首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The ground motion hazard for Sumatra and the Malaysian peninsula is calculated in a probabilistic framework, using procedures developed for the US National Seismic Hazard Maps. We constructed regional earthquake source models and used standard published and modified attenuation equations to calculate peak ground acceleration at 2% and 10% probability of exceedance in 50 years for rock site conditions. We developed or modified earthquake catalogs and declustered these catalogs to include only independent earthquakes. The resulting catalogs were used to define four source zones that characterize earthquakes in four tectonic environments: subduction zone interface earthquakes, subduction zone deep intraslab earthquakes, strike-slip transform earthquakes, and intraplate earthquakes. The recurrence rates and sizes of historical earthquakes on known faults and across zones were also determined from this modified catalog. In addition to the source zones, our seismic source model considers two major faults that are known historically to generate large earthquakes: the Sumatran subduction zone and the Sumatran transform fault. Several published studies were used to describe earthquakes along these faults during historical and pre-historical time, as well as to identify segmentation models of faults. Peak horizontal ground accelerations were calculated using ground motion prediction relations that were developed from seismic data obtained from the crustal interplate environment, crustal intraplate environment, along the subduction zone interface, and from deep intraslab earthquakes. Most of these relations, however, have not been developed for large distances that are needed for calculating the hazard across the Malaysian peninsula, and none were developed for earthquake ground motions generated in an interplate tectonic environment that are propagated into an intraplate tectonic environment. For the interplate and intraplate crustal earthquakes, we have applied ground-motion prediction relations that are consistent with California (interplate) and India (intraplate) strong motion data that we collected for distances beyond 200 km. For the subduction zone equations, we recognized that the published relationships at large distances were not consistent with global earthquake data that we collected and modified the relations to be compatible with the global subduction zone ground motions. In this analysis, we have used alternative source and attenuation models and weighted them to account for our uncertainty in which model is most appropriate for Sumatra or for the Malaysian peninsula. The resulting peak horizontal ground accelerations for 2% probability of exceedance in 50 years range from over 100% g to about 10% g across Sumatra and generally less than 20% g across most of the Malaysian peninsula. The ground motions at 10% probability of exceedance in 50 years are typically about 60% of the ground motions derived for a hazard level at 2% probability of exceedance in 50 years. The largest contributors to hazard are from the Sumatran faults.  相似文献   

2.
We test the sensitivity of seismic hazard to three fault source models for the northwestern portion of Gujarat, India. The models incorporate different characteristic earthquake magnitudes on three faults with individual recurrence intervals of either 800 or 1600 years. These recurrence intervals imply that large earthquakes occur on one of these faults every 266–533 years, similar to the rate of historic large earthquakes in this region during the past two centuries and for earthquakes in intraplate environments like the New Madrid region in the central United States. If one assumes a recurrence interval of 800 years for large earthquakes on each of three local faults, the peak ground accelerations (PGA; horizontal) and 1-Hz spectral acceleration ground motions (5% damping) are greater than 1 g over a broad region for a 2% probability of exceedance in 50 years' hazard level. These probabilistic PGAs at this hazard level are similar to median deterministic ground motions. The PGAs for 10% in 50 years' hazard level are considerably lower, generally ranging between 0.2 g and 0.7 g across northwestern Gujarat. Ground motions calculated from our models that consider fault interevent times of 800 years are considerably higher than other published models even though they imply similar recurrence intervals. These higher ground motions are mainly caused by the application of intraplate attenuation relations, which account for less severe attenuation of seismic waves when compared to the crustal interplate relations used in these previous studies. For sites in Bhuj and Ahmedabad, magnitude (M) 7 3/4 earthquakes contribute most to the PGA and the 0.2- and 1-s spectral acceleration ground motion maps at the two considered hazard levels.  相似文献   

