首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new global P-wave tomography model is determined using a flexible-grid parameterization. This new model better reveals the mantle structure under the polar regions than the previous tomographic models. The subducting slabs are generally imaged clearly as high-velocity (high-V) zones. The young slabs are still subducting in the upper mantle and the mantle transition zone (MTZ), whereas the old and ancient slabs are either stagnant in the MTZ or have subducted down to the lower mantle, even reaching the core-mantle boundary. Low-velocity (low-V) anomalies are generally revealed in the mantle under the hotspot regions. It seems that a variety of mantle upwelling (plumes) exist. Some strong plumes are visible in the whole mantle under the long-living hotspots, such as those in south-central Pacific, Africa, Hawaii and Iceland, whereas weak plumes are visible in only some depth range under the minor hotspots. Under the intraplate volcanoes in East Eurasia, Bering Sea and West Alaska, significant low-V anomalies are revealed in the upper mantle, which may reflect hot and wet upwelling associated with corner flows in the big mantle wedge (BMW) above the stagnant Pacific slab in the MTZ and perhaps deep slab dehydration as well. The subduction-triggered magmatism in the BMW may be a new class of mantle plumes. We also used the new global model to investigate the influence of whole-mantle heterogeneity on the determination of upper-mantle tomography under Japan with a teleseismic inversion method. The results show that the mantle heterogeneities outside the target volume of regional tomography can cause significant changes (~ 0.2-0.4 s) to the observed relative travel-time residuals of a distant earthquake. The pattern of regional tomography remains the same even after correcting for the whole-mantle heterogeneity, but there are some changes in the amplitude of velocity anomalies in the regional tomography. Hence it is necessary to correct for the mantle heterogeneities outside the target volume so as to obtain a better regional tomography.  相似文献   

2.
《Gondwana Research》2010,17(3-4):401-413
We present new pieces of evidence from seismology and mineral physics for the existence of low-velocity zones in the deep part of the upper mantle wedge and the mantle transition zone that are caused by fluids from the deep subduction and deep dehydration of the Pacific and Philippine Sea slabs under western Pacific and East Asia. The Pacific slab is subducting beneath the Japan Islands and Japan Sea with intermediate-depth and deep earthquakes down to 600 km depth under the East Asia margin, and the slab becomes stagnant in the mantle transition zone under East China. The western edge of the stagnant Pacific slab is roughly coincident with the NE–SW Daxing'Anling-Taihangshan gravity lineament located west of Beijing, approximately 2000 km away from the Japan Trench. The upper mantle above the stagnant slab under East Asia forms a big mantle wedge (BMW). Corner flow in the BMW and deep slab dehydration may have caused asthenospheric upwelling, lithospheric thinning, continental rift systems, and intraplate volcanism in Northeast Asia. The Philippine Sea slab has subducted down to the mantle transition zone depth under Western Japan and Ryukyu back-arc, though the seismicity within the slab occurs only down to 200–300 km depths. Combining with the corner flow in the mantle wedge, deep dehydration of the subducting Pacific slab has affected the morphology of the subducting Philippine Sea slab and its seismicity under Southwest Japan. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent small mantle plumes, or hot upwelling associated with the deep slab subduction. Slab dehydration may also take place after a continental plate subducts into the mantle.  相似文献   

3.
Dapeng Zhao  Eiji Ohtani   《Gondwana Research》2009,16(3-4):401-413
We present new pieces of evidence from seismology and mineral physics for the existence of low-velocity zones in the deep part of the upper mantle wedge and the mantle transition zone that are caused by fluids from the deep subduction and deep dehydration of the Pacific and Philippine Sea slabs under western Pacific and East Asia. The Pacific slab is subducting beneath the Japan Islands and Japan Sea with intermediate-depth and deep earthquakes down to 600 km depth under the East Asia margin, and the slab becomes stagnant in the mantle transition zone under East China. The western edge of the stagnant Pacific slab is roughly coincident with the NE–SW Daxing'Anling-Taihangshan gravity lineament located west of Beijing, approximately 2000 km away from the Japan Trench. The upper mantle above the stagnant slab under East Asia forms a big mantle wedge (BMW). Corner flow in the BMW and deep slab dehydration may have caused asthenospheric upwelling, lithospheric thinning, continental rift systems, and intraplate volcanism in Northeast Asia. The Philippine Sea slab has subducted down to the mantle transition zone depth under Western Japan and Ryukyu back-arc, though the seismicity within the slab occurs only down to 200–300 km depths. Combining with the corner flow in the mantle wedge, deep dehydration of the subducting Pacific slab has affected the morphology of the subducting Philippine Sea slab and its seismicity under Southwest Japan. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent small mantle plumes, or hot upwelling associated with the deep slab subduction. Slab dehydration may also take place after a continental plate subducts into the mantle.  相似文献   

