation, whereby is controlled and buffered by the mineral assemblage.  相似文献   

19.
Metasedimentary migmatites from the Archean charnockitic terrain of South India contain the five phase equilibrium assemblage spinel-cordierite-garnet-corundum-sillimanite. The assemblages is a result of anatexis which has generated a silica-deficient anhydrous restite. Peak metamorphic conditions are defined by the intersection of two divariant reactions in the A12O3-SiO2-FeO-MgO system at which the five phases coexist. These reactions are univariant and their intersection invariant if the Fe/Mg ratio of at least one femic phase is fixed.The location of the invariant point in P/T space is derived from extracting standard stage thermodynamic data from published equilibria experiments in the system Al2O3-SiO2-FeO. Microprobe analyses of coexisting spinel, almandine and cordierite specify the Fe/Mg distributions between phases and allow the computation of the five phase invariant point for =P total (770° C, 5.9 kb) and =O (740° C, 4.8 kb). A low , implied by evidence of extreme anatexis, indicates a P/T field of T=740±20° C and Ptotal=4.8±0.5 kb which is consistent with the field of equilibration of interlayered charnockites computed from garnet-hypersthene and garnet-plagioclase pairs.  相似文献   

20.
Three Al-Cr exchange isotherms at 1,250°, 1,050°, and 796° between Mg(Al, Cr)2O4 spinel and (Al, Cr)2O3 corundum crystalline solutions have been studied experimentally at 25 kbar pressure. Starting from gels of suitable bulk compositions, close approach to equilibrium has been demonstrated in each case by time studies. Using the equation of state for (Al, Cr)2O3 crystalline solution (Chatterjee et al. 1982a) and assuming that the Mg(Al, Cr)2O4 can be treated in terms of the asymmetric Margules relation, the exchange isotherms were solved for Δ G *, and . The best constrained data set from the 1,250° C isotherm clearly shows that the latter two quantities do not overlap within three standard deviations, justifying the choice of asymmetric Margules relation for describing the excess mixing properties of Mg(Al, Cr)2O4 spinels. Based on these experiments, the following polybaric-polythermal equation of state can be formulated: , P expressed in bars, T in K, G m ex and W G,i Sp in joules/mol. Temperature-dependence of G m ex is best constrained in the range 796–1,250° C; extrapolation beyond that range would have to be done with caution. Such extrapolation to lower temperature shows tentatively that at 1 bar pressure the critical temperature, T c, of the spinel solvus is 427° C, with dTc/dP≈1.3 K/kbar. The critical composition, X c, is 0.42 , and changes barely with pressure. Substantial error in calculated phase diagrams will result if the significant positive deviation from ideality is ignored for Al-Cr mixing in such spinels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号