首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kafang is one of the main ore deposits in the world-class Gejiu polymetallic tin district, SW China. There are three main mineralization types in the Kafang deposit, i.e., skarn Cu–Sn ores, stratiform Cu ores hosted by basalt and stratiform Cu–Sn ores hosted by carbonate. The skarn mainly consists of garnet and pyroxene, and retrograde altered rocks. These retrograde altered rocks are superimposed on the skarn and are composed of actinolite, chlorite, epidote and phlogopite. Major ore minerals are chalcopyrite, pyrrhotite, cassiterite, pyrite and scheelite. Sulfur and Pb isotopic components hint that the sources of different types of mineralization are distinctive, and indicate that the skarn ore mainly originated from granitic magma, whereas the basalt-hosted Cu ores mainly derived from basalt. Microthermometry results of fluid inclusions display a gradual change during the ore-forming process. The homogenization temperature of different types of inclusions continuously decreases from early to late mineralization stages. The salinities and freezing temperatures exhibit similar evolutionary tendencies with the T homogenization, while the densities of the different types keep constant, the majority being less than 1. Oxygen and hydrogen isotopic values (δ18O and δD) of the hydrothermal fluids fall within ranges of 3.1 to 7.7‰ with an average of 6.15‰, calculated at the corresponding homogenization temperature, and − 73 and − 98‰ with an average of − 86.5‰, respectively. Microthermometry data and H–O isotopes indicate that the ore-forming fluid of the Kafang deposit is mainly derived from magma in the early stage and a mixture of meteoric and magmatic water in late stage. Molybdenite Re–Os age of the skarn type mineralization is 83.4 ± 2.1 Ma, and the stratiform ores hosted by basalt is 84.2 ± 7.3 Ma, which are consistent with the LA-ICP-MS zircon age of the Xinshan granite intrusion (83.1 ± 0.4 Ma). The evidence listed above reflects the fact that different ore styles in the Kafang deposit belong to the same mineralization system.  相似文献   

2.
A strong link between high Sr/Y arc magmas and porphyry Cu–Mo–Au deposits has been recognized in recent years. The Tongshan and Duobaoshan deposits are representative large Cu–Mo–Au deposits in NE China. We report LA–ICP–MS zircon U–Pb crystallization age of 471.5 ± 1.3 Ma for Tongshan ore-related granitoid. Re–Os isotopic analyses of the two chalcopyrite samples from Tongshan deposit show a model age range of 470.2–477.1 Ma. The Duobaoshan and Tongshan ore-related granitoids show higher Sr/Y and La/Yb ratios. The δ34S values of sulphides from the Duobaoshan and Tongshan deposits vary from −2.3‰ to 0.0‰, belonging to a magmatic-hydrothermal system. The Pb isotopic ratios of the sulphides from the Duobaoshan and Tongshan deposit range from 17.201 to 18.453 for 206Pb/204Pb, 15.445 to 15.551 for 207Pb/204Pb, and 36.974 to 37.999 for 208Pb/204Pb, indicating the addition of lower crustal material. The Duobaoshan and Tongshan granitoids were formed in a subduction-related continental arc setting, produced by partial melting of juvenile hydrous basalts underplating the deep continental crust during the Ordovician.  相似文献   

3.
Southern Hunan Province, South China, is located in the central part of the Qin–Hang metallogenic belt and is characterized by abundant Cu–Pb–Zn and W–Sn polymetallic ore deposits. The Cu–Pb–Zn deposits are associated with Jurassic granodiorite porphyries whereas the W–Sn deposits occur within Jurassic granite porphyries. Here we present geochronologic and geochemical data for the Tongshanling Cu–(Mo)–Pb–Zn deposit and the Weijia W deposit in the district of Tongshanling, southern Hunan. Zircon U–Pb dating and molybdenite Re–Os geochronology indicate that the emplacement of the Tongshanling granodiorite porphyry and the associated Cu mineralization occurred at 162–160 Ma, slightly earlier than the formation of the Xianglinpu granite porphyry and associated W mineralization at 159–158 Ma. The Tongshanling granodiorite is high-K calc-alkaline, weakly peraluminous, and weakly fractionated with zircon εHf(t) values of − 15.1 to − 5.6. In contrast, the Xianglinpu granite is alkaline, peraluminous, and highly fractionated, with εHf(t) values of − 9.5 to 0.9. Our data indicate that the Tongshanling granodiorite is relatively oxidized and was formed by the partial melting of Paleoproterozoic crustal material with inputs of mafic magma which was derived from a subduction-modified lithospheric mantle. In contrast, the Xianglinpu granite porphyry is relatively reduced and was formed by direct interaction between the crust and asthenospheric mantle. The difference in magma generation and tectonics is considered to have resulted in the different types of mineralization associated with these two intrusive bodies.  相似文献   

