首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在新元古代晚期地球上曾发生过全球性的冰川作用,一些学者称之为“雪球”事件。在新元古代“雪球”事件前后,古海水的C、S同位素组成都出现了非常大的变化,在“雪球”之前海水中的碳酸盐非常富集^13C,在“雪球”期间和紧随其之后贫^13C,然后δ^13C值出现了高达10‰的正漂移;在“雪球”开始之前古海水硫酸盐的δ^34S值呈逐渐降低的变化特征,紧随“雪球”之后古海水硫酸盐的δ^34S值出现了超过20‰的正漂移,达到地质史上的最高值,同期形成的硫化物具有异常高的δ^34S值。“雪球”事件前后古海水C、S同位素组成的大幅度变化,是由“雪球”前后全球环境的剧烈变化引起的。“雪球”前后海水C、S同位素的大幅度变化是与“雪球”有关的特殊环境条件作用的结果,也是“雪球”事件存在的有力证据。  相似文献   

2.
早寒武世中―晚期是生命演化史上的重要节点。渝东地区寒武系龙王庙组海相碳酸盐岩地层记录了当时海水的碳同位素变化。在确保碳同位素组成有效保留海水原始信息基础上,分析发现龙王庙组61个碳酸盐岩样品的δ~(13)CV-PDB值分布在+2.7‰~-4.3‰之间;碳同位素变化曲线大体上呈先降低、后升高的变化趋势;地层中―下部δ~(13)C值波动幅度大,正、负漂移事件频发,出现可全球对比的幅度约为4‰的正漂移与幅度约为5‰的负漂移事件;地层上部δ~(13)C值具小幅波动,总体正偏。龙王庙组碳酸盐岩的碳同位素特征,受控于海平面变化、风暴沉积、生物演化引起的海洋生产力变化。龙王庙组沉积的早―中期,海平面变化频繁,陆源碎屑注入量波动性增大,风暴沉积发育,海洋环境的稳定性较差,生物种属数量逐渐降低,导致海洋原始生产力下降及碳同位素组成的频繁波动与多次负漂移事件。龙王庙组沉积的中―晚期,海平面长期缓慢上升,风暴沉积发育程度低,海洋环境趋于稳定,生物多样性增强,海洋原始生产力增大,使得碳同位素组成分布较为稳定,多表现为正值。渝东地区龙王庙组碳酸盐岩中δ~(13)C的急速负漂移可能归因于较浅水体、较充足陆源碎屑注入背景下的风暴沉积。  相似文献   

3.
通过测试分析了浙江江山灯影组碳酸盐岩的碳、氧同位素特征。结果显示δ^13C值在-2.11‰~2.71‰之间,底、顶部表现为负异常,主体部分比较平稳,变化频率不大。呈微弱的降低趋势;δ^18O值在-3.52‰~-8.76‰之间变化,整体比较平稳,从底到顶呈略降低的变化趋势。浙江江山碳、氧同位素的特征与国内外同期地层非常相似,具有全球可对比性,反映浙江江山地区在灯影初期海平面短暂下降,随后海洋环境相对稳定,直到灯影末期,与全球古环境发生强烈变化一样,本区海洋环境也发生了强烈变化。  相似文献   

4.
华南埃迪卡拉系斜坡相带碳稳定同位素特征   总被引:1,自引:0,他引:1  
为验证碳稳定同位素特征在不同沉积环境的变化,选择了斜坡相带张家界田坪埃迪卡拉系剖面进行碳同位素的研究,系统采集了110件碳酸盐岩样品,并在中国地质调查局同位素地球化学开放研究实验室通过MAT-251质谱仪完成了碳、氧稳定同位素测试。测试结果显示,张家界田坪埃迪卡拉系剖面所记录的碳稳定同位素曲线,除了陡山沱组底部的负异常外,和任何已知的这一时期的碳同位素曲线均有较大的差异。从陡山沱组二段中下部开始,δ13 C表现为长期稳定的正漂移。大致在4.0‰附近波动,变化幅度在2.0‰~6.0‰之间,这一趋势一直延续至灯影组二段的中部,随后δ13 C逐渐减小,并在灯影组三段中部降至负值。从田坪剖面所处的古地理位置等因素的综合考虑,该剖面陡山沱组碳同位素δ13C值既受控于氧化还原界面的迁移,同时,也叠加了碳酸盐岩风化作用的影响;而灯影组的碳同位素δ13C值则更多地受控于海平面的变化。  相似文献   

