首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张翠云  郭秀红 《地球化学》2005,34(5):533-540
在土壤排水良好、氧化的地下水环境中,地下水的氮同位素组成反映了源的特征。当地下水硝酸盐的δ15N值在+4‰~+9‰范围内时,这个值域指示地下水硝酸盐污染源是土壤有机氮或化肥与粪便的混合。通过分析对比前人研究资料,地下水中硝酸盐是否来自土壤有机氮的转化,其前提条件是研究区土壤有机氮是否丰富,特别是包气带中是否积累了大量有机氮转化的NO3-,并以石家庄市地下水硝酸盐污染为例,说明了这种条件分析在氮同位素技术应用时的重要性。通过包气带岩性、有机质和NO3-含量分析、施肥区与未施肥区灌水试验对比,土壤有机氮不是石家庄市地下水NO3-的一个主要污染源。当地下水硝酸盐低浓度时(1991),85.7%的样品NO3-的δ15N值在+6.1‰~+8.4‰范围内,指示污染源主要为化肥与粪便的混合,而当现今的高浓度时,样品硝酸盐的δ15N均值(+9.9‰±4.4‰)大于+8‰和超过半数(65%)样品的δ15N值大于+8‰,指示污染源主要是粪便或含粪便的污水。  相似文献   

2.
地下水NO3-氮与氧同位素研究进展   总被引:1,自引:0,他引:1  
人为活动通常是地下水硝酸盐污染的主要原因.不同来源的NO3-具有不同的氮、氧同位素组成,利用地下水NO3-中的δ15N和δ18O值可有效识别地下水硝酸盐污染的来源.引起地下水中NO3-含量显著减少的不同物理、化学和生物过程,所产生的氮、氧同位素分馏效应有明显差别.地下水系统中反硝化作用发生时,NO3-中氮和氧同位素分馏系数呈一定比例.因此NO3-中δ15N和δ18O值也是示踪地下水硝酸盐循环,尤其是反硝化作用的有效手段.利用NO3-中氮和氧双同位素,并与其他环境同位素及化学分析技术相结合,示踪NO3-来源及其循环是地下水硝酸盐污染研究的重要方向之一.综述了利用地下水硝酸盐中氮和氧同位素识别NO3-污染源与循环的研究进展,简述了近年迅速发展的阴离子交换树脂取样法,概述了此方面研究存在的主要问题,并展望了今后的研究方向.  相似文献   

3.
为了识别石家庄市南部污灌区地下水硝酸盐污染来源, 采集5种潜在污染源和19组地下水样用于化学和氮同位素分析.灌溉污水NH4+的δ15N值较低(4.0‰), 施化肥土壤和粪堆下土壤NO3-的δ15N值分别为1.4‰和12.4‰; 仅施厩肥的蔬菜种植区下伏近30 m厚包气带沉积物NO3-的δ15N分布显示, 来自动物粪便的NO3-已运移到11.5 m以下包气带, 均值10.9‰; 污水灌溉农田下伏厚层包气带沉积物样品分析结果指示, 土壤层下伏包气带沉积物δ15N值变幅较小, 均值5.7‰.污灌区内除一深井外, 其他水井地下水硝酸盐浓度变化在52.6~124.5 mg/L之间, 均值79.72 mg/L, δ15N值变化在5.3‰~8.3‰之间, 均值7.0‰.污灌区地下水的δ15N值较污灌区土壤层下伏包气带沉积物的δ15N值高, 表明地下水NO3-除了来自灌溉的污水外, 还有δ15N值更高的其他来源, 这些来源主要是人和动物粪便.利用线性混合模型计算, 污灌区地下水NO3-来自灌溉的污水, 约占76%, 而来自人和动物粪便的NO3-约占24%.为控制污灌区地下水NO3-浓度进一步增长, 不仅要加强污水灌溉管理, 还要加强人和动物粪便的管理.   相似文献   