4.
云南个旧锡矿的玄武岩成矿   总被引:20,自引:2,他引:18  
个旧锡矿产于个旧东区,是一个以锡铜为主的超大型多金属矿床,具有火山沉积成矿的某些特征。因遭受燕山期花岗岩的叠加改造,区内个旧组卡房段中玄武岩遭受强烈的变质,它又具有花岗岩热液成矿的特征。区内玄武岩的地质地球化学特征表明,印支期玄武岩中的Sn、Cu、Pb、Zn、Ag和Au的质量分数大多数高于世界玄武岩平均值的若干倍;矿石硫化物的硫同位素δ34S为-1.5‰~4.0‰,平均+0.207‰,在幔源硫附近;铅同位素模式年龄分为两组:第一组为180~240 Ma,反映了印支期的火山沉积成矿作用;第二组为80~140 Ma,反映了燕山期花岗岩的叠加改造成矿作用。区内印支期玄武岩为个旧锡铜多金属矿床的形成提供了主要的成矿物质,与成矿有直接联系。  相似文献   

5.
The recently discovered Longtougang skarn and hydrothermal vein Cu–Zn deposit is located in the North Wuyi area, southeastern China. The intrusions in the ore district comprise several small porphyritic biotite monzonite, porphyritic monzonite, and porphyritic granite plutons and dikes. The mineralization is zoned from a lower zone of Cu-rich veins and Cu–Zn skarns to an upper zone of banded Zn–Pb mineralization in massive epidote altered rocks. The deposit is associated with skarn, potassic, epidote, greisen, siliceous, and carbonate alteration. Molybdenite from the Cu-rich veins yielded a Re–Os isochron age of 153.6 ± 3.9 Ma, which is consistent with U–Pb zircon ages of 154.0 ± 1.3 Ma for porphyritic monzonite, 154.0 ± 0.8 Ma for porphyritic biotite monzonite, and 152.0 ± 0.8 Ma for porphyritic granite. Geological observations suggest that the Cu mineralization is genetically related to the porphyritic biotite monzonite and porphyritic monzonite. All the zircons from intrusive rocks in the ore district are characterized by εHf(t) values between − 13.41 and − 4.38 and Hf model ages (TDM2) between 2054 and 1482 Ma, reflecting magmas derived mainly from a Proterozoic crustal source. Molybdenite grains from the deposit have Re values of 14.6–27.7 ppm, indicative of a mixed mantle–crust source. The porphyry–skarn abundant Cu and hydrothermal vein type Pb–Zn–Ag deposits in the North Wuyi area are related to the Late Jurassic porphyritic granites and Early Cretaceous volcanism, respectively. The Late Jurassic mineralization-related granites were derived from the crustal anatexis with some mantle input, which was triggered by asthenospheric upwelling induced by slab tearing during oblique subduction of the paleo-Pacific plate beneath the South China block, and the Early Cretaceous mineralization-related granitoids mainly from crust material formed within a series of NNE-trending basins during margin-parallel movement of the plate.  相似文献   

6.
The Zijinshan ore district occurs as one of the largest porphyry-epithermal Cu–Au–Mo ore systems in South China, including the giant Zijinshan epithermal Cu–Au deposit and the large Luoboling porphyry Cu–Mo deposit. The mineralization is intimately related to Late Mesozoic large-scale tectono-magmatic and hydrothermal events. The Cu–Au–Mo mineralization occurs around intermediate-felsic volcanic rocks and hypabyssal porphyry intrusions. In this study, we summarize previously available Re–Os isotopes, zircon U–Pb age and trace elements, and Sr–Nd–Pb isotope data, and present new Pb–S and Re–Os isotope data and zircon trace elements data for ore-related granitoids from the Zijinshan high-sulfidation epithermal Cu–Au deposit and the Luoboling porphyry Cu–Mo deposit, in an attempt to explore the relationship between the two ore systems for a better understanding of their geneses. The ore-bearing porphyritic dacite from the Zijinshan deposit shows a zircon U-Pb age of 108–106 Ma and has higher zircon Ce4+/Ce3+ ratios (92–1568, average 609) but lower Ti-in-zircon temperatures (588–753 °C, average 666 °C) when compared with the barren intrusions in the Zijinshan ore district. Relative to the Zijinshan porphyritic dacite, the ore-bearing granodiorite porphyry from the Luoboling deposit show a slightly younger zircon U–Pb age of 103 Ma, but has similar or even higher zircon Ce4+/Ce3+ ratios (213–2621, average 786) and similar Ti-in-zircon temperatures (595–752 °C, average 675 °C). These data suggest that the ore-bearing magmatic rocks crystallized from relatively oxidized and hydrous magmas. Combined with the high rhenium contents (78.6–451 ppm) of molybdenites, the Pb and S isotopic compositions of magmatic feldspars and sulfides suggest that the porphyry and ore-forming materials in the Luoboling Cu–Mo deposit mainly originated from an enriched mantle source. In contrast, the ore-bearing porphyritic dacite in the Zijinshan Cu–Au deposit might be derived from crustal materials mixing with the Cathaysia enriched mantle. The fact that the Zijinshan Cu–Au deposit and the Luoboling Cu–Mo deposit show different origin of ore-forming materials and slightly different metallogenic timing indicates that these two deposits may have been formed from two separate magmatic-hydrothermal systems. Crustal materials might provide the dominant Cu and Au in the Zijinshan epithermal deposit. Cu and Au show vertical zoning and different fertility because the gold transports at low oxygen fugacity and precipitates during the decreasing of temperature, pressure and changing of pH conditions. It is suggested that there is a large Cu–Mo potential for the deeper part of the Zijinshan epithermal Cu–Au deposit, where further deep drilling and exploration are encouraged.  相似文献   