4.
In this article, we review the significant recent results of geophysical studies and discuss their implications on seismotectonics, magmatism, and mantle dynamics in East Asia. High-resolution geophysical imaging revealed structural heterogeneities in the source areas of large crustal earthquakes, which may reflect magma and fluids that affected the rupture nucleation of large earthquakes. In subduction zone regions, the crustal fluids originate from the dehydration of the subducting slab. Magmatism in arc and back-arc areas is caused by the corner flow in the mantle wedge and dehydration of the subducting slab. The intraplate magmatism has different origins. The continental volcanoes in Northeast Asia (such as Changbai and Wudalianchi) seem to be caused by the corner flow in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and the deep dehydration of the stagnant slab as well. The Tengchong volcano in Southwest China is possibly caused by a similar process in BMW above the subducting Burma microplate (or Indian plate). The Hainan volcano in southernmost China seems to be a hotspot fed by a lower-mantle plume associated with the Pacific and Philippine Sea slabs’ deep subduction in the east and the Indian slab’s deep subduction in the west down to the lower mantle. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and cause the slab–plume interactions. Some of these issues, such as the origin of intraplate magmatism, are still controversial, and so further detailed studies are needed from now.  相似文献   

5.
Recent results of high-resolution seismic tomography and mineral physics experiments are used to study mantle dynamics of Western Pacific and East Asia. The most important processes in subduction zones are the shallow and deep slab dehydration and the convective circulation (corner flow) processes in the mantle wedge. The combination of the two processes may have caused the back-arc spreading in the Lau basin, affected the morphology of the subducting Philippine Sea slab and its seismicity under southwest Japan, and contributed to the formation of the continental rift system and intraplate volcanism in Northeast Asia, which are clearly visible in our tomographic images. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent (a) small mantle plumes, (b) upwellings associated with the slab collapsing down to the lower mantle, or (c) sub-slab dehydration associated with deep earthquakes caused by the reactivation of large faults preserved in the slab. Combining tomographic images and earthquake hypocenters with phase diagrams in the systems of peridotite + water, we proposed a petrologic model for arc volcanism. Arc magmas are caused by the dehydration reactions of hydrated slab peridotite that supply water-rich fluids to the mantle wedge and cause partial melting of the convecting mantle wedge. A large amount of fluids can be released from hydrated MORB at depths shallower than 55 km, which move upwards to hydrate the wedge corner under the fore-arc, and never drag down to the deeper mantle along the slab surface. Slab dehydration reactions at 120 km depth are the antigorite-related 5 reactions which supply water-rich fluids for forming the volcanic front. Phase A and Mg-surssasite breakdown reactions at 200 and 300 km depths below 700 °C cause the second and third arcs, respectively. Moreover, the dehydration reactions of super-hydrous phase B, phases D and E at 500–660 km depths cause the fluid transportation to the mantle boundary layer (MBL) (410–660 km depth). The stagnant slabs extend from Japan to Beijing, China for over 1000 km long, indicating that the arc–trench system covers the entire region from the Japan trench to East Asia. We propose a big mantle wedge (BMW) model herein, where hydrous plumes originating from 410 km depth cause a series of intra-continental hot regions. Fluids derived from MBL accumulated by the double-sided subduction zones, rather than the India–Asia collision and the subsequent indentation into Asia, are the major cause for the active tectonics and mantle dynamics in this broad region.  相似文献   