5.
中国南方灯影峡期(晓前寒武纪)是白云岩广泛发育的海洋碳酸盐沉积时期.在灯影组中部发育从海水直接沉积、沉淀的原生白云岩。目前仍保留其原始组构特征。从40个原生白云石(岩)中测得:泥晶白云石的δ^13C值为‰,δ^18O值为-1.17‰(n=6);藻白云岩的δ^13C值为3.52‰,δ^18O值为-1.86‰(n=5);海水纤状白云石胶结物δ^13C值为2.90‰,δ^18O值为-2.65‰(n=8);海水刃状白云石胶结构的δ^13C值为2.96‰,δ^180值为-2.41‰(n=8);泥晶纹层和海水纤状白云石胶结物的δ^13C值为2.79‰,δ^18O值为-3.13‰。40个岩样的δ^13C平均值为3.25‰±0.44‰,δ^18O平均值为-2.12‰±0.98‰(均以PDB标准)。对于灯影峡期海相白云岩的原始δ^13C和δ^18O值,不采用所有样品的平均值.而是采用原生白云石沉积物与海水白云石胶结物δ^13C值和δ^18O值两个图示分布区重叠部分的最重同位素值,即δ^13C值为4.43‰(PDB标准),δ^18O值为-0.62‰(PDB标准),将其作为灯影峡期海洋碳酸盐岩的原始同位素组成。对海水原生白云石胶结物包裹体盐度进行了测定,海水δ^18O计算值为2.90‰(SMOW标准),用原始δ^18O值计算的厚生白云石形成时的海水温度为408℃。这说明中国南方灯影峡期的海洋为走热的较高的海水温度环境。  相似文献   

6.
浙江江山石炭-二叠系碳酸盐岩碳氧同位素特征研究   总被引:14,自引:6,他引:8  
对浙江江山石头山剖面船山组、栖霞组碳酸盐岩进行了 C、O同位素测定. Mn/Sr比值、δ18O值和δ18O-δ13C散点图检验表明,所得同位素数据反映了碳酸盐岩的原始沉积特征.δ13C和δ18O值变化范围分别为- 5.4‰~ 4.4‰和- 12.2‰~- 5.6‰,平均值分别为 0.5‰和- 8.4‰ .在石炭纪-二叠纪分界线附近没有发生明显的同位素漂移现象.本区碳同位素地层曲线与根据沉积微相推断的海平面变化曲线十分吻合,表现为δ13C高值区海水变深.海水在剖面上的变化规律是浅-中等-较深-中等,相应的δ13C演化曲线表现为波谷段-具次级起伏的相对平缓段-波峰段-平缓段.栖霞组台坪相δ13C值大于船山组台坪相,而且曲线较平直,反映海水较深且环境较稳定.研究区地层记录中的海平面从早到晚逐渐增高,与全球海平面变化曲线不一致,可能与浙皖海盆发生过整体沉降有关.这一区域性差异也在碳同位素记录中得到印证,本区晚石炭世晚期-早二叠世早期δ13C值从老到新慢慢增大,最后再略为下降,演化趋势与 Veizer et al.的碳同位素年代演化曲线相反,说明碳同位素演化在一定程度上能反映区域地壳演变状况.  相似文献   

7.
赵利  陈根  董彦龙  尹行 《地质学报》2017,91(6):1259-1268
多彩地玛铅锌矿位于青藏高原东北缘的青海玉树地区,夹持于西金乌兰-金沙江缝合带与班公湖-怒江缝合带之间,属于"三江"北段铜铅锌银多金属成矿带。结合区域地质调查及研究现状,对矿区围岩碳酸盐岩和两期热液方解石脉开展了C-O同位素组成分析,对硫化物矿石矿物和重晶石进行了S同位素组成分析。结果表明:赋矿围岩中方解石的δ~(13)C和δ~(18)O值范围分别为-1.6‰~+3.0‰和+21.2‰~+27.6‰,属于正常海相碳酸盐岩沉积,C和O来自海水;方解石脉体的δ~(13)C和δ~(18)O的值范围分别为-1.5‰~+2.1‰和+15.2‰~+20.3‰,C来自海相碳酸盐岩的溶解作用,~(18)O因热液蚀变碳酸盐岩在水/岩反应中同位素交换作用的影响而明显亏损;硫酸盐重晶石的δ~(34)S值范围为+12.3‰~+15.7‰,硫化物方铅矿、闪锌矿和黄铁矿的δ~(34)S值范围为-8.2‰~+5.7‰,峰值为-2.0‰~-3.0‰,反映了总体富轻硫的特征,硫源主要为盆地热卤水萃取地层蒸发岩中硫酸盐,并通过有机质热分解反应还原为低价硫分馏而得到;硫化物较宽的δ~(34)S变化范围反映了成矿物质在盆地内流体活动期间与不同地层单元发生相互作用,盆地内富有机质地层中沉积或生物成因S也有可能为成矿提供了部分硫源。  相似文献   