7.
The Laowan metallogenic belt in China is an important metallogenic belt within the Tongbai orogenic belt, and contains the medium-sized Laowan and Shangshanghe gold deposits, the small Huangzhuyuan lead–zinc–silver–gold deposit and some gold and Cu–Pb occurrences. These deposits are hosted in Mesoproterozoic plagioclase amphibolite (or schist) and mica-quartz schist. The gold ores are mainly quartz veins and veinlets and disseminated altered ores. Subordinate ore types include massive sulfides and breccias. The Laowan gold deposit is characterized by three right-stepping en-echelon fracture-controlled alteration zones that dip gently to the south and includes disseminated, sheeted and stockwork ores. These lodes were formed by the interaction of ore-forming fluid with foliated-to laminated cataclasite within the transpressional faults. The Shangshanghe gold deposit is characterized by parallel ore lodes that dip steeply to the north, and includes quartz veins and breccias in addition to ores in altered wallrocks. These lodes were formed by focusing of fluids into transtensional faults. These ore controlling faults displaced early barren quartz veins 10 m horizontally with a dextral sense of motion. The ore-hosting structures at the Laowan and Shangshanghe deposits correspond to the P and R-type shears of a brittle dextral strike-slip fault system, respectively, which make angles of about 15° and − 15° to the Laowan and Songpa boundary faults. The ore-controlling fault system post-dated formation of a ductile shear zone, and peak regional metamorphism. This precludes a genetic relationship between hydrothermal mineralization and regional metamorphism and ductile shear deformation. These gold deposits are not typical orogenic gold deposits. The metallogenic belt displays district-scale-zoning of Mo  Cu–Pb–Zn–Ag  Au relative to Songpa granite porphyry dike zone, suggesting the mineralization may be closely related to the granite porphyry. Measured δ34S of sulfides and δ18O and δD of fluid inclusion waters in auriferous quartz also are consistent with a magmatic source for sulfur and ore fluids. The similarity of Pb isotope ratios between the ores and Yanshanian granitoids suggests a similar source. As the age (139 ± 3 Ma) of granite porphyry obtained by zircon U–Pb isotope overlaps the mineralization age (138 ± 1 Ma: Zhang et al., 2008a), the gold and polymetallic metallogenesis of the Laowan gold belt has close spatial, temporal and possibly genetic relationships with Yanshanian high level magmatism.  相似文献   

8.
Major, trace element and isotopic (Sr, Nd, Pb) data and unspiked K–Ar ages are presented for Quaternary (0.90–0.95 Ma old) basalts from the Hayyabley volcano, Djibouti. These basalts are LREE-depleted (Lan/Smn = 0.76–0.83), with 87Sr/86Sr ratios ranging from 0.70369 to 0.70376, and rather homogeneous 143Nd/144Nd (εNd = + 5.9–+ 7.3) and Pb isotopic compositions (206Pb/204Pb = 18.47–18.55, 207Pb/204Pb = 15.52–15.57, 208Pb/204Pb = 38.62–38.77). They are very different from the underlying enriched Tadjoura Gulf basalts, and from the N-MORB erupted from the nascent oceanic ridges of the Red Sea and Gulf of Aden. Their compositions closely resemble those of (1) depleted Quaternary Manda Hararo basalts from the Afar depression in Ethiopia and (2) one Oligocene basalt from the Ethiopian Plateau trap series. Their trace element and Sr, Nd, Pb isotope systematics suggest the involvement of a discrete but minor LREE-depleted component, which is probably an intrinsic part of the Afar plume.  相似文献   