3.
The assessment of local site effects on seismic ground motions is of great importance in earthquake engineering practice. Several destructive earthquakes in the past have demonstrated that the amplification of ground motion and associated damage to structures due to local site conditions is a significant consideration in earthquake hazard analysis. A recent paper published in this journal highlights the hazard posed by earthquakes in the megacity of Kolkata in India due to its seismic and geological settings. The seismic hazard assessment study speculates that the deep alluvial deposit in the city may increase the seismic hazard probably due to the amplification of the seismic energies. This paper focuses on the seismic response studies of the various soil strata (i.e. for local subsurface conditions) obtained from various construction sites in the city for predicted earthquake. It is very well recognized that site response studies (a part of seismic microhazard zonation for urban areas) are the first step towards performance-based foundation design or seismic risk analysis and mitigation strategy. One of the problems for carrying out site-specific study in Kolkata is the lack of recorded strong motion data in the city. Hence, this paper outlines a methodology to carry out site-specific study, where no strong motion data or seismic data are available. The methodology uses wavelet-based spectrum compatibility approach to generate synthetic earthquake motions and equivalent linear method for seismic site response analysis. The Mega City of Kolkata has been considered to explain the methodology. Seismic hazard zonation map by the Bureau of Indian Standards classifies the City of Kolkata as moderate seismic zone (Zone III) with a zone factor 0.16. On the other hand, GSHAP(Global Seismic Hazard Assessment Program) map which is based on 10% probability of exceedance in 50 years specifies a maximum peak ground acceleration (PGA) of 1.6 m/s2 (0.163 g) for this region. In the present study, the seismic response has been carried out based on GSHAP. The results of the analysis indicate the amplification of ground motion in the range of 4.46–4.82 with the fundamental period ranging from 0.81 to 1.17 s. Furthermore, the maximum spectral accelerations vary in the range of 0.78–0.95 g.  相似文献   

4.
A first generation of probabilistic seismic hazard maps of the Italian country are presented. They are based on seismogenic zoning deriving from a kinematic model of the structural tectonic units and on an earthquake catalogue with the foreshock and aftershock events filtered out. The following ground motion parameters have been investigated and mapped using attenuation equations based on strong-motion recordings of Italian earthquakes: peak ground acceleration and velocity; Arias intensity; strong motion duration; and the pseudovelocity and pseudoacceleration spectral values at 14 fixed frequencies both for the vertical and the largest horizontal component. A Poissonian model of earthquake occurrence is assumed as a default and the hazard maps are presented in terms of ground motion values expected to be exceeded at a 10% probability level in 50 years (return period 475 years) according to the requirement of Eurocode 8 for the seismic classification of national territories, as well as in terms of exceedance probabilities of selected ground motion values. Finally, as a tentative study, the use of hybrid methods (implementing both seismogenic zones and structures), renewal processes (including earthquake forecasting) and the influence of site effects (as the basis for the planning of earthquake scenarios) were explored.  相似文献   

5.
The Gulf of Aqaba is considered seismically as one of the most active zones of the Dead Sea Transform region. The main shock of the 1995 Gulf of Aqaba earthquake sequence is considered as the largest shock in the (surface wave magnitude Ms?=?7.2) since the sixteenth century. The present study is a trial to detect the probabilistic seismic hazard analysis (PSHA) for Nuweiba site. Data used for this study was a combination of both historical and recent instrumental data. Results of the hazard assessment, expressed as in the worst case scenario, reveal that Nuweiba is exposed to the occurrence of a maximum credible earthquake of magnitude $ m_{{\max }} ~ = ~7.4 \pm 0.31 $ , at hypocentral distance of 15.6?±?10 km. For structure with the return period of 100 years, with a 90% probability of exceedance, the maximum expected earthquake magnitude (ML) is 5.9 in this lifetime. The possibility of the maximum peak ground acceleration at the Nuweiba site is 0.41 g. Results of the hazard assessment can be used as an input data to assess the seismic risk for site of interest.  相似文献   