8.
碳酸盐岩中碳同位素组成的演化对于古环境研究重要意义。笔者研究了浙江煤山剖面的新元古代地层陡山沱组和灯影组中δ13C,δ18O,87Sr/86Sr以及微量元素含量的演化。所分析的87Sr/86Sr值都大于0.714,同时大多数Mn/Sr比值在4~20之间。因为Sr在海洋中的存留时间很长(约3Ma),盖帽碳酸盐的87Sr/86Sr可指示冰期海水的Sr同位素组成,而在雪球事件期间87Sr/86Sr不可能这么高。在冰期之后,由于冰期前沉积的大量碳酸盐岩和冰期时喷发的玄武岩与陆壳岩石一起风化,海洋87Sr/86Sr也不会升到如此之高,可以认为所研究地层87Sr/86Sr已被成岩改造。大多数δ13O大于-10,并且δ13O和δ13C之间不存在明显的相关关系,表明大多数样品记录了初始的碳同位素组成。δ13C的演化曲线在碳酸盐盖帽以及陡出沱组-灯影组交界呈现明显的负漂移(-4‰~-3‰),在主要的陡山沱和灯影时期则最高升至+3‰~+4‰。碳酸盐盖帽中的δ13C负漂移可能由多种原因造成,例如:因为在雪球事件时海洋中光合作用几乎完全中止,造成海水与海底热液中CO2(约-6‰)的δ13C值趋同;冰期后即使生物产量已经快速恢复,但是极高的碳酸盐沉积速率仍会造成较低的δ13C值;原来甲烷水合物在冰期后中释放出甲烷;冰期后原来分层的海洋发生垂向洋流。目前尚不能唯一地确定碳酸盐盖幔中的δ13C负漂移是由某一个原因造成的,可能是由几个因素共同作用的结果。随着生物产量、大气中CO2含量和洋流都在雪球事件之后逐渐恢复正常,陡山沱组碳酸盐岩中δ13C也逐渐升高到正常的正值。当大气中巨量的CO2通过风化、碳酸盐岩沉积和有机质埋藏等途径被移除以后,气候开始变冷。当气个冷到某个临界范围时,强烈的温盐环流造成的上升洋流把富集12C的深部海水带到表层海水,造成陡山沱组-灯影组交界处的δ13C表现负漂移,同时使大气中的CO2升高到正常水平。灯影时期的气候要比陡山沱稳定。大气和海洋环境在几乎整个灯影时期都维持在适合生态系统的状态中,因面灯影组的δ13C大多为正值。  相似文献   

9.
宛克勇 《矿产与地质》2008,22(6):541-542
对湖南柏坊铜矿床矿石和脉石矿物进行矿物包裹体、碳、氧、氢和硫同位素测定,获得成矿均一温度约为182℃~192℃,盐度为1.2~4.7wt%。方解石的δ^13C为-2.0‰~3.1‰,δ^18Osmow为12.6‰~20.9‰,δD为-67.3‰~-131.6‰,氢、氧和碳同位素数值随矿体浅部到深部由小到大的变化,显示出热液可能是多来源的。硫化物中辉铜矿的δ^34S为-31.8‰~2.9‰,黄铁矿的δ^34S为-2.1‰~+2.9‰。黄铁矿的硫同位素组成大于辉铜矿的硫同位素组成,表明硫同位素达到平衡,并估算出δ^34S∑s为0‰,δ^34S∑s值小,指示出硫可能是岩浆来源。  相似文献   

10.
金小赤 《地球学报》2002,23(1):37-41
空树河组是滇西腾冲地块北部的石碳-二叠纪冈瓦纳相沉积。菱铁矿结核见于该组顶部的黑色泥岩中。将一个结核通过中心切开,在切面上由中心向边缘用牙钻等间隔提取10个样品。同位素测试结果显示,δ^13C自中心向边缘逐渐由-8.09%减为-16.12%,最外一个样例外(-15.39‰),而δ^18O自中心向边缘逐渐由-10.64‰增加为0‰左右。δ^13C的变化情况表明,菱铁矿结核可能形成于硫酸盐还原带。在解释δ^18o的变化情况时,推测在结核开始生长时可能有δ^18O亏损的大气降水掺入,随着埋藏深度的逐渐加大,孔隙水的O同位素逐渐趋近正常海水的值(0‰)。  相似文献   