6.
Seismic images under 60 hotspots: Search for mantle plumes   总被引:10,自引:0,他引:10  
Dapeng Zhao   《Gondwana Research》2007,12(4):335-355
The mantle plume hypothesis is now widely known to explain hotspot volcanoes, but direct evidence for actual plumes is weak, and seismic images are available for only a few hotspots. In this work, we present whole-mantle tomographic images under 60 major hotspots on Earth. The lateral resolution of the tomographic images is about 300 km under the continental hotspots and 400–600 under the oceanic hotspots. Twelve plume-like, continuous low-velocity (low-V) anomalies in both the upper and lower mantle are visible under Hawaii, Tahiti, Louisville, Iceland, Cape Verde, Reunion, Kerguelen, Amsterdam, Afar, Eifel, Hainan, and Cobb hotspots, suggesting that they may be 12 whole-mantle plumes originating from the core–mantle boundary (CMB). Clear upper-mantle low-V anomalies are visible under Easter, Azores, Vema, East Australia, and Erebus hotspots, which may be 5 upper-mantle plumes. A mid-mantle plume may exist under the San Felix hotspot. The active intra-plate volcanoes in Northeast Asia (e.g., Changbai, Wudalianchi, etc.) are related to the stagnant Pacific slab in the mantle transition zone. The Tengchong volcano in Southwest China is related to the subduction of the Burma microplate under the Eurasian plate. Although low-V anomalies are generally visible in some depth range in the mantle under other hotspots, their plume features are not clear, and their origins are still unknown. The 12 whole-mantle plumes show tilted images, suggesting that plumes are not fixed in the mantle but can be deflected by the mantle flow. In most cases, the seismic images under the hotspots are complex, particularly around the mantle transition zone. A thin low-V layer is visible right beneath the 660-km discontinuity under some hotspots, while under a few other hotspots, low-V anomalies spread laterally just above the 660-km discontinuity. These may reflect ponding of plume materials in the top part of the lower mantle or the bottom of the upper mantle. The variety of behaviors of the low-V anomalies under hotspots reflects strong lateral variations in temperature and viscosity of the mantle, which control the generation and ascending of mantle plumes as well as the flow pattern of mantle convection.  相似文献   

7.
http://www.sciencedirect.com/science/article/pii/S1674987110000034   总被引:5,自引:1,他引:4  
<正>We synthesize significant recent results on the deep structure and origin of the active volcanoes in mainland China.Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge,whereas the intraplate magmatism in China has different origins.The active volcanoes in Northeast China(such as the Changbai and Wuda-lianchi) are caused by hot upwelling in the big mantle wedge(BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well.The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate(or Indian plate). The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and the Indian slab's deep subduction in the west down to the lower mantle.The stagnant slab finally collapses down to the bottom of the mantle,which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab—plume interactions.  相似文献   

8.
We present seismic images of the mantle beneath East Russia and adjacent regions and discuss geodynamic implications. Our mantle tomography shows that the subducting Pacific slab becomes stagnant in the mantle transition zone under Western Alaska, Bering Sea, Sea of Okhotsk, Japan Sea, and Northeast Asia. Many intraplate volcanoes exist in these areas, which are located above the low-velocity zones in the upper mantle above the stagnant slab, suggesting that the intraplate volcanoes are related to the dynamic processes in the big mantle wedge above the stagnant slab and the deep slab dehydration. Teleseismic tomography revealed a low-velocity zone extending down to 660 km depth beneath the Baikal rift zone, which may represent a mantle plume. The bottom depths of the Wadati–Benioff deep seismic zone and the Pacific slab itself become shallower toward the north under Kamchatka Peninsula, and the slab disappears under the northernmost Kamchatka. The slab loss is considered to be caused by the friction between the slab and the surrounding asthenosphere as the Pacific plate rotated clockwise at about 30 Ma ago, and then the slab loss was enlarged by the slab-edge pinch-off by the hot asthenospheric flow and the presence of Meiji seamounts.  相似文献   

