首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
蒋玺  安邦  唐波 《矿物学报》2012,32(4):507-514
利用脉冲透射-反射法,在YJ-3000 t高压装置弹性波速测量系统上,测量了0.6、1.0和2.0 GPa,最高1141℃条件下闪长岩的纵波波速(vp)。结果显示,高压下闪长岩的vp随温度升高首先缓慢降低,分别到769℃(0.6 GPa)、810℃(1.0 GPa)和925℃(2.0 GPa)后转而快速下降。实验产物观测显示,0.6 GPa下岩石在758℃时发生脱水熔融并有新生单斜辉石生成,1.0 GPa和2.0 GPa下,闪长岩分别在865℃和921℃的实验产物中出现熔体,新生矿物有单斜辉石和石榴子石。温度升高导致闪长岩中熔体含量增加,斜长石、角闪石和绿泥石等逐渐减少直至消失,单斜辉石和石榴子石呈先增加后减少趋势。探针分析显示,熔体含水量较高,且随温度升高熔体成分向基性方向演化。单斜辉石化学成分变化不明显,2.0 GPa下,随温度从1030℃升高到1138℃,新生石榴子石成分逐渐向钙铝榴石变化。vp变化和熔体含量关系表明,熔体含量增加导致了闪长岩在高温阶段波速的持续快速降低。  相似文献   

2.
东昆仑造山带蛇绿岩矿物学特征及其岩石成因讨论   总被引:3,自引:0,他引:3  
首次对东昆仑复合造山带不同时代蛇绿岩主要造岩矿物橄榄石、辉石、斜长石进行了系统的矿物化学研究 ,查明了不同蛇绿岩带在矿物成分上的差异 ,对清水泉蛇绿岩带和布青山蛇绿岩带单斜辉石、斜方辉石、斜长石进行了矿物稀土、微量元素的研究 ,阐明了矿物稀土、微量元素与全岩稀土、微量元素的关系 ,证明了在以辉石和橄榄石为主的橄辉岩中 ,单斜辉石的稀土元素基本上代表了全岩的稀土元素。根据地幔岩石中矿物成分特征 ,对不同蛇绿岩带地幔类型进行了讨论 ,并根据实测的辉石、斜长石分配系数 ,确定了清水泉蛇绿岩带玄武岩的部分熔融定量模拟  相似文献   

3.
陆国隆  祝庆敏  朱永峰 《地质学报》2021,95(6):1805-1821
贺根山豆荚状铬铁矿是典型的高Al型铬铁矿(Cr#=47.8~54.9,Mg#=64.1~73.7),其中的包体以硅酸盐矿物为主(包括橄榄石、斜方辉石、单斜辉石、韭闪石、钠长石).根据包体形状、矿物组合及分布特征可将其划分为三类.第一类包体呈孤立单矿物相,主要包括橄榄石和单斜辉石,第二类包体由平衡共生的单斜辉石和斜方辉石构成,上述两类包体均具有被熔蚀的边,且零星分布在尖晶石中,属于捕虏晶成因.第三类包体属于熔融包体,具有多边形外形,包含复杂的矿物相并密集分布于尖晶石核部.利用尖晶石颗粒内部保存完好的单斜辉石以及单斜辉石和斜方辉石包体估算的温度(1148~1254℃)与压力(490~1290 MPa)表明,贺根山豆荚状铬铁矿矿床的形成深度为16~43 km.熔融包体中含大量钠长石和韭闪石,指示铬铁矿母熔体富集H2 O、Na和Si.与铬铁矿平衡母熔体的Al2 O3含量(15.4%~16.3%)、TiO2含量(0.3%~0.9%)和FeO/MgO比值(0.6~1.1)与低Ti拉斑玄武质熔体的类似.利用尖晶石和橄榄石包体计算获得铬铁矿原始熔体的Mg O含量为~19.8%.贺根山豆荚状铬铁矿经历了深部预富集和浅部成矿两个阶段,其中浅部成矿作用涉及熔体与方辉橄榄岩反应以及演化的熔体与原始熔体混合等过程.  相似文献   

