首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic compositions of modern precipitation. Oxygen and hydrogen isotopes, with averages of ?7.8‰ and ?53.0‰ for δ18O and δD, respectively, are depleted in winter and rich in spring, and gradually decrease in summer and fall, illustrating that the seasonal effect is considerable. They also show that the isotopic difference between south portion and north portion of the Ordos Basin are not obvious, and the isotope in the middle portion is normally depleted. The isotope compositions of 32 samples collected from shallow groundwater (less than a depth of 150 m) in desert plateau range from ?10.6‰ to ?6.0‰ with an average of ?8.4‰ for δ18O and from ?85‰ to ?46‰ with an average of ?63‰ for δD. Most of them are identical with modern precipitation. The isotope compositions of 22 middle and deep groundwaters (greater than a depth of 275 m) fall in ranges from ?11.6‰ to ?8.8‰ with an average of ?10.2‰ for δ18O and from ?89‰ to ?63‰ with an average of ?76‰ for δD. The average values are significantly less than those of modern precipitation, illustrating that the middle and deep groundwaters were recharged at comparatively lower air temperatures. Primary analysis of 14C shows that the recharge of the middle and deep groundwaters started at late Pleistocene. The isotopes of 13 lake water samples collected from eight lakes define a local evaporation trend, with a relatively flat slope of 3.77, and show that the lake waters were mainly fed by modern precipitation and shallow groundwater.  相似文献   

2.
《Applied Geochemistry》1999,14(4):411-422
A 3 a data set of isotopes in precipitation from northern Chile show a very distinct pattern, with δ18O values ranging between −18 and −15‰ at high altitude stations, compared to δ18O values between −10 and −6‰ at the lower altitude areas. The 18O-depleted values observed in the high altitude area, the Altiplano, are related to processes that affect the air masses that originated over the Atlantic, cross the Amazon Basin (continental effect), ascend the Andes (altitude effect) and precipitated (convective effect) in the Altiplano. It is postulated that a second source of moisture, associated with air masses from the Pacific, may contribute to the 18O-enriched values observed in the lower altitude areas. Similar isotopic patterns are documented in springs and groundwater indicating that the data presented in this paper are an accurate representation of the long term behavior isotopic composition of rain in northern Chile.  相似文献   

3.
The southwestern Chad basin is a semi-arid region with annual rainfall that is generally less than 500 mm and over 2,000 mm of evapotranspiration. Surface water in rivers is seasonal, and therefore groundwater is the perennial source of water supply for domestic and other purposes. Stable isotope has been measured for rainwater, surface water and groundwater samples in this region. The stable isotope data have been used to understand the inter-relationships between the rainwater, surface water, shallow and deep groundwater of this region. This is being used in a qualitative sense to demonstrate present day recharge to the groundwater. Stable isotope in rainwater for the region has an average value of –4‰ δ18O and –20‰ δ2H. Surface water samples from rivers and Lake Chad fall on the evaporation line of this average value. The Upper Zone aquifer water samples show stable isotope signal with a wide range of values indicating the complex character of the aquifer Zone with three distinguishable units. The wide range of values is attributable to waters from individual unit and/or mixture of waters of different units. The Middle and Lower aquifers Zones’ waters show similar stable isotopes values, probably indicating similarity in timing and/or mechanism of recharge. These are palaeowaters probably recharged under a climate that is different from today. The Upper Zone aquifer is presently being recharged as some of its waters show stable isotope compositions similar to those of average rainfall waters of the region.  相似文献   

4.
The groundwater flow pattern of the western part of the Guarani Aquifer System (GAS), Brazil, is characterized by three regional recharge areas in the north, and a potentiometric divide in the south, which trends north–south approximately. Groundwater flow is radial from these regional recharge areas toward the center of Paraná Sedimentary Basin and toward the western outcrop areas at the border of the Pantanal Matogrossense, because of the potentiometric divide. The isotopic composition of GAS groundwater leads to understanding the paleoclimatic conditions in the regional recharge areas. The δ18O and δ2H isotopic ratios of GAS groundwaters vary, respectively, from –9.1 to –4.8‰ V-SMOW and –58.4 to –21.7‰ V-SMOW. In the recharge zones, enriched δ18O values are observed, while in the confined zone lighter δ18O values are observed. These suggest that climatic conditions were 10°C cooler than the present during the recharge of these waters. The δ13C ratios in groundwater of GAS, in the study area, vary from –19.5 to –6.5‰ VPDB, increasing along the regional flow lines toward the confined zone. This variation is related to dissolution of carbonate cement in the sandstones.  相似文献   