4.
桂林甑皮岩岩溶地下水硝酸盐来源与转化   总被引:1,自引:0,他引:1  
峰林平原是人类活动和居住的密集区,也是岩溶地下水系统的主要径流、排泄地段,地下水资源丰富。随着城市化的发展,地下水硝酸盐污染问题日渐突出。为研究桂林甑皮岩岩溶地下水硝酸盐来源与转化,分别于2018年10月、2019年2月、3月和4月采集地下水样,利用常规水化学及氮氧同位素技术识别硝酸盐来源与转化。结果表明:甑皮岩地下水中NO3-浓度在0~19.523 mg?L-1,δ15N-NO3-和δ18O-NO3-分别在-0.17‰~45.12‰和-5.82‰~16.47‰。硝酸盐氮氧同位素数据表明,甑皮岩地下水硝酸盐来源主要为粪便及污废水,少量来自降雨中的NH4+和土壤有机氮。受岩溶介质不均一性的控制,甑皮岩地下水中NO3-浓度、δ15N-NO3-和δ18O-NO3-均表现出明显的空间变异性。甑皮岩地下水硝酸盐的转化过程复杂,受控于季节和岩溶介质不均一性,表现为旱季以反硝化为主,雨季则以硝化过程为主。厘清硝酸盐来源与转化为治理甑皮岩地下水硝酸盐污染提供一定的科学依据。   相似文献   

5.
地下水硝酸盐污染的同位素研究进展   总被引:4,自引:1,他引:3       下载免费PDF全文
土壤原生氮、无机化肥和动物粪便等氮源中15N富集程度存在差异,使得利用稳定同位素N(δ15N/14N)能有效识别地下水中NO3-的来源。但N不是一个稳定的示踪剂,地下水中NO3-的δ15N是N源的初始δ15N值、后期进入含水层的迁移路径中和地下水流运动途径中不同形态的N之间相互转化过程,如矿化、吸附、硝化和反硝化作用,发生的同位素分馏作用后的综合反映。利用地下水中NO3-的δ15N确定其来源必须首先确定分馏作用是否发生及其反应程度。本文重点探讨了判断分馏作用是否发生及其反应程度的方法,总结了N同位素判别地下水NO3-污染源方法的发展历程,并指出未来研究工作应该以硝酸盐在包气带中的迁移转化规律为重点。  相似文献   

6.
广州夏季雨水硝酸盐δ15N变化特征   总被引:3,自引:0,他引:3  
通过对广州2007年夏季雨水硝酸盐δ15的研究,讨论了广州地区雨水硝酸盐的主要来源及与之有关的大气化学演变过程。雨水硝酸盐占δ15N的变化趋势与N2O5含量的相似。暗示雨水硝酸盐δ15N与氮氧化合物的大气化学过程之间存在某种联系。白天雨水硝酸盐δ15N值偏低,与OH自由基氧化NOx生成硝酸盐的“白天反应”为主要反应相一致;18:00以后硝酸盐δ15N值呈升高趋势,则与N2O5累积的“夜间反应”成为主导反应相一致。因“白天反应”生成的HNO3的δ15N值受同位素分馏影响较小,白天雨水硝酸盐占δ15N值更能准确反映大气NOx的来源。白天雨水硝酸盐占δ15N平均值为2.5‰±2.1‰,表明除火力发电厂和机动车尾气排放来源外,雷电以及海源对大气NOx可能也有潜在贡献。  相似文献   

7.
环境氮同位素方法示踪石家庄市地下水中硝酸盐来源   总被引:4,自引:0,他引:4  
焦鹏程 《地球学报》1996,17(Z1):181-188
石家庄市地下水中硝酸盐含量呈上升趋势,水中硝酸盐含量分布范围为(0.4-96.0)×10-6,均值28.4×10-6,其δ15N值分布范围+6.1‰—+8.4‰,在地下水水位降落漏斗中心区(面积约8km2)δ15N值大于+9.6‰,表明有来自动物粪例的污染,其余地区水中硝酸盐的δ15N值介于+6.1‰—8.4‰之间,均值+6.9‰,表明该硝酸盐来自土壤有机氮  相似文献   

8.
针对近年来地下水硝酸盐污染日益严重的现象,本文运用氮同位素技术对位于典型农业区的东阿水文地质单元地下水氮污染来源进行了研究,结果表明:浅层地下水监测点的NO3-含量较高,平均含量为27.77 mg·L-1 ,δ15N 为7.8‰~12‰,反映了浅层地下水主要受到生活污水或粪便的污染;深层地下水(岩溶水)中NO3- 含量相对较低,平均含量为12.81 mg·L-1,δ15N为7.2‰~14.3‰,同样指示为生活污水或粪便污染,与补给区人为干扰密切相关。部分监测点地下水质量较差,建议研究区内使用高效的灌溉技术及科学的施肥方式,补给区附近的家禽养殖场可通过修建发酵池和改善饲料配方等方式,从源头上降低地下水硝酸盐的输入量。   相似文献   