6.
Recent and paleo seismicity indicate that moderate seismic activity is relatively large for Aswan area. This is a warning on the possibility of occurrence of earthquakes in the future too. No strong motion records are available in Aswan area for engineers to rely upon. Consequently, the seismological modeling is an alternative approach till sufficient instrumental records around Aswan become available. In the present study, we have developed new ground motion attenuation relationship for events spanning 4.0?? M w?≤?7.0 and distance to the surface projection of the fault up to 100 km for Aswan based on a statistically simulated seismological model. We generated suites of ground motion time histories using stochastic technique. The ground motion attenuation relation describes the dependence of the strength of the ground motions on the earthquake magnitude and distance from the earthquake. The proposed equation for peak ground acceleration (PGA) for the bed rock is in the form of: $ {\mathbf{log}}{\text{ }}\left( {{\mathbf{PGA}}/{\mathbf{gal}}} \right){\text{ }} = {\mathbf{1}}.{\mathbf{24}} + {\mathbf{0}}.{\mathbf{358}}{M_{\mathbf{w}}} - {\text{ }}{\mathbf{log}}\left( {\mathbf{R}} \right){\text{ }}-{\text{ }}{\mathbf{0}}.{\mathbf{008}}{\text{ }}{\mathbf{R}}{\text{ }} + {\text{ }}{\mathbf{0}}.{\mathbf{22}}{\text{ }}{\mathbf{P}} $ . Where PGA is the peak ground acceleration in gal (cm/s2); Mw, its moment magnitude; R is the closest distance between the rupture projection and the site of interest; and the factor P is a dummy variable. It is observed that attenuation of strong motion in Aswan is correlated with those used before in Egypt.  相似文献   

7.
Within the framework of the performance based earthquake engineering, site specific earthquake spectra for Van province has been obtained. It is noteworthy that, in probabilistic seismic hazard assessment, as a first stage data from geological studies and records from the instrumental period were compiled to make a seismic source characterization for the study region. The probabilistic seismic hazard curves were developed based on selected appropriate attenuation relationships, at rock sites, with a probability of exceedance 2, 10 and 50% in 50 yrs period. The obtained results are compared with the spectral responses proposed for seismic evaluation and retrofit of building structure in Turkish Earthquake Code (2007), section 7. The acceleration response spectrums obtained from probabilistic seismic hazard analysis are matched to adjust earthquake accelerograms recorded during the 2011 Van earthquakes by using SeismoMatch v2.0 software. The aim of this procedure is to obtain a set of reasonable earthquake input motions for the seismic evaluation of existing buildings.  相似文献   

8.
The Egyptian government proposed a general plan, aiming to construct new settlements for Nubians in south Aswan in different places around Nasser’s Lake, one of these settlements in Kurkur area. This area are affecting by near distance earthquakes from Kalabsha faults system. These earthquakes generated great site effects on the sedimentary layers that in turn significantly influenced earthquake ground motions in the area. The main objective of the current study is to estimate the effect of local geology on seismic motion in terms of fundamental resonance frequency (f0) and the corresponding H/V amplitude values (A0) using the Nakamura technique. Ambient vibration measurements were carried out at 40 sites that are representative for the different geological units beneath the area. The recorded signals were processed using the horizontal-to-vertical (H/V) spectral ratio Nakamura’s technique. Analysis of spatial distribution of the fundamental frequencies (f0) and the corresponding H/V amplitudes (A0) showed that the f0 value varies from 0.98 to 2.74 Hz, while A0 varies from 2.2 to 6.6 within the study area. Output of this study is very important for solving the problems, which associated with the construction of various civil engineering purposes, for land-use planning and for earthquakes resistant structure design.  相似文献   