9.
The composite Meghri–Ordubad and Bargushat plutons of the Zangezur–Ordubad region in the southernmost Lesser Caucasus consist of successive Eocene to Pliocene magmatic pulses, and host two stages of porphyry Cu–Mo deposits. New high-precision TIMS U–Pb zircon ages confirm the magmatic sequence recognized by previous Rb–Sr isochron and whole-rock K–Ar dating. A 44.03 ± 0.02 Ma-old granite and a 48.99 ± 0.07 Ma-old granodiorite belong to an initial Eocene magmatic pulse, which is coeval with the first stage of porphyry Cu–Mo formation at Agarak, Hanqasar, Aygedzor and Dastakert. A subsequent Oligocene magmatic pulse was constrained by U–Pb zircon ages at 31.82 ± 0.02 Ma and 33.49 ± 0.02 Ma for a monzonite and a gabbro, and a late Miocene porphyritic granodioritic and granitic pulse yielded ages between 22.46 ± 0.02 Ma and 22.22 ± 0.01 Ma, respectively. The Oligo-Miocene magmatic evolution broadly coincides with the second porphyry-Cu–Mo ore deposit stage, including the major Kadjaran deposit at 26–27 Ma.Primitive mantle-normalized spider diagrams with negative Nb, Ta and Ti anomalies support a subduction-like nature for all Cenozoic magmatic rocks. Eocene magmatic rocks have a normal arc, calc-alkaline to high-K calc-alkaline composition, early Oligocene magmatic rocks a high-K calc-alkaline to shoshonitic composition, and late Oligocene to Mio-Pliocene rocks are adakitic and have a calc-alkaline to high-K calc-alkaline composition. Radiogenic isotopes reveal a mantle-dominated magmatic source, with the mantle component becoming more predominant during the Neogene. Trace element ratio and concentration patterns (Dy/Yb, Sr/Y, La/Yb, Eu/Eu*, Y contents) correlate with the age of the magmatic rocks. They reveal combined amphibole and plagioclase fractionation during the Eocene and the early Oligocene, and amphibole fractionation in the absence of plagioclase during the late Oligocene and the Mio-Pliocene, consistent with Eocene to Pliocene progressive thickening of the crust or increasing pressure of magma differentiation. Characteristic trace element and isotope systematics (Ba vs. Nb/Y, Th/Yb vs. Ba/La, 206Pb/204Pb vs. Th/Nb, Th/Nb vs. δ18O, REE) indicate that Eocene magmatism was dominated by fluid-mobile components, whereas Oligocene and Mio-Pliocene magmatism was dominated by a depleted mantle, compositionally modified by subducted sediments.A two-stage magmatic and metallogenic evolution is proposed for the Zangezur–Ordubad region. Eocene normal arc, calc-alkaline to high-K calc-alkaline magmatism was coeval with extensive Eocene magmatism in Iran attributed to Neotethys subduction. Eocene subduction resulted in the emplacement of small tonnage porphyry Cu–Mo deposits. Subsequent Oligocene and Miocene high-K calc-alkaline and shoshonitic to adakitic magmatism, and the second porphyry Cu–Mo deposit stage coincided with Arabia–Eurasia collision to post-collision tectonics. Magmatism and ore formation are linked to asthenospheric upwelling along translithospheric, transpressional regional faults between the Gondwana-derived South Armenian block and the Eurasian margin, resulting in decompression melting of lithospheric mantle, metasomatised by sediment components added to the mantle during the previous Eocene subduction event.  相似文献   

10.
The Taoxikeng tungsten deposit is located in the Jiangxi Province in the southern part of China, and is one of the largest wolframite quartz-vein type tungsten deposits in the country. The deposit is situated in Sinian (Neoproterozoic) to Permian strata at the contact with the buried Taoxikeng Granite. Sensitive High Mass Resolution Ion Microprobe (SHRIMP) zircon U–Pb analysis of the granite has yielded dates of 158.7 ± 3.9 and 157.6 ± 3.5 Ma, which are interpreted as the emplacement age of the granite. Molybdenite separated from ore-bearing quartz-veins yields a Re–Os isochron age of 154.4 ± 3.8 Ma, and muscovite separated from greisen between the granite and country rocks yields 40Ar/39Ar plateau ages of 153.4 ± 1.3 and 152.7 ± 1.5 Ma. These dates obtained from three independent geochronological techniques constrain the ore-forming age of the Taoxikeng deposit and link the ore genesis to that of the underlying granite. The Taoxikeng deposit is an example of a Jurassic regional-scale tungsten–tin ore-forming event between 160 and 150 Ma in the Nanling region of the South China Block. The deposit's strikingly low rhenium contents (4.9 to 13.0 × 10? 3 μg/g) in molybdenite suggests that the ore was derived from a crustal source. This conclusion is consistent with previously published constraints from S, D and O stable isotopes, Sr–Nd systematics, and petrogenetic interpretations of spatially related granites.  相似文献   

11.
Isotopes (RbSr, C, O, S, and Pb) were investigated from the Zhenzigou PbZn deposit in the Qingchengzi mineral field (QMF) of the North China Craton as an aid to determine the genesis of stratiform PbZn deposits in the Liao-Ji Rift. A step-dissolution RbSr age of 1798 ± 8 Ma with 206Pb/204Pb ratios of 17.7477–17.8527 were obtained from sphalerite. Sulfur isotopic ratios for pyrite (5–14.4‰), sphalerite (2.4–8.6‰), and galena (− 0.3–8.6‰) from Zhenzigou have a narrower range than those from the host Paleoproterozoic Dashiqiao Formation, and granite in the area. Calcite and limestone from ore and wallrocks at the deposit have similar C and O isotope compositions, with δ13CPDB ranging from − 6.0 to − 2.3‰ and δ18OSMOW from 9.8 to 13.7‰, which are similar to those of carbonatite and the mantle.Comprehensive analysis of the Pb isotopic composition of the sulfide from the Zhenzigou deposit and PbZn deposits in adjacent area show that the Pb originated from the upper crust and mixed with Pb from the mantle. Sulfur isotopes from Zhenzigou deposit indicate that the mineralization has a volcanic eruption source. The δ13CPDB and δ18OSMOW values indicate that the CO2 originated from a mixed mantle, marine carbonate and organic source.Combined with the study of regional metallogenic background, this paper proposes that deposition of stratiform PbZn mineralization in the QMF began ca. 2052 Ma during development of the Liaoji Rift. The mineralization extended to ca. 1798 Ma prior to deformation associated with the Lvliang Movement, which dismembered the stratiform PbZn mineralization. The veined mineralization in the region cross-cuts the stratiform deposits and represents remobilized and redeposited deposits associated with the emplacement of Triassic plutons such as the Xinling and Shuangdinggou granites.  相似文献   