9.
A dense nationwide seismic network recently constructed in Japan has resulted in the production of a large amount of high-quality data that have enabled the high-resolution imaging of deep seismic structures in the Japanese subduction zone. Seismic tomography, precise locations of earthquakes, and focal mechanism research have allowed the identification of the complex structure of subducting slabs beneath Japan, revealing that the subducting Philippine Sea slab underneath southwestern Japan has an undulatory configuration down to a depth of 60–200 km, and is continuous from Kanto to Kyushu without disruption or splitting, even within areas north of the Izu Peninsula. Analysis of the geometry of the Pacific and Philippine Sea slabs identified a broad contact zone beneath the Kanto Plain that causes anomalously deep interplate and intraslab earthquake activity. Seismic tomographic inversions using both teleseismic and local events provide a clear image of the deep aseismic portion of the Philippine Sea slab beneath the Japan Sea north of Chugoku and Kyushu, and beneath the East China Sea west of Kyushu down to a depth of ∼450 km. Seismic tomography also allowed the identification of an inclined sheet-like seismic low-velocity zone in the mantle wedge beneath Tohoku. A recent seismic tomography work further revealed clear images of similar inclined low-velocity zones in the mantle wedge for almost all other areas of Japan. The presence of the inclined low-velocity zones in the mantle wedge across the entirety of Japan suggests that it is a common feature to all subduction zones. These low-velocity zones may correspond to the upwelling flow portion of subduction-induced convection systems. These upwelling flows reach the Moho directly beneath active volcanic areas, suggesting a link between volcanism and upwelling.  相似文献   

10.
It is being accepted that earthquakes in subducting slab are caused by dehydration reactions of hydrous minerals. In the context of this “dehydration embrittlement” hypothesis, we propose a new model to explain key features of subduction zone magmatism on the basis of hydrous phase relations in peridotite and basaltic systems determined by thermodynamic calculations and seismic structures of Northeast Japan arc revealed by latest seismic studies. The model predicts that partial melting of basaltic crust in the subducting slab is an inevitable consequence of subduction of hydrated oceanic lithosphere. Aqueous fluids released from the subducting slab also cause partial melting widely in mantle wedge from just above the subducting slab to just below overlying crust at volcanic front. Hydrous minerals in the mantle wedge are stable only in shallow (< 120 km) areas, and are absent in the layer that is dragged into deep mantle by the subducting slab. The position of volcanic front is not restricted by dehydration reactions in the subducting slab but is controlled by dynamics of mantle wedge flow, which governs the thermal structure and partial melting regime in the mantle wedge.  相似文献   

11.
《Gondwana Research》2010,17(3-4):370-400
A dense nationwide seismic network recently constructed in Japan has been yielding large volumes of high-quality data that have made it possible to investigate the seismic structure in the Japanese subduction zone with unprecedented resolution. In this article, recent studies on the subduction of the Philippine Sea and Pacific plates beneath the Japanese Islands and the mechanism of earthquake and magma generation associated with plate subduction are reviewed. Seismic tomographic studies have shown that the Philippine Sea plate subducting beneath southwest Japan is continuous throughout the entire region, from Kanto to Kyushu, without disruption or splitting even beneath the Izu Peninsula as suggested in the past. The contact of the Philippine Sea plate with the Pacific plate subducting below has been found to cause anomalously deep interplate and intraslab earthquake activity in Kanto. Detailed waveform inversion studies have revealed that the asperity model is applicable to interplate earthquakes. Analyses of dense seismic and GPS network data have confirmed the existence of episodic slow slip accompanied in many instances by low-frequency tremors/earthquakes on the plate interface, which are inferred to play an important role in stress loading at asperities. High-resolution studies of the spatial variation of intraslab seismicity and the seismic velocity structure of the slab crust strongly support the dehydration embrittlement hypothesis for the generation of intraslab earthquakes. Seismic tomography studies have shown that water released by dehydration of the slab and secondary convection in the mantle wedge, mechanically induced by slab subduction, are responsible for magma generation in the Japanese islands. Water of slab origin is also inferred to be responsible for large anelastic local deformation of the arc crust leading to inland crustal earthquakes that return the arc crust to a state of spatially uniform deformation.  相似文献   