9.
A probabilistic method is used to evaluate the seismichazard of Adassiya dam site on the Yarmouk river in Jordan. A line source model developedby McGuire (1978) is used in this study. An updated earthquake catalogue coveringthe period from 1 A.D. to 1996 A.D. is used for this purpose. This catalogue includesall earthquakes that occurred in Jordan and adjacent areas, more specifically between latitudes27.0°–35.5°N and longitudes 32.0°–39.0°E.Nine distinct seismic sources of potential seismic activitiesare identified. The seismic hazard parameters are determined using the method suggested by Kijko and Sellevoll (1989).The Peak Ground Acceleration (PGA) is selected as a measure of ground motion severity. Esteva (1974) attenuation relationship is used in evaluating PGA values at each dam site. Analysis is carried out for 50%, 90%, and 95% probability that is not being exceeded in a life time of 50, 100, and 200 years.Results of analysis indicate that PGA values at the dam site are as follows:[] Operating Basis Earthquake (OBE) (50% probabilityof non-exceedance for a design life of 100 years – corresponding to a return period of 145 years) is 133.6 cm/sec2.[] An earthquake with 90% probability of non-exceedancefor a design life of 50 years – corresponding to a return period of 475 years is 214.9 cm/sec2.[] Maximum Credible Earthquake (MCE) (Return period of900 years) is 283.0 cm/sec2.Strong motion acceleration time history of these earthquakes are givenbased on strong motion records of the November 1995 Gulf of Aqaba earthquake.Local site effect analysis for Adassiya Dam site using SHAKE program showed no amplification. Normalized site-specific acceleration response spectra for OBE and MCE design earthquakes is also given.  相似文献   

10.
Northeast India is one of the most highly seismically active regions in the world with more than seven earthquakes on an average per year of magnitude 5.0 and above. Reliable seismic hazard assessment could provide the necessary design inputs for earthquake resistant design of structures in this region. In this study, deterministic as well as probabilistic methods have been attempted for seismic hazard assessment of Tripura and Mizoram states at bedrock level condition. An updated earthquake catalogue was collected from various national and international seismological agencies for the period from 1731 to 2011. The homogenization, declustering and data completeness analysis of events have been carried out before hazard evaluation. Seismicity parameters have been estimated using G–R relationship for each source zone. Based on the seismicity, tectonic features and fault rupture mechanism, this region was divided into six major subzones. Region specific correlations were used for magnitude conversion for homogenization of earthquake size. Ground motion equations (Atkinson and Boore 2003; Gupta 2010) were validated with the observed PGA (peak ground acceleration) values before use in the hazard evaluation. In this study, the hazard is estimated using linear sources, identified in and around the study area. Results are presented in the form of PGA using both DSHA (deterministic seismic hazard analysis) and PSHA (probabilistic seismic hazard analysis) with 2 and 10% probability of exceedance in 50 years, and spectral acceleration (T = 0. 2 s, 1.0 s) for both the states (2% probability of exceedance in 50 years). The results are important to provide inputs for planning risk reduction strategies, for developing risk acceptance criteria and financial analysis for possible damages in the study area with a comprehensive analysis and higher resolution hazard mapping.  相似文献   

11.
Intermediate-depth earthquakes in the Vrancea region occur in response to stress generation due to descending lithosphere beneath the southeastern Carpathians. In this article, tectonic stress and seismicity are analyzed in the region on the basis of a vast body of observations. We show a correlation between the location of intermediate-depth earthquakes and the predicted localization of maximum shear stress in the lithosphere. A probabilistic seismic hazard assessment (PSHA) for the region is presented in terms of various ground motion parameters on the utilization of Fourier amplitude spectra used in engineering practice and risk assessment (peak ground acceleration, response spectra amplitude, and seismic intensity). We review the PSHA carried out in the region, and present new PSHA results for the eastern and southern parts of Romania. Our seismic hazard assessment is based on the information about the features of earthquake ground motion excitation, seismic wave propagation (attenuation), and site effect in the region. Spectral models and characteristics of site-response on earthquake ground motions are obtained from the regional ground motion data including several hundred records of small and large earthquakes. Results of the probabilistic seismic hazard assessment are consistent with the features of observed earthquake effects in the southeastern Carpathians and show that geological factors play an important part in the distribution of the earthquake ground motion parameters.  相似文献   