4.
西藏日喀则地区拉斑玄武岩的高压熔融实验研究   总被引:1,自引:0,他引:1  
压力5—47 kbar,温度800—1345℃范围内,对西藏日喀则地区拉斑玄武岩进行熔融实验研究,确定了熔融曲线和高压矿物相关系。低压下(低于13 kbar)斜长石和橄榄石为稳定相。固相线以上,压力高于13 kbar,斜长石、橄榄石相继消失。压力超过25kbar,出现了石榴石。用电子探针法分析熔融样品中的玻璃成分,发现液相成分随着压力升高而变化,Na_2O和K_2O的含量增长。  相似文献   

5.
利用YJ-3000t和JL-3600t多顶砧压力机,以哀牢山造山带南部红河县大白能—乐育剖面上的天然块状斜长角闪岩为初始样品,在950℃、1.0~3.5GPa、恒温20~300h条件下进行了两个系列的斜长角闪岩块状样品脱水部分熔融实验:(1)保持温度T=950℃,加热时间t=100h不变,改变压力(1.0~3.5GPa)的实验;(2)保持温度T=950℃,压力p=3.0GPa不变,改变加热时间(20~300h)的实验。结果表明,1.0~3.5GPa、950℃、恒温100h的条件下,随压力升高,斜长角闪岩中依次生成了单斜辉石+石榴石+熔体的矿物组合(1.0~1.5GPa)和单斜辉石+石榴石+熔体+硬玉+SiO2矿物+蓝晶石(2.0~3.5GPa)的矿物组合。3.0GPa、950℃条件下,随加热时间增加,实验产物中依次生成了单斜辉石+石榴石+熔体+硬玉+SiO2矿物+蓝晶石的矿物组合(20~100h)和单斜辉石+石榴石+熔体的矿物组合(150~300h)。斜长角闪岩的原岩结构决定了实验产物中新生矿物和熔体的分布。依据实验产物的矿物组合和新生矿物的分布特征,讨论了950℃、1.0~3.5GPa、恒温(20~300h)条件下,斜长角闪岩部分熔融过程的结构变化、变质反应以及石榴石冠状体的成因。  相似文献   

6.
刘贵  周永胜  宋娟  何昌荣 《岩石学报》2012,28(3):1005-1016
本文以高温高压条件下石英闪长岩流变实验样品为研究对象,利用偏光显微镜进行微观结构观察,研究了样品在实验温度压力条件下的变形机制与斜长石结构对流变强度的影响;通过透射电镜能谱与电子探针,分析了熔体分布和成分特征,讨论了角闪石脱水熔融的影响因素与脱水熔融对岩石流变的影响。结果表明,随着温度升高,岩石从脆塑性过渡域逐渐向高温位错攀移和动态重结晶为主的塑性域转化。在高温条件下,角闪石出现了脱水与部分熔融,脱水熔融的熔体分布和成分体现出非均匀与非平衡熔融的特点,空间分布上,熔体主要出现在角闪石和黑云母矿物颗粒的边缘以及角闪石和长石颗粒之间的区域内;成分分布上,熔体的成分与参与熔融的矿物成分密切相关。角闪石边缘的熔体和黑云母边缘的熔体具有低硅铝、高铁镁特征,斜长石边缘的熔体具有高硅铝、低铁镁的特征,处于角闪石和斜长石颗粒中间的熔体,其成分间于斜长石与角闪石成分之间。实验中出现的非平衡非均匀部分熔融可以解释混合岩中的浅色体与暗色体的成因,富硅熔体可以形成富硅铝的花岗质岩石,而贫硅富铁镁的熔体可以形成基性岩。角闪石的脱水熔融程度依赖于样品的封闭条件,处于封闭环境的样品,角闪石不易脱水熔融,而处于开放环境时,角闪石脱水熔融显著。拆离断层带及其附近具备这样的开放环境,有利于角闪石发生脱水熔融。实验力学数据和微观结构显示,随机分布的斜长石对岩石强度影响并不明显,但斜长石的长轴方向与最大主应力方向呈大角度相交(近90°)会显著强化岩石的强度,这意味着岩石组构与主应力方向大角度相交或呈垂直方向时,不利于岩石变形和拆离断层的形成,反之,均匀岩石或岩石组构与最大主应力方向小角度相交,有利于岩石的变形,容易发育拆离断层。  相似文献   