12.
The Hongniu-Hongshan porphyry and skarn copper deposit is located in the Triassic Zhongdian island arc, northwestern Yunnan province, China. Single-zircon laser ablation inductively coupled plasma mass spectrometry U–Pb dating suggests that the diorite porphyry and the quartz monzonite porphyry in the deposit area formed at 200 Ma and 77 Ma, respectively. A Re–Os isotopic date of molybdenite from the ore is 78.9 Ma, which indicates that in addition to the known Triassic Cu–(Au) porphyry systems, a Late Cretaceous porphyry Cu–Mo mineralization event also exists in the Zhongdian arc. The quartz monzonite porphyry shows characteristics of a magnetite series intrusion, with a high concentration of Al, K, Rb, Ba, and Pb, low amount of Ta, Ti, Y, and Yb, and a high ratio of Sr/Y (average 26.42). The Cretaceous porphyry also shows a strong fractionation between light and heavy rare earth elements (average (La/Yb)N 37.9), which is similar to those of the Triassic subduction-related diorite porphyry in the Hongniu-Hongshan deposit and the porphyry hosting the Pulang copper deposit. However, in contrast to the older intrusions, the quartz monzonite porphyry contains higher concentrations of large ion lithophile elements and Co, and lesser Sr and Zr. Therefore, whereas the Triassic porphyry Cu–(Au) mineralization is related to slab subduction slab in an arc setting, the quartz monzonite porphyry in the Hongniu-Hongshan deposit formed by the remelting of the residual oceanic slab combined with contributions from subduction-modified arc lithosphere and continental crust, which provided the metals for the Late Cretaceous mineralization.  相似文献   

13.
The Donggebi Mo deposit located in NW China is a newly discovered, large, stockwork-type Mo deposit with ore reserves of 441 Mt @ 0.115% Mo. Ore bodies occur along faults and fractures at the external contact zone of a concealed porphyritic granite and volcaniclastic rocks of Gandun Formation, spatially associated with a fine-grained granite. Mo-bearing veins are mainly assemblages of volatile-rich K-feldspar-quartz-oxide, K-feldspar-quartz, polymetallic sulfides and calcite-quartz. Zircon LA-ICP-MS U–Pb dating yielded concordant ages of 234.6 ± 2.7 Ma and 231.8 ± 2.4 Ma for the porphyritic granite and the fine-grained granite, respectively; molybdenite Re–Os dating gave an isochron age of 234.0 ± 2.0 Ma. These ages further confirm an important and extensive magmatic-metallogenic event in Eastern Tianshan during the Triassic Indosinian orogeny. Whole-rock major and trace element analyses indicate that the granitic rocks associated with Mo mineralization are high in Si, K, Rb, Th, Nb, Ta, Ga and LREE, but low in P, Ti, Sr and Ba, belonging to high-K calc-alkaline granites with A-type features. Magma was likely derived from the re-melting of thickened lower crust in a post-collision compression environment in the Late Permian, experienced strong crystal fractionation and formed the large Donggebi Mo deposit under an intra-plate extension setting in the Early to Middle Triassic.  相似文献   

14.
The Xishan deposit, located in the western Guangdong Province in South China, is a quartz-vein type W-Sn deposit with an average Sn grade of 0.1–0.4 wt%. The deposit is temporally and spatially associated with Xishan alkali feldspar granite. The W–Sn mineralization is present mainly as veins that are hosted by the granite. In this paper we present new zircon U–Pb age, whole-rock geochemical data, Sr–Nd–Pb–Hf isotopic data and Re–Os age in order to constrain the nature and timing of magmatism and mineralization in the Xishan mining district with implications on geodynamic settings. LA–ICP–MS zircon U–Pb analyses yielded an age of 79.14 ± 0.31 Ma for the alkali feldspar granite, consistent with the molybdenite Re–Os age of 79.41 ± 1.11 Ma. The alkali feldspar granite shows high contents of SiO2 (71.52–76.25 wt%), high total alkalis (Na2O + K2O = 9.35–13.51 wt%), high field strength elements (e.g. Zr = 95.4–116 ppm, Y = 97.1–138 ppm, Nb = 36.1–55.5 ppm, Ga = 97.1–138 ppm), and rare earth elements (total REE = 171.8–194.0 ppm) as well as high Ga/Al ratios (10,000 × Ga/Al = 3.23–3.82) suggesting that it has the geochemical characteristics of A-type granite and shows an A2 subtype affinity. Sr–Nd isotopes of the alkali feldspar granite show that (87Sr/86Sr)i values range from 0.7111 to 0.7183, and the εNd(t) values and Nd model ages (T2DM) vary from −6.8 to −6.5 and 1414 to 1433 Ma, respectively. The Pb isotopic compositions are variable, with 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values ranging from 18.783 to 18.947, 15.709 to 15.722 and 38.969 to 39.244, respectively, indicating that the alkali feldspar granite was derived from a mantle-crust mixed source. In situ Hf isotopic analyses reveal that the alkali feldspar granite has εHf(t) values ranging from −9.69 to −0.04 and two-stage Hf model ages from 1145 Ma to 1755 Ma, indicating that the alkali feldspar granite was formed by the partial melting of Mesoproterozoic crusts of the Cathaysia Block with additions of mantle-derived materials. These results, together with previously presented regional geological relationships, suggest that the formation of the Xishan granite and associated W–Sn mineralization is related to lithospheric extension and asthenospheric upwelling that are attributed to a directional change of Pacific plate motion.  相似文献   