9.
人为活动通常是地下水硝酸盐污染的主要原因。不同来源的NO3^-具有不同的氮、氧同位素组成,利用地下水NO3^-中的δ15N和δ18O值可有效识别地下水硝酸盐污染的来源。引起地下水中NO3^-含量显著减少的不同物理、化学和生物过程,所产生的氮、氧同位素分馏效应有明显差别。地下水系统中反硝化作用发生时,NO3^-中氮和氧同位素分馏系数呈一定比例。因此NO3^-中δ15N和δ18O值也是示踪地下水硝酸盐循环,尤其是反硝化作用的有效手段。利用NO3^-中氮和氧双同位素,并与其他环境同位素及化学分析技术相结合,示踪NO3^-来源及其循环是地下水硝酸盐污染研究的重要方向之一。综述了利用地下水硝酸盐中氮和氧同位素识别NO3^-污染源与循环的研究进展,简述了近年迅速发展的阴离子交换树脂取样法,概述了此方面研究存在的主要问题,并展望了今后的研究方向。  相似文献   

10.
王开然  边红燕 《地下水》2012,(2):31-32,92
人为活动通常是地下水硝酸盐污染的主要原因。不同来源的NO3-具有不同的氮同位素组成,利用地下水NO3-中的δ15N值可有效识别地下水硝酸盐污染的来源。以重庆青木关岩溶地下河为例,综述了利用地下水硝酸盐中氮同位素识别NO3-污染源与循环的研究进展,简述了近年迅速发展的阴离子交换树脂取样法,概述了此方面研究存在的主要问题,并展望了今后的研究方向。  相似文献   

11.
为准确探究聊城市城郊浅层地下水硝酸盐污染来源,通过分析聊城市城郊区域25个监测点地下水硝酸盐含量,运用氮、氧双同位素追溯地下水硝酸盐污染来源,运用物质平衡混合模型计算各种源的贡献率。结果表明:(1)聊城市城郊的地下水硝酸盐含量介于3.96~38.88mg/L,52%的监测点硝酸盐浓度超过《生活饮用水卫生标准》中Ⅲ类水20mg/L的上限值;(2)聊城市城郊地下水中δ~(15)N-NO_3~-介于-11.3‰~3.9‰之间,δ~(18)O值介于-5.2‰~25.8‰之间,表明地下水硝酸盐污染与农业施肥密切相关,其主要来源为化肥中的NH_4~+和NO_3~-,其次为土壤中N的矿化作用;(3)通过物质平衡混合模型计算,化肥中的NH_4~+对硝酸盐污染的贡献率为82%,化肥中的NO_3~-贡献率为12%,土壤中N矿化作用贡献率为5%;(4)建议加强区域的的化肥施用管理和市政自来水管道建设,区域居民选择饮用市政供水。  相似文献   

12.
贵阳地区夏季雨水硫和氮同位素地球化学特征   总被引:29,自引:6,他引:29  
对贵阳地区小雨和暴雨硫和氮同位素组成特征进行了研究。小雨中硫酸盐δ34S值和硝酸盐δ15N值分别为-7.96‰~+0.73‰(平均-4.90‰)和-3.77‰~+8.49‰(平均+2.00‰),暴雨中则分别为-2.07‰~+18.32‰(平均+4.59‰)和-2.91‰~+10.10‰(平均+4.10‰),表明两种类型雨水中硫酸盐和硝酸盐来源不同。小雨硫酸盐的负δ34S值与当地硫来源(煤炭燃烧和生物成因硫)有关,而暴雨硫酸盐的正δ34S值则为海源(太平洋)结果。小雨硝酸盐的δ15N值范围较宽(-3.77‰~+8.49‰),其来源不清,但该范围内较高δ15N值的样品(>+6.0‰)可能与干沉降和火力发电厂废气有关。暴雨硝酸盐的δ15N值仍然反映海源(太平洋)。小雨铵盐的δ15N值与铵盐含量有较好的相关关系(R2=0.92)。小雨铵盐中低δ15N值的样品(-1.73‰~-22.01‰)与云水(-28.6‰)对15N较少的吸收有关。贵阳地区较高的铵盐含量(平均1.25mg/L)和较低的δ15N值(平均-12.18‰±6.68‰)表明,铵盐来源于农业肥料的大范围施用和土壤NH3的挥发。  相似文献   