7.
矿物反应与变形关系研究——以糜棱岩高温高压实验为例   总被引:1,自引:1,他引:0  
刘贵  石耀霖  周永胜 《岩石学报》2016,32(6):1663-1674
矿物反应和变形局部化在中下地壳普遍存在,两者相互影响和促进。实验研究表明,矿物反应与变形关系非常复杂。本文在糜棱岩高温高压流变实验的基础上,分析了实验变形样品中的矿物反应分布特征以及矿物反应引起的化学成分变化,讨论了矿物反应与变形的相互影响。微观结构分析表明,实验变形后的糜棱岩样品在温度800~890℃时,角闪石和黑云母出现脱水反应,生成微晶角闪石和黑云母,并伴有局部熔融。受应变局部化控制,脱水反应产物主要出现在黑云母、角闪石条带边缘。微晶和熔体的成分分析表明,不仅脱水反应形成的微晶与熔体的SiO 2含量非常低,而且黑云母周围的反应产物和熔体主要来自于黑云母的脱水,角闪石边缘的反应产物和熔体主要来自于角闪石脱水,石英、钾长石和斜长石没有参与反应与熔融。本研究中的脱水反应产物中,没有发现辉石和石榴石,这种脱水反应与文献中报道的无局部化的均匀样品在静高压和高熔融比例条件的脱水反应产物和熔体的成分有很大差别。黑云母和角闪石的局部化分布和脱水程度低,可能是造成脱水反应产物有差别的巨大原因。在本实验结果中,脱水反应对变形的影响主要体现为,脱水反应产生了细粒混合矿物相,使得在局部化的剪切带内变形机制从位错蠕变转变为扩散蠕变,导致样品出现应变弱化。另外脱水反应还引起了局部脆性破裂。变形引起晶体塑性变形,增加了位错密度和矿物细粒化,促进了晶体内部成核和黑云母与角闪石的脱水分解;差应力作用增加了局部的正应力和平均应力,增加了黑云母和角闪石能够稳定存在的压力范围,这可能是反应产物以微晶黑云母和角闪石为主,而没有转化为辉石的原因。  相似文献   

8.
单斜辉石作为大陆下地壳以及上地幔岩石的重要组成矿物,其在高温高压条件下的流变行为已有大量的实验研究。本文在综述以往对单斜辉石流变实验研究的基础上,讨论了影响其流变行为的各种因素及其地质意义,并指出了现存的问题及今后的研究趋势。影响单斜辉石流变性质的因素主要有流体(包括水和熔体)、粒度、化学成分、氧逸度以及温度与压力条件等。微量结构水可以显著增大单斜辉石单晶和多晶集合体的蠕变速率,降低其流变强度。熔体对单斜辉石强度的影响与熔体的含量和分布状态有关,呈三联点分布于矿物颗粒间的熔体对样品强度影响较小,只有当熔体呈薄膜状湿润颗粒边界时,熔体的弱化作用才显著。粒度主要影响单斜辉石的变形机制,单斜辉石集合体晶粒粒度的减小会促使变形机制由位错蠕变转变为扩散蠕变,较细粒的单斜辉石在扩散蠕变域内的应力与粒度呈线性负相关,而在位错蠕变域,应力与粒度无明显相关性。关于铁含量对单斜辉石的影响尚未有直接的实验研究,而对比前人在相同实验条件下采用不同铁含量的单斜辉石的扩散蠕变实验研究显示,单斜辉石中铁含量与蠕变速率可能呈正相关。氧逸度的升高对单斜辉石单晶的蠕变强度有轻微的弱化作用,而关于氧逸度对单斜辉石集合体流变...  相似文献   