15.
The large low-grade Piaotang W–Sn deposit in the southern Jiangxi tungsten district of the eastern Nanling Range, South China, is related to a hidden granite pluton of Jurassic age. The magmatic-hydrothermal system displays a zonation from an inner greisen zone to quartz veins and to peripheral veinlets/stringers (Five-floor zonation model). Most mineralization is in quartz veins with wolframite > cassiterite. The hidden granite pluton in underground exposures comprises three intrusive units, i.e. biotite granite, two-mica granite and muscovite granite. The latter unit is spatially associated with the W–Sn deposit.Combined LA-MC-ICP-MS U–Pb dating of igneous zircon and LA-ICP-MS U–Pb dating of hydrothermal cassiterite are used to constrain the timing of granitic magmatism and hydrothermal mineralization. Zircon from the three granite units has a weighted average 206Pb/238U age of 159.8 ± 0.3 Ma (2 σ, MSWD = 0.3). The cathodoluminescence (CL) textures indicate that some of the cassiterite crystals from the wolframite-cassiterite quartz vein system have growth zonations, i.e. zone I in the core and zone II in the rim. Dating on cassiterite (zone II) yields a weighted average 206Pb/238U age of 159.5 ± 1.5 Ma (2 σ, MSWD = 0.4), i.e. the magmatic and hydrothermal systems are synchronous. This confirms the classical model of granite-related tin–tungsten mineralization, and is against the view of a broader time gap of >6 Myr between granite magmatism and W–Sn mineralization which has been previously proposed for the southern Jiangxi tungsten district. The elevated trace element concentrations of Zr, U, Nb, Ta, W and Ti suggest that cassiterite (zone II) formed in a high-temperature quartz vein system related to the Piaotang granite pluton.  相似文献   

16.
The northeastern Gangdese Pb–Zn–Ag–Fe–Mo–W polymetallic belt (NGPB), characterized by skarn and porphyry deposits, is one of the most important metallogenic belts in the Himalaya–Tibetan continental orogenic system. This belt extends for nearly four hundred kilometers along the Luobadui–Milashan Fault in the central Lhasa subterrane, and contains more than 10 large ore deposits with high potential for development. Three major types of mineralization system have been identified: skarn Fe systems, skarn/breccia Pb–Zn–Ag systems, and porphyry/skarn Mo–Cu–W systems. In this study, we conducted a whole-rock geochemical, U–Pb zircon geochronological, and in situ zircon Hf isotopic study of ore-forming rocks in the NGPB, specifically the Jiangga, Jiaduopule, and Rema skarn Fe deposits, and the Yaguila Pb–Zn–Ag deposit. Although some of these deposits (porphyry Mo systems) formed during the post-collisional stage (21–14 Ma), the majority (these three systems) developed during the main (‘soft collision’) stage of the India–Asia continental collision (65–50 Ma). The skarn Fe deposits are commonly associated with granodiorites, monzogranites, and granites, and formed between 65 and 50 Ma. The ore-forming intrusions of the Pb–Zn–Ag deposits are characterized by granite, quartz porphyry, and granite porphyry, which developed in the interval of 65–55 Ma. The ore-forming porphyries in the Sharang Mo deposit, formed at 53 Ma. The rocks from Fe deposits are metaluminous, and have relatively lower SiO2, and higher CaO, MgO, FeO contents than the intrusions associated with Mo and Pb–Zn–Ag mineralization, while the Pb–Zn–Ag deposits are peraluminous, and have high SiO2 and high total alkali concentrations. They all exhibit moderately fractionated REE patterns characterized by lower contents of heavy REE relative to light REE, and they are enriched in large-ion lithophile elements and relatively depleted in high-field-strength elements. Ore-forming granites from Fe deposits display 87Sr/86Sr(i) = 0.7054–0.7074 and εNd(t) =  4.7 to + 1.3, whereas rocks from the Yaguila Pb–Zn–Ag deposit have 87Sr/86Sr(i) = 0.7266–0.7281 and εNd(t) =  13.5 to − 13.3. In situ Lu–Hf isotopic analyses of zircons from Fe deposits show that εHf(t) values range from − 7.3 to + 6.6, with TDM(Hf)C model ages of 712 to 1589 Ma, and Yaguila Pb–Zn–Ag deposit has εHf(t) values from − 13.9 to − 1.3 with TDM(Hf)C model ages of 1216 to 2016 Ma. Combined with existing data from the Sharang Mo deposit, we conclude that the ore-forming intrusions associated with the skarn Fe and porphyry Mo deposits were derived from partial melting of metasomatized lithospheric mantle and rejuvenated lower crust beneath the central Lhasa subterrane, respectively. Melting of the ancient continental material was critical for the development of the Pb–Zn–Ag system. Therefore, it is likely that the source rocks play an important role in determining the metal endowment of intrusions formed during the initial stage of the India–Asia continental collision.  相似文献   