13.
运用氮、氧同位素技术判别常州地区地下水氮污染源   总被引:9,自引:1,他引:9  
本文运用氮、氧同位素技术对常州地区地下水氮的污染来源进行了研究.结果表明:潜水和微承压水中NO3-含量高,平均含量为38.32 mg/L,δ^15N为4.818‰~32.834‰,δ^18O为12.502‰~20.757‰,反映了多数潜水和微承压水受到了厩肥和污水的污染;中深层承压水(第1承压水、第2承压水、第3承压水)中NO3^-含量低,NO3^-平均含量为0.52 mg/L,未受到氮污染,δ^15N为2.163‰~6.208‰,δ^18O为17.051‰~23.201‰,NO3^-应主要来源于早期形成时的大气降水.  相似文献   

14.
硝酸盐的氮和三氧同位素(δ15N, δ17O和δ18O)及氧同位素非质量分馏(△17O)综合研究, 可以更有效地示踪硝酸盐的来源和形成过程、制约硝酸盐的形成条件。本文详细描述了细菌反硝化法测定10–6级硝酸盐氮和三氧同位素的分析测试方法和实验要点。综合优化改良的细菌反硝化前处理方法、全自动气体预浓缩富集纯化系统和测试流程, 实现了实验室长期测定数据的稳定性, 以及多批次标准样品测定的良好重现性。10 nmol NO– 3标准样品的δ18O和δ15N测试精度分别是0.25‰(1σ)和0.40‰(1σ)。80 nmol NO– 3标准样品的δ18O、δ17O和δ15N的测试精度分别是0.5‰(1σ)、0.4‰(1σ)和0.1‰(1σ), 据此计算出的Δ17O精度为0.46‰(1σ)。  相似文献   

15.
δ15N在贵阳地下水氮污染来源和转化过程中的辨识应用   总被引:24,自引:1,他引:23  
随着城市的发展,贵阳地下水氮污染日趋严重,为评估地下水中氮的分布、来源和迁移转化,我们采集了 72个水样,并测定了三氮 (、和 )浓度、主离子、δ 15N- 和 δ 15N-等.结果显示,在贵阳地下水大多数样品中,- N是最主要的无机氮形态,城区地下水大部分含较高的- N; 然而在城市污水和有些被明显污染的地下水中,却是最主要的无机氮形态,尤其是枯水期.丰水期地下水样有较低的δ 15N值,受农业化肥等影响明显.丰水期地下水- N浓度随着 Cl-浓度升高而升高,表明丰水期地下水硝酸盐可能主要受混合作用等控制.而枯水期地下水中溶解氧与硝酸盐的δ 15N值呈负相关关系,且相对于丰水期地下水具有较高的δ 15N值、较低的硝酸盐浓度和较低的 DIN/Cl值,说明地下水环境中主要受土壤有机氮等影响 , 同时可能存在反硝化.  相似文献   

16.
利用氮同位素技术识别石家庄市地下水硝酸盐污染源   总被引:36,自引:2,他引:36  
地下水NO- 3污染是石家庄市地下水管理面临的一个主要问题。本次研究通过地下水及其潜在补给源的氮同位素和水化学调查,确定和识别石家庄市地下水NO- 3污染程度和污染源。地下水中的无机氮化合物主要以NO- 3形式存在,浓度变化在 2.65~152.1 m g/L之间,均值为(54.88± 31)m g/L( n=44),48%的样品浓度超过国际饮水标准(50 m g/L)。地下水样品的NO- 3- 15 N值域+4.53‰~+25.36‰,均值+9.94‰±4.40‰( n=34)。34个样品中,22个样品(65%)的氮同位素值大于+8‰;与1991年相比,氮同位素组成指示地下水NO- 3的主要来源已由当时矿化的土壤有机氮变为现在的动物粪便或污水;结合Cl-分析,南部地下水NO-3还受到东明渠污水的影响。其余12个样品(35%)的氮同位素值变化在+4‰~+8‰之间,其中 15 N值较大的(+6‰~+8‰)指示来自土壤有机氮,较小的(+4‰~+6‰)指示来自氨挥发较弱、快速入渗的化肥厂污水。根据上述研究结果,提出了改善石家庄市地下水管理的措施。  相似文献   