12.
长白山火山的起源和太平洋俯冲板块之间的关系   总被引:6,自引:0,他引:6  
近年来,尽管不同学科通过不同手段对长白山火山进行过广泛研究,然而,目前人们对它的起源仍不清楚。利用全球地震层析成像和区域层析成像结果,综合分析了长白山火山的起源。结果表明,它的起源既不同于夏威夷等板内热点火山,也不同于日本等岛弧火山,而是一种与太平洋俯冲板块在地幔转换带内的滞留和深部脱水等过程密切相 关的弧后板内火山。  相似文献   

13.
Wei WEI  Dapeng ZHAO 《地学前缘》2013,20(2):155-171
为了深入了解日本东北俯冲带的地震构造及火山活动,利用布设在日本列岛上密集地震台网所记录到的高质量浅震及深震到时数据,反演求得了该区域地壳及上地幔的三维P波和S波速度结构。为了最大程度地利用地震数据提取模型空间中更为精细的速度结构信息,采用不规则网格模型采进行地震层析成像反演。所得的高分辨率成像结果清晰地显示,2008年岩手地震(M 7.2)位于高低速异常的转换区,而且震源区的地壳介质非均匀性极强。在震源区的下地壳及上地幔顶部存在着明显的低速异常,可能代表了岛弧岩浆和流体在该深度处的储集。研究结果表明,2008年岩手地震的产生受到了来自上地幔楔的岩浆和流体的影响,且这些岩浆和流体与俯冲太平洋板块的脱水作用有着密切的联系。  相似文献   

14.
Jianshe Lei  Dapeng Zhao 《Tectonophysics》2005,397(3-4):281-295
We present the first seismic image of the upper mantle beneath the active intraplate Changbai volcano in Northeast Asia determined by teleseismic travel time tomography. The data are measured at a new seismic network consisting of 19 portable stations and 3 permanent stations. Our results show a columnar low-velocity anomaly extending to 400-km depth with a P-wave velocity reduction of up to 3%. High velocity anomalies are visible in the mantle transition zone, and deep-focus earthquakes occur at depths of 500–600 km under the region, suggesting that the subducting Pacific slab is stagnant in the transition zone, as imaged clearly by global tomography. These results suggest that the intraplate Changbai volcano is not a hotspot like Hawaii but a kind of back-arc volcano related to the deep subduction and stagnancy of the Pacific slab under Northeast Asia.  相似文献   

15.
Three-dimensional P-wave velocity structure beneath the Changbai and other intraplate volcanic areas in Northeast Asia is determined by inverting 1378 high-quality P-wave arrival times from 186 teleseismic events recorded by 61 broadband seismic stations. Low-velocity (low-V) anomalies are revealed beneath the Changbai, Longgan, Xianjindao volcanoes. High-velocity (high-V) anomalies are found in the mantle transition zone, where deep-focus earthquakes under Hunchun occur at depths of 500–600 km. The high-V anomaly reflects the deep subduction of the Pacific slab under NE Asia which may have contributed to the formation of the Changbai, Longgang, Xianjindao and Jingpohu intraplate volcanoes. A low-V anomaly is also revealed in the mantle transition zone, which may have a close relationship with the occurrence of deep earthquakes under the Hunchun area. Our results support the Big Mantle Wedge (BMW) model by Zhao et al. [Zhao, D., Lei, J., Tang, Y., 2004. Origin of the Changbai volcano in northeast China: evidence from seismic tomography, Chin. Sci. Bull. 49, 1401–1408; Zhao, D., Maruyama, S., Omori, S., 2007. Mantle dynamics of western Pacific and East Asia: insight from seismic tomography and mineral physics. Gondwana Res. 11, 120–131.] who proposed that the intraplate volcanoes in NE Asia are caused by the back-arc magmatism associated with the deep dehydration process of the subducting slab and convective circulation process in the BMW above the stagnant Pacific slab.  相似文献   