11.
SEDEX型矿床成矿流体的研究是矿床地球化学研究的重要课题之一。正确识别系统中不同的流体来源及其混合过程,是深刻理解SEDEX型矿床形成演化的关键。系统总结了国内几个典型的SEDEX型矿床同位素研究成果,认为B和Si同位素是根据SEDEX型矿床独特的矿物组合而提出的一种示踪方法,对矿床成因和沉积环境示踪效果理想;He、Ar同位素则因为在地壳和地幔储库中有极不相同的组成,是理想的幔源流体示踪剂。鉴于SEDEX型矿床含有电气石、黄铁矿、硅质岩等特殊的矿物与岩石组合,B、Si、He-Ar同位素可能更适合SEDEX型矿床矿化流体来源研究,并指出其理论发展的薄弱之处。  相似文献   

12.
氮氧同位素在河流硝酸盐研究中的应用   总被引:9,自引:0,他引:9  
多年来,世界各地河流普遍存在硝酸盐污染问题。为控制河流的硝酸盐污染,确定河水中硝酸盐的来源以及研究氮的循环过程就显得尤为重要。由于在不同成因下,硝酸盐的δ15N和δ18O存在着较大差异,因此利用氮、氧同位素方法研究河流硝酸盐问题正日益受到国内外研究人员的重视。综述了用硝酸盐中氮、氧同位素来研究河流硝酸盐的不同来源(大气沉降、化肥、牲畜粪、土壤硝酸盐等)和示踪其地球化学循环过程,特别是反硝化过程,这两方面的研究进展,并对我国河流硝酸盐研究现状进行了讨论及提出今后的研究方向。   相似文献   

13.
对山西大同口泉沟南寒武-奥陶系碳酸盐岩地下水(岩溶水)资源的开发研究中,利用不同价态硫富集34S的不同以及硫同位素分馏,主要是硫酸盐和硫化物中δ34S(SO42-)、δ34S(HS-)的变化,分析了岩溶水的来源,区分出表征循环交替和补给条件的三种地下水类型和环境,识别出口泉南水文地质区内各个地下水子系统及其相互关系。对岩溶水开发中泉域划分问题,使用硫同位素之间的关系,并结合硫酸盐中氧同位素δ18O(SO42-)以及14C关系,表明本区与相邻的两泉域相互独立。岩溶水中δ34S(SO42-)、δ34S(HS-)和δ18O(SO42-)有很大变幅,神头泉Z1岩溶水有罕见的异常值。  相似文献   

14.
广西大厂锡多金属矿床硅质岩和层状矿体氧硅同位素研究   总被引:1,自引:0,他引:1  
姚晓梅  丁悌平 《地球学报》1994,15(Z1):124-130
作者对大厂地区泥盆纪地层中的不同成历的硅质岩进行了系统的硅氧同位素研究。其中一种是与矿化无关的浅海放射虫硅质岩,其硅质来自海水的溶解硅,表现出低的负δ30Si值和变化较大的δ18O值;另一种岩石可能属海底喷气成因,表现出你的负δ30Si值和均一的δ18O值,与硫化物成矿作用有密切关系。  相似文献   

15.
新疆小热泉子铜(锌)矿床同位素地球化学研究及其意义   总被引:1,自引:0,他引:1  
刘申态 《地质与勘探》2011,47(4):624-632
热泉子铜(锌)矿床位于准噶尔板块与塔里木板块对接带北侧的哈尔力克-大南湖晚古生代陆源岛弧带。通过同位素地球化学研究,石英中δ^18O在6.5‰~10‰之间,校正后石英和闪锌矿中流体的δ^18OH2o为-2.95‰~1.73‰,包裹体中δDH2o为-105‰— -66‰;结合矿区基本地质特征,成矿流体很有可能为次火山热液...  相似文献   