12.
13.
A seismic hazard map of Kanpur city has been developed considering the region-specific seismotectonic parameters within a 500-km radius by deterministic and probabilistic approaches. The maximum probable earthquake magnitude (M max) for each seismic source has been estimated by considering the regional rupture characteristics method and has been compared with the maximum magnitude observed \(\left ({M_{\max }^{\text {obs}}}\right )\), \(M_{\max }^{\text {obs}} +0.5\) and Kijko method. The best suitable ground motion prediction equations (GMPE) were selected from 27 applicable GMPEs based on the ‘efficacy test’. Furthermore, different weight factors were assigned to different M max values and the selected GMPE to calculate the final hazard value. Peak ground acceleration and spectral acceleration at 0.2 and 1 s were estimated and mapped for worst-case scenario and 2 and 10% probability of exceedance for 50 years. Peak ground acceleration (PGA) showed a variation from 0.04 to 0.36 g for DSHA, from 0.02 to 0.32 g and 0.092 to 0.1525 g for 2 and 10% probability in 50 years, respectively. A normalised site-specific design spectrum has been developed considering three vulnerable sources based on deaggregation at the city center and the results are compared with the recent 2011 Sikkim and 2015 Nepal earthquakes, and the Indian seismic code IS 1893.  相似文献   

14.
A method for conducting a seismic hazard analysis of active faults using a fault-rupture model and a point-source model is presented. Based on a peak ground acceleration (PGA) attenuation formula, the annual probability of exceedance at a specific site is calculated. The uniform hazard spectrum is also determined based on a spectral amplitude attenuation formula. To improve the reliability of the seismic hazard analysis, a detailed study of hazard parameters is conducted and discussed. A specific site in Taiwan is chosen to illustrate the hazard analysis.  相似文献   

15.
沙牌坝址基岩场地地震动输入参数研究   总被引:2,自引:0,他引:2  
钟菊芳  温世亿  胡晓 《岩土力学》2011,32(2):387-392
重大水利水电工程地震动输入参数必须根据专门的地震危险性分析结果来确定。目前由地震危险性分析得到的一致概率反应谱具有包络的意义,不能反映实际地震的频谱特性,输入“一致概率反应谱”可能导致地震作用偏大;拟合设计反应谱人工生成地震动加速度时程的频率非平稳性也没有得到很好解决。为了解决这些问题,得到与坝址地震危险性一致、具体地震的输入参数,结合沙牌大坝提出了一套适用于重大水利水电工程基岩场地地震动输入参数确定方法:通过以有效峰值加速度为参数的概率地震危险性计算分析,确定坝址不同超越概率下的有效峰值加速度及对坝址贡献最大的潜在震源区;在最大贡献潜在震源内利用震级空间联合分布概率最大法确定坝址设定地震,依据加速度反应谱衰减关系确定与坝址设定地震对应的设计反应谱;根据设定地震结果和时变功率谱模型参数衰减关系确定时变功率谱,将时变功率谱和最小相位谱按三角级数叠加法进行强度和频率非平稳地震加速度时程合成。在对沙牌坝址区域的地震活动性及地震构造环境分析评价的基础上,采用上述方法,得到了坝址基岩场地不同超越概率下的有效峰值加速度、设计反应谱、强度和频率非平稳地震加速度时程等地震动输入参数。  相似文献   

16.
Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, \({\hbox {M}}_{\mathrm{w}} = 6.4\) (1993). Disaggregation of PSHA results for the PGA and spectral acceleration (\({\hbox {S}}_{\mathrm{a}}\)) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.  相似文献   