16.
《Gondwana Research》2010,17(3-4):414-430
The East Asian continental margin is underlain by stagnant slabs resulting from subduction of the Pacific plate from the east and the Philippine Sea plate from the south. We classify the upper mantle in this region into three major domains: (a) metasomatic–metamorphic factory (MMF), subduction zone magma factory (SZMF), and the ‘big mantle wedge’ (BMW). Whereas the convection pattern is anticlockwise in the MMF domain, it is predominantly clockwise in the SZMF and BMW, along a cross section from the south. Here we define the MMF as a small wedge corner which is driven by the subducting Pacific plate and dominated by H2O-rich fluids derived by dehydration reactions, and enriched in large ion lithophile elements (LILE) which cause the metasomatism. The SZMF is a zone intermediate between MMF and BMW domains and constitutes the main region of continental crust production by partial melting through wedge counter-corner flow. Large hydrous plume generated at about 200 km depth causes extensive reduction in viscosity and the smaller scale hydrous plumes between 60 km and 200 km also bring about an overall reduction in the viscosity of SZMF. More fertile and high temperature peridotites are supplied from the entrance to this domain. The domain extends obliquely to the volcanic front and then swings back to the deep mantle together with the subducting slab. The BMW occupies the major portion of upper mantle in the western Pacific and convects largely with a clockwise sense removing the eastern trench oceanward. Sporadic formation of hydrous plume at the depth of around 410 km and the curtain flow adjacent to the trench cause back arc spreading. We envisage that the heat source in BMW could be the accumulated TTG (tonalite–trondhjemite–granodiorite) crust on the bottom of the mantle transition zone. The ongoing process of transportation of granitic crust into the mantle transition zone is evident from the deep subduction of five intra-oceanic arcs on the subducting Philippine Sea plate from the south, in addition to the sediment trapped subduction by the Pacific plate and Philippine Sea plate. The dynamics of MMF, SZMF and BMW domains are controlled by the angle of subduction; a wide zone of MMF in SW Japan is caused by shallow angle subduction of the Philippine Sea plate and the markedly small MMF domain in the Mariana trench is due to the high angle subduction of Pacific plate. The domains in NE Japan and Kyushu region are intermediate between these two. During the Tertiary, a series of marginal basins were formed because of the nearly 2000 km northward shift of the subduction zone along the southern margin of Tethyan Asia, which may be related to the collision of India with Asia and the indentation. The volume of upper mantle under Asia was reduced extensively on the southern margin with a resultant oceanward trench retreat along the eastern margin of Asia, leading to the formation of a series of marginal basins. The western Pacific domain in general is characterized by double-sided subduction; from the east by the oldest Pacific plate and from the south by the oldest Indo-Australian plate. The old plates are hence hydrated extensively even in their central domains and therefore of low temperature. The cracks have allowed the transport of water into the deeper portions of the slab and these domains supply hydrous fluids even to the bottom of the upper mantle. Thus, a fluid dominated upper mantle in the western Pacific drives a number of microplates and promote the plate boundary processes.  相似文献   

17.
齐诚  刘璐惜 《地学前缘》2008,15(1):232-241
与地震初动震相相比,后续震相包含有更为丰富的地球内部信息,因此逐渐地在地震层析成像研究中得到重视。文中以赵大鹏等最近的层析成像研究为例,介绍了通过增加后续震相到时信息得到的新的层析成像研究成果,包括通过使用反射波,仅用两个地震台站就可以进行地壳成像研究;深度震相到时的增加,拓宽了区域成像范围,成功实现了台网外部层析成像;随着国际地震中心(ISC)提供的更丰富的各种后续震相到时,对后续震相的认识和使用促进了全球体波走时成像的发展和对地球深部结构及动力学过程的认识。另一方面,地震学相关领域的进步,使得更多的后续震相能够被拾取并被应用到成像研究中,这将大大提高对地震波形信息的挖掘,提高对研究地区下三维结构的认识,极大地促进地震层析成像学的发展。  相似文献   