17.
地下水硝酸盐中氮、氧同位素研究现状及展望   总被引:11,自引:0,他引:11  
朱琳  苏小四 《世界地质》2003,22(4):396-403
农业区内浅层地下水中硝酸盐污染普遍存在。为保证供水安全和有效治理污染的地下水体。确定硝酸盐中氮的来源及影响硝酸盐浓度的物理、化学作用尤为重要。由于不同成因的硝酸盐中δ^15N值存在差异,利用N同位素可以确定氮污染源,但有时存在多解性问题;分析硝酸盐的δ^18O值,可提高地下水硝酸盐污染的研究深度。本文综述了用硝酸盐中N、O同位素来区分地下水污染中硝酸盐的不同来源和示踪氮循环过程这两方面的研究进展,并提出一些值得重视的研究方向。  相似文献   

18.
贵阳雨水无机氮沉降的氮、氧同位素特征   总被引:1,自引:0,他引:1  
雨水中氮沉降主要以铵盐(NH+4)和硝酸盐(NO-3)形式存在,这与地表生态氮循环和酸雨等环境问题直接相连.我们测定了贵阳地区雨水中的NH+4和NO-3的氮氧同位素值,讨论了氮素形态分布及其同位素组成特征,探讨了雨水中溶解无机氮的成因.雨水中的NH+4和NO-3平均值分别为0.81和o.51mg N/L;铵盐的δ15N平均值为-4.7‰,较硝酸盐的δ15N平均值负,雨水中硝酸盐δ18O值为25.2‰~40.1‰,平均值为34.2±4.3‰,季节性差别不显著.  相似文献   

19.
塔木素铀矿床地下水具有砂岩型铀矿床中很罕见的高矿化度地下水特征,偏碱性(平均pH=7.52)。水中阳离子主要为Na+,其次为Ca2+、Mg2+,少量K+;阴离子主要为Cl-,并含有HCO-3、SO2-4等。矿化度为17.18~49.65g·L-1,平均为35.39g·L-1。水化学类型为Cl-Na型和Cl·SO4-Na型,随着矿化度的增加,水化学类型变为Cl-Na型。同位素研究显示,地下水δ18 O=-7.2‰~-8.9‰,平均为-8.24‰;δD=-73.9‰~-75.1‰,平均为-74.44‰。与地表水体值(δ18 O=-7.1‰~-7.4‰,δD=-56.5‰~-58.9‰)相比,二者均明显偏低,推测地下水主要为封存水,而与盆地周边地表水没有直接联系。234 U/238 U=1.02~2.16,平均为1.552,应该是受含矿地层α反冲作用影响,导致水中234 U增加所致。地下水中铀含量为0.14~73.1μg·L-1,平均16.35μg·L-1,地下水中铀含量与234 U/238 U值有明显的正相关关系。  相似文献   

20.
水环境硝酸盐氮污染研究新方法——15N和18O相关法   总被引:17,自引:0,他引:17  
最近40年,硝酸盐已成为一个共同的地下水污染物。使用CaO定量地除云CO2和H2O的新的焊封管燃烧法分析了NO3^-中的氮同位素比值。应用AgNO3 C的新的焊封管燃烧法进行了NO3^-中氧同位素分析。安阳和林县饮用水中广泛的NO3^-N污染大大超过饮用标准是一个主要问题。食管癌的死亡率与饮用水中NO3^-、NO2^-、NH4^ 和亚硝胺过剩的含量成正比。δ(^15N)和δ(^18O)研究资料指出,在这个地区饮用水中的NO3^-主要来自农家肥和化肥。地下水NO3^-的δ(^18O)明确地指出,在这个地区不存在有意义的反硝化作用发生。相反,由NH4^ 到NO3^-的需氧硝化作用可导致NO3^-中的氧1/3来自空气,2/3来自水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号