17.
In a previous paper (Makropoulos and Burton, 1985) the seismic hazard in Greece was examined in terms of magnitude recurrence using Gumbel's third asymptotic distribution of extreme values and concepts of the physical process of strain energy release. The present study extends the seismic hazard methods beyond magnitude to the estimation of expectations of levels of peak ground acceleration exceedance thus allowing for a direct comparison between these two methodologies as well as establishing information relevant to design and planning criteria.The limited number of strong motion records do not permit regional study of attenuation of ground vibration in Greece. An average formula is derived from eight well known formulae which resulted from worldwide studies, this is: a = 2164 e0.70m (r+20)−1.80 cm s−2 where a is peak ground acceleration, m is earthquake magnitude and r is hypocentral distance in kilometres. This formula agrees with the observed values of peak ground acceleration values recorded in Greece.Acceleration seismic hazard is calculated at each of six chosen cities. Values of maximum acceleration with probability 70% of not been exceeded in the next 25, 50, 100, and 200 years are obtained along with corresponding values of velocity and displacement. The same detailed acceleration evaluation is then applied to the whole area of Greece by dividing it into cells of 0.5° lat × 0.5° long, and the results are illustrated through isoacceleration maps.Differences in magnitude and acceleration hazard maps reflect the fact that in acceleration hazard assessment the focal distance from a particular place in an important factor. The cities of Heraklion and Rodhos have the lowest acceleration hazard although the expected earthquakes may have large magnitude. Intermediate depth earthquakes characterise these two cities. Acceleration estimates, unlike magnitude hazard parameters, refer to a particular place and not to an area around it. Hence, even if two places have similar earthquake depth distributions, the hazards may differ significantly because of the different spatial distribution of the foci. This is observed in the case of Athens and Corinth. These cities have almost the same magnitude hazard, but the acceleration hazard is much lower for Athens where the hazard is mainly due to more distant earthquakes.The isoacceleration maps for Greece as a whole also define areas of high seismic hazard. These are the areas around Cephalonia and Leukas Islands in the Ionian Sea and the eastern Sporadhes, Lesbos Islands and Chalkidiki in the Northern Aegean Sea. At the 70% probability level the maximum acceleration is expected to be around 0.2g within the next 50 years. The areas where the maximum acceleration at the 70% probability level is expected to reach a value of 0.3g in the next 200 years are around Cephalonia and Leukas Islands and near the Dardanelles.  相似文献   

18.
We tested a new hybrid method for the evaluation of seismic hazard. A recently proposed fault segmentation and earthquake recurrence model of peninsular Italy suggests that the interval for which the local historical catalogue is complete is shorter than the mean recurrence time of individual large faults (1000 years), or at the most comparable. These new findings violate the fundamental assumption of historical probabilistic seismic hazard methods that the historical record is representative of the activity of all the seismogenic sources. The hybrid method we propose uses time-dependent modelling of the major earthquakes and catalogue-based historical probabilistic estimates for all minor events. We assume that the largest earthquakes are characteristic for individual discrete fault segments, model their probability of occurrence by a renewal process and compute the shaking associated with each of them with a simplified procedure. Then we calculate the probability of exceeding a given threshold of peak ground acceleration for specific sites as the aggregate probability of occurrence of large characteristic earthquakes and minor shocks. We apply the method to the Calabrian Arc (Southern Italy) performing the calculations for five major towns. The exposure to seismic hazard of Reggio Calabria, Catanzaro and Vibo Valentia, which locate close to recently activated large faults, decreases with respect to traditional time-independent estimates. On the contrary, an increase of seismic hazard is obtained for Castrovillari, which locates in an area where large faults displaying Holocene activity have been recently recognized but no significant earthquake is reported in the historical catalogue. Cosenza has the highest probability to experience a significant peak ground acceleration with both the new hybrid and the traditional approaches. We wish to stress that the present results should be interpreted only in terms of the differences between the new hybrid and the traditional approaches, not for their absolute values, and that they are not intended to be used for updating or modifying the current national seismic zonation.  相似文献   