5.
The objective of this study is to refine the understanding of recharge processes in watersheds representative for karstic semiarid areas by means of stable isotope analysis and hydrogeochemistry. The study focuses on the Granada aquifer system which is located in an intramontane basin bounded by high mountain ranges providing elevation differences of almost 2900 m. These altitude gradients lead to important temperature and precipitation gradients and provide excellent conditions for the application of stable isotopes of water whose composition depends mainly on temperature. Samples of rain, snow, surface water and groundwater were collected at 154 locations for stable isotope studies (δ18O, D) and, in the case of ground- and surface waters, also for major and minor ion analysis. Thirty-seven springs were sampled between 2 and 5 times from October 2004 to March 2005 along an altitudinal gradient from 552 masl in the Granada basin to 2156 masl in Sierra Nevada. Nine groundwater samples were taken from the discharge of operating wells in the Granada basin which are all located between 540 and 728 masl. The two main rivers were monitored every 2–3 weeks at three different altitudes. Rainfall being scarce during the sampling period, precipitation could only be sampled during four rainfall events. Calculated recharge altitudes of springs showed that source areas of mainly snowmelt recharge are generally located between 1600 and 2000 masl. The isotope compositions of spring water indicate water sources from the western Mediterranean as well as from the Atlantic without indicating a seasonal trend. The isotope pattern of the Quaternary aquifer reflects the spatial separation of different sources of recharge which occur mainly by bankfiltration of the main rivers. Isotopic signatures in the southeastern part of the aquifer indicate a considerable recharge contribution by subsurface flow discharged from the adjacent carbonate aquifer. No evaporation effects due to agricultural irrigation were detected.  相似文献   

6.
Hydrogeochemistry and environmental tracers (2H, 18O, 87Sr/86Sr) in precipitation, river and reservoir water, and groundwater have been used to determine groundwater recharge sources, and to identify mixing characteristics and mineralization processes in the Manas River Basin (MRB), which is a typical mountain–oasis–desert ecosystem in arid northwest China. The oasis component is artificial (irrigation). Groundwater with enriched stable isotope content originates from local precipitation and surface-water leakage in the piedmont alluvial–oasis plain. Groundwater with more depleted isotopes in the north oasis plain and desert is recharged by lateral flow from the adjacent mountains, for which recharge is associated with high altitude and/or paleo-water infiltrating during a period of much colder climate. Little evaporation and isotope exchange between groundwater and rock and soil minerals occurred in the mountain, piedmont and oasis plain. Groundwater δ2H and δ18O values show more homogeneous values along the groundwater flow direction and with well depths, indicating inter-aquifer mixing processes. A regional contrast of groundwater allows the 87Sr/86Sr ratios and δ18O values to be useful in a combination with Cl, Na, Mg, Ca and Sr concentrations to distinguish the groundwater mixing characteristics. Two main processes are identified: groundwater lateral-flow mixing and river leakage in the piedmont alluvial–oasis plain, and vertical mixing in the north oasis plain and the desert. The 87Sr/86Sr ratios and selected ion ratios reveal that carbonate dissolution and mixing with silicate from the southern mountain area are primarily controlling the strontium isotope hydrogeochemistry.  相似文献   

7.
拉萨河流域地表径流氢氧同位素空间分布特征   总被引:3,自引:0,他引:3  
为了探析径流过程中稳定同位素变化特征及其控制因子, 利用2008年拉萨河流域地表径流中δ18O和δD的监测数据以及相关气象和水文资料, 初步研究了流域δ18O和δD的空间分布特征.研究发现: (1)拉萨河流域以大气降水为主要补给来源, 且干流体现了较明显的蒸发效应; (2)河水偏正的d过量参数特征指示了冰雪融水的补给特征; (3)季风降水期间, 拉萨河流域由高程效应和水平距离所造成的δ18O递减率约为0.16‰·(100 m)-1; (4)大循环尺度下, 流域内河水呈现了明显的大陆效应.研究表明高海拔地区地表径流氧氘同位素分布特征能够有效示踪流域水文循环过程, 并提供古高度变化研究的稳定同位素证据.   相似文献   