18.
The East Asian continental margin is underlain by stagnant slabs resulting from subduction of the Pacific plate from the east and the Philippine Sea plate from the south. We classify the upper mantle in this region into three major domains: (a) metasomatic–metamorphic factory (MMF), subduction zone magma factory (SZMF), and the ‘big mantle wedge’ (BMW). Whereas the convection pattern is anticlockwise in the MMF domain, it is predominantly clockwise in the SZMF and BMW, along a cross section from the south. Here we define the MMF as a small wedge corner which is driven by the subducting Pacific plate and dominated by H2O-rich fluids derived by dehydration reactions, and enriched in large ion lithophile elements (LILE) which cause the metasomatism. The SZMF is a zone intermediate between MMF and BMW domains and constitutes the main region of continental crust production by partial melting through wedge counter-corner flow. Large hydrous plume generated at about 200 km depth causes extensive reduction in viscosity and the smaller scale hydrous plumes between 60 km and 200 km also bring about an overall reduction in the viscosity of SZMF. More fertile and high temperature peridotites are supplied from the entrance to this domain. The domain extends obliquely to the volcanic front and then swings back to the deep mantle together with the subducting slab. The BMW occupies the major portion of upper mantle in the western Pacific and convects largely with a clockwise sense removing the eastern trench oceanward. Sporadic formation of hydrous plume at the depth of around 410 km and the curtain flow adjacent to the trench cause back arc spreading. We envisage that the heat source in BMW could be the accumulated TTG (tonalite–trondhjemite–granodiorite) crust on the bottom of the mantle transition zone. The ongoing process of transportation of granitic crust into the mantle transition zone is evident from the deep subduction of five intra-oceanic arcs on the subducting Philippine Sea plate from the south, in addition to the sediment trapped subduction by the Pacific plate and Philippine Sea plate. The dynamics of MMF, SZMF and BMW domains are controlled by the angle of subduction; a wide zone of MMF in SW Japan is caused by shallow angle subduction of the Philippine Sea plate and the markedly small MMF domain in the Mariana trench is due to the high angle subduction of Pacific plate. The domains in NE Japan and Kyushu region are intermediate between these two. During the Tertiary, a series of marginal basins were formed because of the nearly 2000 km northward shift of the subduction zone along the southern margin of Tethyan Asia, which may be related to the collision of India with Asia and the indentation. The volume of upper mantle under Asia was reduced extensively on the southern margin with a resultant oceanward trench retreat along the eastern margin of Asia, leading to the formation of a series of marginal basins. The western Pacific domain in general is characterized by double-sided subduction; from the east by the oldest Pacific plate and from the south by the oldest Indo-Australian plate. The old plates are hence hydrated extensively even in their central domains and therefore of low temperature. The cracks have allowed the transport of water into the deeper portions of the slab and these domains supply hydrous fluids even to the bottom of the upper mantle. Thus, a fluid dominated upper mantle in the western Pacific drives a number of microplates and promote the plate boundary processes.  相似文献   