19.
Estimation of seismic hazard in Gujarat region, India   总被引:1,自引:1,他引:0  
The seismic hazard in the Gujarat region has been evaluated. The scenario hazard maps showing the spatial distribution of various parameters like peak ground acceleration, characteristics site frequency and spectral acceleration for different periods have been presented. These parameters have been extracted from the simulated earthquake strong ground motions. The expected damage to buildings from future large earthquakes in Gujarat region has been estimated. It has been observed that the seismic hazard of Kachchh region is more in comparison with Saurashtra and mainland. All the cities of Kachchh can expect peak acceleration in excess of 500?cm/s2 at surface in case of future large earthquakes from major faults in Kachchh region. The cities of Saurashtra can expect accelerations of less than 200?cm/s2 at surface. The mainland Gujarat is having the lowest seismic hazard as compared with other two regions of Gujarat. The expected accelerations are less than 50?cm/s2 at most of the places. The single- and double-story buildings in Kachchh region are at highest risk as they can expect large accelerations corresponding to natural periods of such small structures. Such structures are relatively safe in mainland region. The buildings of 3?C4 stories and tall structures that exist mostly in cities of Saurashtra and mainland can expect accelerations in excess of 100?cm/s2 during a large earthquake in Kachchh region. It has been found that a total of 0.11 million buildings in Rajkot taluka of Saurashtra are vulnerable to total damage. In Kachchh region, 0.37 million buildings are vulnerable. Most vulnerable talukas are Bhuj, Anjar, Rapar, Bhachau, and Mandvi in Kachchh district and Rajkot, Junagadh, Jamnagar, Surendernagar and Porbandar in Saurashtra. In mainland region, buildings in Bharuch taluka are more vulnerable due to proximity to active Narmada-Son geo-fracture. The scenario hazard maps presented in this study for moderate as well as large earthquakes in the region may be used to augment the information available in the probabilistic seismic hazard maps of the region.  相似文献   

20.
A probabilistic seismic hazard assessment is developed here using maximum credible earthquake magnitude statistics and earthquake perceptibility hazard. Earthquake perceptibility hazard is defined as the probability a site perceives ground shaking equal to or greater than a selected ground motion level X, resulting from an earthquake of magnitude M, and develops estimates for the most perceptible earthquake magnitude, M P(max). Realistic and usable maximum magnitude statistics are obtained from both whole process and part process statistical recurrence models. These approaches are extended to develop relationships between perceptible earthquake magnitude hazard and maximum magnitude recurrence models that are governed by asymptotic and finite return period properties, respectively. Integrated perceptibility curves illustrating the probability of a specific level of perceptible ground motion due to all earthquakes over the magnitude range extending from ?∞ to a magnitude M i are then developed from reviewing site-specific magnitude perceptibility. These lead on to achieving site-specific annual probability of exceedance hazard curves for the example cities of Sofia and Thessaloniki for both horizontal ground acceleration and ground velocity. Both the maximum credible earthquake magnitude M 3 and the most perceptible earthquake magnitude M P(max) are of importance to the earthquake engineer when approaching anti-seismic building design. Both forms of hazard are illustrated using contoured hazard maps for the region bounded by 39°–45°N, 19°–29°E. Patterns are observed for these magnitude hazard estimates—especially M P(max) specific to horizontal ground acceleration and horizontal ground velocity—and compared to inferred patterns of crustal deformation across the region. The full geographic region considered is estimated to be subject to a maximum credible earthquake magnitude M 3—estimated using cumulative seismic moment release statistics—of 7.53 M w, calculated from the full content of the adopted earthquake catalogue, while Bulgaria’s capital, Sofia, is estimated a comparable value of 7.36 M w. Sofia is also forecast most perceptible earthquake magnitudes for the lowest levels considered for horizontal ground acceleration of M PA(50) = 7.20 M w and horizontal ground velocity of M PV(5) = 7.23 M w for a specimen focal depth of 15 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号