8.
Groundwater recharge and evolution in the Quaternary aquifer beneath the Dunhuang Basin was investigated using chemical indicators, stable isotopes, and radiocarbon data to provide guidance for regional water management. The quality of groundwater and surface water is generally good with low salinity and it is unpolluted. The dissolution of halite and sylvite from fine-grained sediments controls concentrations of Na+ and K+ in the groundwater, but Na+/Cl molar ratios >1 in all samples are also indicative of weathering of feldspar contributing to excess Na+. The dissolution of carbonate minerals yields Ca2+ to the groundwater, thereby exerting a strong influence on groundwater salinity. The δ18O and δ2H values in unconfined groundwater are enriched along the groundwater flow path from SW to NE. In contrast, confined groundwater was depleted in heavy isotopes, with mean values of −10.4‰ δ18O and −74.4‰ δ2H. Compared with the precipitation values, all of the groundwater samples were strongly depleted in heavy isotopes, indicating that modern direct recharge to the groundwater aquifers in the plains area is quite limited. The unconfined water is generally young with radiocarbon values of 64.9–79.6 pmc. In the northern basin, radiocarbon content in the confined groundwater is less than 15 pmc and an uncorrected age of ∼15 ka, indicates that this groundwater was recharged during a humid climatic phases of the late Pleistocence or early Holocene. The results have important implications for inter-basin water allocation programmes and groundwater management in the Dunhuang Basin.  相似文献   

9.
In the cool temperate region of South Korea, oxygen and hydrogen isotopes of groundwater, lake water, and precipitation were studied to determine the season of groundwater recharge. All the groundwater samples, irrespective of season, on δ18O–δ2H scale plotted along the summer precipitation, suggesting summer precipitation largely modulates recharge. The deuterium excess values of groundwater (d-excess) show clear seasonal difference, higher in winter (> 18‰) and lower in summer (< 10‰). And its resemblance to the summer precipitation d-excess value further suggests dominant role of summer precipitation in groundwater recharge. Based on the mass balance equation, with end-member d-excess values of seasonal precipitation and groundwater as input variables, groundwater is composed of 66% summer and 34% winter precipitation. Despite the study area being heavily forested, summer rainfall contribution higher than winter suggests that evapotranspiration effect is minimal in the region; may be due to thin sand–gravel-based porous soil overlying highly weathered granitic rock system.  相似文献   

10.
The extent of denitrification in a small agricultural area near a river in Yangpyeong, South Korea, was determined using multiple isotopes, groundwater age, and physicochemical data for groundwater. The shallow groundwater at one monitoring site had high concentrations of NO3-N (74–83 mg L?1). The δ15N-NO3 values for groundwater in the study area ranged between +9.1 and +24.6‰ in June 2014 and +12.2 to +21.6‰ in October 2014. High δ15N-NO3 values (+10.7 to +12.5‰) in both sampling periods indicated that the high concentrations of nitrate in the groundwater originated from application of organic fertilizers and manure. In the northern part of the study area, some groundwater samples showed elevated δ15N-NO3 and δ18O-NO3 values, which suggest that nitrate was removed from the groundwater via denitrification, with N isotope enrichment factors ranging between ?4.8 and ?7.9‰ and O isotope enrichment factors varying between ?3.8 and ?4.9‰. Similar δD and δ18O values of the surface water and groundwater in the south appear to indicate that groundwater in that area was affected by surface-water infiltration. The mean residence times (MRTs) of groundwater showed younger ages in the south (10–20 years) than in the north (20–30 years). Hence, it was concluded that denitrification processes under anaerobic conditions with longer groundwater MRT in the northern part of the study area removed considerable amounts of nitrate. This study demonstrates that multi-isotope data combined with physicochemical data and age-dating information can be effectively applied to characterize nitrate contaminant sources and attenuation processes.  相似文献   