19.
S.  M.  D.   《Gondwana Research》2007,11(1-2):7
The Western Pacific Triangular Zone (WPTZ) is the frontier of a future supercontinent to be formed at 250 Ma after present. The WPTZ is characterized by double-sided subduction zones to the east and south, and is a region dominated by extensive refrigeration and water supply into the mantle wedge since at least 200 Ma. Long stagnant slabs extending over 1200 km are present in the mid-Mantle Boundary Layer (MBL, 410–660 km) under the WPTZ, whereas on the Core–Mantle Boundary (CMB, 2700–2900 km depth), there is a thick high-V anomaly, presumably representing a slab graveyard. To explain the D″ layer cold anomaly, catastrophic collapse of once stagnant slabs in MBL is necessary, which could have occurred at 30–20 Ma, acting as a trigger to open a series of back-arc basins, hot regions, small ocean basins, and presumably formation of a series of microplates in both ocean and continent. These events were the result of replacement of upper mantle by hotter and more fertile materials from the lower mantle.The thermal structure of the solid Earth was estimated by the phase diagrams of Mid Oceanic Ridge Basalt (MORB) and pyrolite combined with seismic discontinuity planes at 410–660 km, thickness of the D″ layers, and distribution of the ultra-low velocity zone (ULVZ). The result clearly shows the presence of two major superplumes and one downwelling. Thermal structure of the Earth seems to be controlled by the subduction history back to 180 Ma, except in the D″ layer. The thermal structure of the D″ layer seems to be controlled by older slab-graveyards, as expected by paleogeographic reconstructions for Laurasia, Gondwana and Rodinia back to 700 Ma.Comparison of mantle tomography between the Pacific superplume and underneath the WPTZ suggests the transformation of a cold slab graveyard to a large-scale mantle upwelling with time. The Pacific superplume was born from the coldest CMB underneath the 1.0–0.75 Ga supercontinent Rodinia where huge amounts of cold slabs had accumulated through collision-amalgamation of more than 12 continents. A high velocity P-wave anomaly on a whole-mantle scale shows stagnant slabs restricted to the MBL of circum-Pacific and Tethyan regions. The high velocity zones can be clearly identified within the Pacific domain, suggesting the presence of slab graveyards formed at geological periods much older than the breakup of Rodinia. We speculate that the predominant subduction occurred through the formation period of Gondwana, presumably very active during 600 to 540 Ma period, and again from 400 to 300 Ma during the formation of the northern half of Pangea (Laurasia). We correlate the three dominant slab graveyards with three major orogenies in earth history, with the emerging picture suggesting that the present-day Pacific superplume is located at the center of the Rodinian slab graveyard.We speculate the mechanism of superplume formation through a comparison of the thermal structure of the mantle combined with seismic tomography under the Western Pacific Triangular Zone (WPTZ), Laurasia (Asia), Gondwana (Africa), and Rodinia (Pacific). The coldest mantle formed by extensive subduction to generate a supercontinent, changes with time of the order of several hundreds of million years to the hottest mantle underneath the supercontinent. The Pacific superplume is tightly defined by a steep velocity gradient on the margin, particularly well documented by S-wave velocity. The outermost region of the superplume is characterized by the Rodinia slab graveyard forming a donut-shape. We develop a petrologic model for the Pacific superplume and show how larger plumes are generated at shallower depths in the mantle. We link the mechanism of formation of the superplume to the presence of the mineral post-perovskite, the phase transformation of which to perovskite is exothermic, and thus aids in transporting core heat to mantle, and finally to planetary space by plumes.We summarize the characteristics of tectonic processes operating at the CMB to propose the existence of an “anti-crust” generated through “anti-plate tectonics” at the bottom of the mantle. The chemistry of the anti-crust markedly contrasts with that of the continental crust overlying the mantle. Both the crust and the anti-crust must have increased in volume through geologic time, in close relation with the geochemical reservoirs of the Earth. The process of formation of a new superplume closely accompanies the process of development of anti-crust at the bottom of mantle, through the production of dense melt from the partial melting of recycled MORB, observed now as the ULVZ. When CMB temperature is recovered to near 4000 K through phase transformation, the recycled MORB is partially melted imparting chemical buoyancy of the andesitic residual solid which rises up from CMB, leaving behind the dense melt to sink to CMB and thus increase the mass of anti-crust. These small-scale plumes develop to a large-scale superplume through collision and amalgamation with time. When all recycled MORBs are consumed, it is the time of demise of superplume. Immediately above the CMB, anti-plate tectonics operates to develop anti-crust through the horizontal movement of accumulated slab and their partial melting. Thus, we speculate that another continent, or even a supercontinent, has developed through geologic time at the bottom of the mantle.We also evaluate the heating vs. cooling models in relation to mantle dynamics. Rising plumes control not only the rifting of supercontinents and continents, but also the Atlantic stage as seen by anchored ridge by hotspots in the last 200 Ma in the Atlantic. Therefore, we propose that the major driving force for the mantle dynamics is the heat supplied from the high-T core, and not the slab pull force by cooling. The best analogy for this is the atmospheric circulation driven by the energy from Sun.  相似文献   

20.
利用日本气象厅(JMA)以及日本国立大学联合地震观测台网(JUNEC)记录到的3218个地震事件的231918条P波到时资料,反演求得西南日本160km深度范围内的三维P波速度结构。研究表明,在九州地区,俯冲的菲律宾海板块以高速为主要特征,该海洋板块在30~60km深度处的脱水使得弧前地幔楔顶端的橄榄石蛇纹岩化,在120km深度处的脱水使得地幔楔中的岩石局部熔融,融体上升引起该区的火山活动。在本州西部地区大山火山之下,低速异常显著,并伴随低频地震活动,说明该火山可能是个潜在的活火山,将来有喷发的可能性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号