16.
作为热液体系中成矿的一个重要前提,水-岩反应一直以来都是矿床学的重要研究内容,亦是国际地学界的前沿问题。该过程伴随着同位素的交换,使流体和岩石的同位素组成发生变化。硼和锂同位素作为非传统的稳定同位素示踪工具,常用于限定流体和岩石的热液反应过程。本文对水-岩反应过程中影响硼和锂同位素分馏的因素作了较全面概述,包括温度、pH值、溶解过程、表面交换反应以及次生矿物的沉淀过程,并取得了一些主要认识:(1)一般地,低温或者高pH值时流体更快速富集11B并且在反应结束时有更高的δ11B值;低温(150℃)时锂进入次生矿物中,高温(200℃)时锂从岩石中萃取出来。(2)初始物质的溶解过程与表面交换反应对锂同位的分馏几乎没有影响。(3)一般而言,次生矿物的形成使7Li优先丢失进入溶液而富集重同位素。最后简单陈述了水-岩反应过程中硼和锂同位素组成的质量平衡模拟计算以及反映流体和岩石的同位素组成的变化。  相似文献   

17.
随着表面热离子质谱(TIMS)和多接收器电感耦合等离子体质谱(MC-ICP-MS)的广泛应用以及同位素分析方法的改进,近10年来非传统稳定同位素(Cu、Zn、Fe、Se、Mo、Cr、Hg等)的研究得到迅速发展.其中,由于Mo同位素的分馏明显受氧化还原条件的控制,使其在指示古环境及古气候的变化方面有独特的地球化学指示意义.同时,Mo同位素在指示成矿物质来源和海洋Mo循环等方面也取得较大成果.因此,Mo同位素地球化学研究已成为国际地学领域的一个前沿和热点.本文综合前人的研究成果,结合近期自己的工作,论述了Mo同位素地球化学研究领域的一些重要进展,详细介绍了Mo同位素的化学分离、提纯和质谱分析技术,并对其应用前景进行了展望.  相似文献   

18.
人为活动通常是地下水硝酸盐污染的主要原因。不同来源的NO3^-具有不同的氮、氧同位素组成,利用地下水NO3^-中的δ15N和δ18O值可有效识别地下水硝酸盐污染的来源。引起地下水中NO3^-含量显著减少的不同物理、化学和生物过程,所产生的氮、氧同位素分馏效应有明显差别。地下水系统中反硝化作用发生时,NO3^-中氮和氧同位素分馏系数呈一定比例。因此NO3^-中δ15N和δ18O值也是示踪地下水硝酸盐循环,尤其是反硝化作用的有效手段。利用NO3^-中氮和氧双同位素,并与其他环境同位素及化学分析技术相结合,示踪NO3^-来源及其循环是地下水硝酸盐污染研究的重要方向之一。综述了利用地下水硝酸盐中氮和氧同位素识别NO3^-污染源与循环的研究进展,简述了近年迅速发展的阴离子交换树脂取样法,概述了此方面研究存在的主要问题,并展望了今后的研究方向。  相似文献   

19.
地下水NO3-氮与氧同位素研究进展   总被引:1,自引:0,他引:1  
人为活动通常是地下水硝酸盐污染的主要原因.不同来源的NO3-具有不同的氮、氧同位素组成,利用地下水NO3-中的δ15N和δ18O值可有效识别地下水硝酸盐污染的来源.引起地下水中NO3-含量显著减少的不同物理、化学和生物过程,所产生的氮、氧同位素分馏效应有明显差别.地下水系统中反硝化作用发生时,NO3-中氮和氧同位素分馏系数呈一定比例.因此NO3-中δ15N和δ18O值也是示踪地下水硝酸盐循环,尤其是反硝化作用的有效手段.利用NO3-中氮和氧双同位素,并与其他环境同位素及化学分析技术相结合,示踪NO3-来源及其循环是地下水硝酸盐污染研究的重要方向之一.综述了利用地下水硝酸盐中氮和氧同位素识别NO3-污染源与循环的研究进展,简述了近年迅速发展的阴离子交换树脂取样法,概述了此方面研究存在的主要问题,并展望了今后的研究方向.  相似文献   

20.
沉积盆地卤水来源的非传统同位素示踪研究进展   总被引:1,自引:0,他引:1  
世界上大多数的沉积盆地内,在结晶基底或者沉积地层内都有矿化度较高的卤水,由于这些卤水通常携带或富含有钾、硼、锂、溴、碘、铷、铯、稀有气体及重金属元素,因此,它们是地学界的研究热点之一。随着测试技术的不断进步,非传统同位素的应用也日益广泛,但在沉积盆地卤水来源和演化方面的研究还十分薄弱,对卤水的来源和演化也还存在争议。文章回顾了硼、锂、碘和惰性气体氦、氩同位素在卤水来源研究方面的进展,并指出由于单一同位素在解释上的片面性,多种同位素相结合的示踪方法研究沉积盆地卤水的来源是国际趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号