11.
Stable isotope data for the Hueco Bolson aquifer (Texas, USA and Chihuahua, Mexico) distinguish four water types. Two types relate to recharge from the Rio Grande: pre-dam (pre-1916) river water with oxygen-18 and deuterium (δ18O, δD, ‰) from (?11.9, ?90) to (?10.1, ?82), contrasts with present-day river water (?8.5, ?74) to (?5.3, ?56). Pre-dam water is found beneath the Rio Grande floodplain and Ciudad Juárez, and is mixed with post-dam river water beneath the floodplain. Two other types relate to recharge of local precipitation; evidence of temporal change of precipitation isotopes is present in both types. Recharge from the Franklin and Organ Mountains plots between (?10.9, ?76) and (?8.5, ?60) on the global meteoric water line (GMWL), and is found along the western side of the Hueco Bolson, north of the Rio Grande. Recharge from the Diablo Plateau plots on an evaporation trend originating on the GMWL near (?8.5, ?58). This water is found in the southeastern Hueco Bolson, north of the river; evaporation may be related to slow recharge through fine-grained sediment. Pre-dam water, recognizable by isotope composition, provides information on groundwater residence times in this and other dammed river basins.  相似文献   

12.
The groundwater flow system and the flow velocity in the alluvial fan plain of the Hutuo River, China, have been studied, with an emphasis on relating geochemical characteristics and isotopes factors. Seven stretches of one river, six springs and 31 wells, with depths ranging from 0 m (river waters) to 150 m, were surveyed. The groundwater has a vertical two-layer structure with a boundary at about 80–100 m depth, yielding an upper and a lower groundwater layer. The δ18O and δD values range from ?10.56 to ?7.05‰ and ?81.83 to ?59‰, respectively. The groundwater has been recharged by precipitation, and has not been subjected to significant evaporation during infiltration into the aquifer in the upper layer. Using a tritium model, the groundwater flow in the alluvial fan plain showed horizontal flow velocity to be greater than vertical velocity. Groundwater in the upper layer is characterized by Ca–HCO3 type. From the spatial distribution characteristics of the stable isotope and chemical composition of the groundwater, agricultural irrigation was considered to have an influence on the aquifer by causing excessive groundwater abstraction and irrigation return.  相似文献   

13.
Springs are the only available source of water for domestic and agricultural use in mountainous regions of Dhouli Rao and Kandela in the Sirmaur district of Himachal Pradesh, India. These springs are mainly gravity, contact or fracture and solution tubular (Karst) type. Drying of springs during summer causes much hardship to the inhabitants of this region. Hence, environmental isotopes (2H, 18O, 3H) were employed along with hydrogeochemistry and geomorphology to identify the recharge zones of the drying springs. From the stable isotope data of rainwater, the altitude effect was estimated (?0.3?‰ for δ18O per 100 m elevation) and used to determine the recharge zones of the drying springs (+1,000 to +1,430 m amsl). The geo-morphological setting of the valley indicated that either check dam, contour bunding or levees structures with gabion method of rainwater conservation can be implemented to augment the recharge of the springs.  相似文献   

14.
Major element concentrations, stable (δ18O and δ2H) and radiogenic (3H, 14C) isotopes determined in groundwater provided useful initial tracers for understanding the processes that control groundwater mineralization and identifying recharge sources in semi-arid Cherichira basin (central Tunisia).Chemical data based on the chemistry of several major ions has revealed that the main sources of salinity in the groundwaters are related to the water–rock interaction such as the dissolution of evaporitic and carbonate minerals and some reactions with silicate and feldspar minerals.The stable isotope compositions provide evidence that groundwaters are derived from recent recharge. The δ18O and δ2H relationships implied rapid infiltration during recharge to both the Oligocene and Quaternary aquifers, with only limited evaporation occurring in the Quaternary aquifer.Chemical and isotopic signatures of the reservoir waters show large seasonal evolution and differ clearly from those of groundwaters.Tritium data support the existence of recent recharge in Quaternary groundwaters. But, the low tritium values in Oligocene groundwaters are justified by the existence of clay lenses which limit the infiltration of meteoric water in the unsaturated zone and prolong the groundwater residence time.Carbon-14 activities confirm that groundwaters are recharged from the surface runoff coming from precipitation.  相似文献   