17.
The Yukeng–Banling deposit is a typical fault-controlled hydrothermal Cu–Au deposit in the Shanmen Volcanic Basin (SVB), SE China. Ore bodies commonly occur as lodes, lenses and disconnected pods dipping SW with vertical zonation of ore minerals. Ore-related hydrothermal alteration is well developed on both sides of the veins, dominated by silicification, sericitization, chloritization and argillation with a banded alteration zonation. The mineralization can be divided into three stages (stages I, II and III). Native gold is present as veinlets in fractures of fine-grained pyrite from stage II.Zircon U–Pb and Rb–Sr isochron ages indicate that the Cu–Au mineralization is coeval with the Caomen alkaline granite and Xiaokeng quartz-diorite, both emplaced at ca. 102 Ma. Microthermometric measurements of fluid inclusions in quartz and sphalerite from stage II veins indicate that the Yukeng–Banling deposit is an epithermal deposit. Six ore-related quartz grains have δDH2O values of − 69 to − 43‰, and δ18OH2O values calculated using total homogenization temperatures that range from − 2.0 to 0.7‰. All samples plot in an area between the magmatic field and the meteoric line, suggesting that the ore-forming fluids are derived from a mixed source of magmatic and meteoric waters. δ34S values for eight pyrite separates range from − 2.1 to + 4.1‰ with an average of + 1.7‰, and δ34S values for galena and sphalerite are 2.3‰ and 2.2‰, similar to magmatic sulfur. Four alkaline granite samples have Pb isotopic ratios (206Pb/204Pb)t = 18.175–18.411, (207Pb/204Pb)t = 15.652–15.672 and (208Pb/204Pb)t = 38.343–38.800. Three quartz-diorite samples have ratios (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t of 18.277–18.451, 15.654–15.693 and 38.673–38.846, respectively. These age-calculated lead isotopic data for alkaline granite are similar to those for the analyzed sulfides. Co/Ni ratios for stage II pyrites range from 1.42 to 5.10, indicating that the Yukeng–Banling deposit records the past involvement of magmatic hydrothermal fluids. The isotope data, together with geological, mineralogical and geochronological evidence, favor a primary magmatic source for sulfur and metals in the ore fluids. Mixing of the Cu- and Au-rich fluids with meteoric water led to precipitation of the Cu–Au veins along NW-trending faults.The Yukeng–Banling deposit, the contemporaneous Caomen alkaline granite and Xiaokeng quartz-diorite in the SVB formed under an extensional setting, due to high-angle subduction of the paleo-Pacific plate. The extensional setting facilitated the formation of Cu- and Au-rich magmas which was derived from enriched mantle and lower crust.  相似文献   

18.
The Taoxihu deposit (eastern Guangdong, SE China) is a newly discovered Sn polymetallic deposit. Zircon U-Pb dating yielded 141.8 ± 1.0 Ma for the Sn-bearing granite porphyry and 145.5 ± 1.6 Ma for the biotite granite batholith it intruded. The age of the granite porphyry is consistent (within error) with the molybdenite Re–Os isochron age (139.0 ± 1.1 Ma) of the Sn mineralization, indicating a temporal link between the two. Geochemical data show that the granite porphyry is weakly peraluminous, contain high Si, Na and K, low Fe, Mg, Ca and P, and relatively high Rb/Sr and low K/Rb values. The rocks are enriched in Rb, Th, U, K, and Pb and depleted in Ba, Sr, Ti and Eu, resembling highly fractionated I-type granites. They contain bulk rock initial 87Sr/87Sr of 0.707371–0.707730 and εNd(t) of −5.17 to −4.67, and zircon εHf(t) values from −6.67 to −2.32, with late Mesoproterozoic TDM2 ages for both Nd and Hf isotopes. This suggests that the granite porphyry was likely formed by the partial melting of the crustal basement of Mesoproterozoic overall residence age with minor mantle input.δ34SCDT values of the Taoxihu chalcopyrite and pyrite range from 0.1 to 2.1‰ (average: 0.9‰), implying a dominantly magmatic sulfur source. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the Taoxihu sulfide ores are 18.497–18.669, 15.642–15.673 and 38.764–38.934, respectively, indicating a mainly upper continental crustal lead source with minor mantle contribution. The highly fractionated and reduced (low calculated zircon Ce4+/Ce3+ and EuN/EuN1 values) nature of the ore-forming granitic magma may have facilitated the Sn enrichment and played a key role in the Sn mineralization. We propose that the ore-forming fluids at Taoxihu were of magmatic-hydrothermal origin derived from the granite porphyry, and that both the granite porphyry and the Sn mineralization were likely formed in an extensional setting, possibly related to the subduction slab rollback of the Paleo-Pacific Plate.  相似文献   