15.
We investigated major ions, stable isotopes, and radiocarbon dates in a Quaternary aquifer in semi-arid northwestern China to gain insights into groundwater recharge and evolution. Most deep and shallow groundwater in the Helan Mountains was fresh, with total dissolved solids <1,000 mg L?1 and Cl? <250 mg L?1. The relationships of major ions with Cl? suggest strong dissolution of evaporites. However, dissolution of carbonates, albite weathering, and ion exchange are also the major groundwater process in Jilantai basin. The shallow desert groundwater is enriched in δ18O and intercepts the local meteoric water line at δ18O = ?13.4 ‰, indicating that direct infiltration is a minor recharge source. The isotope compositions in intermediate confined aquifers resemble those of shallow unconfined groundwater, revealing that upward recharge from intermediate formations is a major source of shallow groundwater in the plains and desert. The estimated residence time of 10.0 kyr at one desert site, indicating that some replenishment of desert aquifers occurred in the late Pleistocene and early Holocene with a wetter and colder climate than at present.  相似文献   

16.
To understand deep groundwater flow systems and their interaction with CO2 emanated from magma at depth in a volcanic edifice, deep groundwater samples were collected from hot spring wells in the Aso volcanic area for hydrogen, oxygen and carbon isotope analyses and measurements of the stable carbon isotope ratios and concentrations of dissolved inorganic carbon (DIC). Relations between the stable carbon isotope ratio (δ13CDIC) and DIC concentrations of the sampled waters show that magma-derived CO2 mixed into the deep groundwater. Furthermore, groundwaters of deeper areas, except samples from fumarolic areas, show higher δ13CDIC values. The waters' stable hydrogen and oxygen isotope ratios (δD and δ18O) reflect the meteoric-water origin of that region's deep groundwater. A negative correlation was found between the altitude of the well bottom and the altitude of groundwater recharge as calculated using the equation of the recharge-water line and δD value. This applies especially in the Aso-dani area, where deeper groundwater correlates with higher recharge. Groundwater recharged at high altitude has higher δ13CDIC of than groundwater recharged at low altitude, strongly suggesting that magmatic CO2 is present to a much greater degree in deeper groundwater. These results indicate that magmatic CO2 mixes into deeper groundwater flowing nearer the magma conduit or chamber.  相似文献   

17.
大气降水的氢氧同位素含量具有高程效应,降水入渗后参与地下水循环,其高程效应如何受地下水流系统的影响转化为地下水氢氧同位素的深度效应?现有研究对于这个问题缺少定量认识。文章构建单向倾斜盆地和双峰波状盆地的稳态地下水循环理论模型,采用MODFLOW模拟剖面二维地下水流场、采用MT3DMS模拟重同位素分子的对流-弥散过程,得到地下水D和18O含量的空间分布,探讨了氢氧同位素高程效应在地下水流系统转化为深度效应的机理。结果表明:在单斜盆地,补给区大气降水D和18O含量的高程效应转化为排泄区地下水δD和δ18O值随埋深增大而指数型衰减的深度效应;在双峰波状盆地,当含水层渗透性相对入渗强度较大时(K0/w=1 000),仅发育一个区域地下水流系统,在区域地下水的排泄区δD和δ18O随埋深增大呈现S形曲线分布;当含水层渗透性相对入渗强度较小时(K0/w=250),双峰波状盆地发育多个局部地下水流系统,区域地下水的排泄区δD和δ18O随埋深增大呈现S形曲线,而局部地下水排...  相似文献   