19.
Re–Os dating of disseminated ore from the Kalatongke Cu–Ni sulfide mineral deposit, Xinjiang, Northwest (NW) China, yields an apparent isochron age of 433 ± 31 Ma with an apparent initial 187Os/188Os (433 Ma) ratio of 0.197 ± 0.027. This apparent age is older than not only the zircon U–Pb age of the host intrusion (287 ± 5 Ma, Han et al., 2004) but also the stratigraphic age of the intruded country rock. Thus, the regression line is a pseudo-isochron. However, previous Re–Os dating of massive ores of the same deposit yielded an age that is consistent, within analytical uncertainty, with the zircon U–Pb age (Zhang et al., 2008). This relationship is similar to that observed in the Jinchuan deposit, NW China. Therefore, we suggested that the same mechanism, post-segregation diffusion of Os (Yang et al., 2008), is applicable to the Kalatongke deposit.Re–Os isotopic studies of Kalatongke, Jinchuan and representative magmatic Cu–Ni sulfide deposits suggest that the massive ores of mafic–ultramafic-rock-associated Cu–Ni sulfide deposits would yield geologically meaningful Re–Os age, whereas a pseudo-isochron would be obtained for the disseminated ores. Therefore, to obtain a geologically meaningful Re–Os age, the type of the deposit, the type of the ore and the ore-forming process should be taken into account.  相似文献   

20.
The Yinchanggou Pb-Zn deposit, located in southwestern Sichuan Province, western Yangtze Block, is stratigraphically controlled by late Ediacaran Dengying Formation and contains >0.3 Mt of metal reserves with 11 wt% Pb + Zn. A principal feature is that this deposit is structurally controlled by normal faults, whereas other typical deposits nearby (e.g. Maozu) are controlled by reverse faults. The origin of the Yinchanggou deposit is still controversial. Ore genetic models, based on conventional whole-rock isotope tracers, favor either sedimentary basin brine, magmatic water or metamorphic fluid sources. Here we use in situ Pb and bulk Sr isotope features of sulfide minerals to constrain the origin and evolution of hydrothermal fluids. The Pb isotope compositions of galena determined by femtosecond LA-MC-ICPMS are as follows: 206Pb/204Pb = 18.17–18.24, 207Pb/204Pb = 15.69–15.71, 208Pb/204Pb = 38.51–38.63. These in situ Pb isotope data overlap with bulk-chemistry Pb isotope compositions of sulfide minerals (206Pb/204Pb = 18.11–18.40, 207Pb/204Pb = 15.66–15.76, 208Pb/204Pb = 38.25–38.88), and both sets of data plotting above the Pb evolution curve of average upper continental crust. Such Pb isotope signatures suggest an upper crustal source of Pb. In addition, the coarse-grained galena in massive ore collected from the deep part has higher 206Pb/204Pb ratios (18.18–18.24) than the fine-grained galena in stockwork ore sampled from the shallow part (206Pb/204Pb = 18.17–18.19), whereas the latter has higher 208Pb/204Pb ratios (38.59–38.63) than the former (208Pb/204Pb = 38.51–38.59). However, both types of galena have the same 207Pb/204Pb ratios (15.69–15.71). This implies two independent Pb sources, and the metal Pb derived from the basement metamorphic rocks was dominant during the early phase of ore formation in the deep part, whereas the ore-hosting sedimentary rocks supplied the majority of metal Pb at the late phase in the shallow part. In addition, sphalerite separated from different levels has initial 87Sr/86Sr ratios ranging from 0.7101 to 0.7130, which are higher than the ore formation age-corrected 87Sr/86Sr ratios of country sedimentary rocks (87Sr/86Sr200 Ma = 0.7083–0.7096), but are significantly lower than those of the ore formation age-corrected basement rocks (87Sr/86Sr200 Ma = 0.7243–0.7288). Again, such Sr isotope signatures suggest that the above two Pb sources were involved in ore formation. Hence, the gradually mixing process of mineralizing elements and associated fluids plays a key role in the precipitation of sulfide minerals at the Yinchanggou ore district. Integrating all the evidence, we interpret the Yinchanggou deposit as a strata-bound, normal fault-controlled epigenetic deposit that formed during the late Indosinian. We also propose that the massive ore is formed earlier than the stockwork ore, and the temporal-spatial variations of Pb and Sr isotopes suggest a certain potential of ore prospecting in the deep mining area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号