18.
Concentration and isotope ratios (δ34SSO4 and δ18OSO4) of dissolved sulfate of groundwater were analyzed in a very large anaerobic aquifer system under the Lower Central Plain (LCP) (25,000 km2) in Thailand. Groundwater samples were collected in two different kinds of aquifers; type 1 with a saline water contribution and type 2 lateritic aquifers with no saline water contribution. Two different isotopic compositional trends were observed: in type 1 aquifers sulfate isotope ratios range from low values (+2.2‰ for δ34SSO4 and +8.0‰ for δ18OSO4) to high values (+49.9‰ for δ34SSO4 and +17.9‰ for δ18OSO4); in type 2 aquifers sulfate isotope ratios range from low values (−0.1‰ for δ34SSO4 and +12.2‰ for δ18OSO4) to high δ18OSO4 ratios (+18.4‰) but with low δ34SSO4 ratios (<+12.9‰). Isotopic comparison with possible source materials and theoretical geochemical models suggests that the sulfate isotope variation for type 1 aquifer groundwater can be explained by two main processes. One is the contribution of remnant seawater, which has experienced dissimilatory sulfate reduction in the marine clay, into recharge water of freshwater origin. This process accounts for the high salinity groundwater. The other process, explaining for the modest salinity groundwater, is the bacterial sulfate reduction of the mixture water between high salinity water and fresh groundwater. Isotopic variation of type 2 aquifer groundwater may also be explained by bacterial sulfate reduction, with slower reduction rate than that of the groundwater with saline water effect. The origin of groundwater sulfate with low δ34SSO4 but high δ18OSO4 is recognized as an important topic to be examined in a future investigation.  相似文献   

19.
The Regional Deep Cretaceous Aquifer (RDCA) is the principal groundwater resource in Syria. Isotope and hydrochemical data have been used to evaluate the geographic zones in terms of renewable and non-renewable groundwater and the inter-relation between current and past recharge. The chemical and isotopic character of groundwater together with radiometric 14C data reflect the existence of three different groundwater groups: (1) renewable groundwater, in RDCA outcropping areas, in western Syria along the Coastal and Anti-Lebanon mountains. The mean δ18O value (?7.2 ‰) is similar to modern precipitation with higher 14C values (up to 60–80 pmc), implying younger groundwater (recent recharge); (2) semi-renewable groundwater, which is located in the unconfined section of the RDCA and parallel to the first zone. The mean δ18O value (?7.0 ‰) is also similar to modern precipitation with a 14C range of 15–45 pmc; (3) non-renewable groundwater found in most of the Syrian interior, where the RDCA becomes confined. A considerable depletion in δ18O (?8.0 ‰) relative to the modern rainfall and low values of 14C (<15 pmc) suggest that the large masses of deep groundwater are non-renewable and related to an older recharge period. The wide scatter of all data points around the two meteoric lines in the δ18O-δ2H diagram indicates considerable variation in recharge conditions. There is limited renewable groundwater in the mountain area, and most of the stored deep groundwater in the RDCA is non-renewable, with corrected 14C ages varying between 10 and 35 Kyr BP.  相似文献   

20.
The major ion hydrochemistry, sodium absorption ratio (SAR), sodium percentage, and isotopic signatures of Hammamet-Nabeul groundwaters were used to identify the processes that control the mineralization, irrigation suitability, and origin of different water bodies. This investigation highlights that groundwater mineralization is mainly influenced by water-rock interaction and pollution by the return flow of irrigation water. The comparison of groundwater quality with irrigation suitability standards proves that most parts of groundwater are unacceptable for irrigation and this long-term practice may result in a significant increase of the salinity and alkalinity in the soils. Based on isotopic signatures, the shallow aquifer groundwater samples were classified into (i) waters with depleted δ18O and δ2H contents, highlighting recharge by modern precipitation, and (ii) waters with enriched stable isotope contents, reflecting the significance of recharge by contaminated water derived from the return flow of evaporated irrigation waters. The deep-aquifer groundwater samples were also classified into (i) waters with relatively enriched isotope contents derived from modern recharge and mixed with shallow-aquifer groundwater and (ii) waters with depleted stable isotope contents reflecting a paleoclimatic origin. Tritium data permit to identify three origins of recharge, i.e., contemporaneous, post-nuclear, and pre-nuclear. Carbon-14 activities demonstrate the existence of old paleoclimatic recharge related to the Holocene and Late Pleistocene humid periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号