9.
汉诺坝玄武岩中熔体-捕虏体相互作用初步研究   总被引:1,自引:0,他引:1  
汉诺坝新生代玄武岩捕获的地幔橄榄岩及其解体矿物橄榄石、单斜辉石、斜方辉石捕虏晶,普遍发育反应边结构,提供了玄武岩浆在上升穿越岩石圈地幔过程中橄榄岩-熔体相互作用的重要信息。橄榄石和单斜辉石捕虏晶反应边的成分变化一致,由核部富镁向边部富铁变化,趋同于玄武岩中相应斑晶的成分。斜方辉石捕虏晶反应边一般由橄榄石+单斜辉石+玻璃构成,多为双层结构,反应边矿物橄榄石、单斜辉石较相应的地幔矿物富铁,其富硅、碱的中酸性玻璃成分,为中国东部地幔矿物包裹体中存在的富硅、碱熔体的来源提供了重要信息。同时发现橄榄岩捕虏体中尖晶石颜色、成分的变化与温度的关系。地幔矿物捕虏晶反应边结构(非平衡结构)得以保存,暗示了玄武岩浆的快速上升。而大规模的熔体-捕虏体相互作用,改变着岩石圈地幔的性质。  相似文献   

10.
在采用天然基性岩样品进行的流变实验中,存在因实验温度低而样品处于半脆性变形域与因实验温度高而样品颗粒边界出现熔体的矛盾。文献中给出的流变参数中,应力指数n的可靠性高,具有良好的重复性,激活能Q在一定范围内具有重复性,而系数A重复性差。采用6种样品进行流变实验。结果表明,矿物成分对岩石流变的影响比根据端员组分确定的双组分和多组分岩石流变物理模型要复杂得多。由斜长石、单斜辉石和角闪石组成的样品中,当斜长石和单斜辉石含量接近,而角闪石含量低于10%,斜长石和单斜辉石控制了岩石的流变;如果样品中有超过10%的角闪石参与流变,角闪石在变形中所起作用非常显著。由斜长石、石英和角闪石组成的样品,当石英含量小于10%而斜长石和角闪石含量接近时,斜长石和角闪石控制了岩石的流变;当斜长石含量达到70%时,样品变形更接近长石特性;如果石英含量超过20%时,石英在变形中起到主要作用。选择与基性麻粒岩中主要矿物成分接近的天然辉长岩(辉绿岩),或者从天然基性麻粒岩中挑选出主要矿物,通过热压合成人工样品,进行高温流变实验是研究基性麻粒岩流变的最有效途径。  相似文献   

11.
云南哀牢山蛇绿岩的矿物学研究   总被引:3,自引:1,他引:2  
云南哀牢山蛇绿岩由变橄榄岩、堆晶杂岩、火山熔岩和硅质岩等四个单元组成,其主要矿物有橄榄石,斜方辉石、单斜辉石、尖晶石、斜长石、角闪石、石榴子石等,这些矿物均已不同程度地遭到蚀变、橄榄石、斜方辉石的化学成分显示蛇绿岩中的二辉橄榄岩为原始地幔岩;是石的化学特征表明蛇绿岩中的橄榄岩为深海橄榄岩;单斜辉石的成分反映二辉橄榄岩经历过熔融作用,堆晶杂央才基性熔岩具有火山弧和洋底玄武岩的特征。  相似文献   

12.
In the North‐East Greenland Caledonides, P–T conditions and textures are consistent with partial melting of ultrahigh‐pressure (UHP) eclogite during exhumation. The eclogite contains a peak assemblage of garnet, omphacite, kyanite, coesite, rutile, and clinozoisite; in addition, phengite is inferred to have been present at peak conditions. An isochemical phase equilibrium diagram, along with garnet isopleths, constrains peak P–T conditions to be subsolidus at 3.4 GPa and 940°C. Zr‐in‐rutile thermometry on inclusions in garnet yields values of ~820°C at 3.4 GPa. In the eclogite, plagioclase may exhibit cuspate textures against surrounding omphacite and has low dihedral angles in plagioclase–clinopyroxene–garnet aggregates, features that are consistent with former melt–solid–solid boundaries and crystallized melt pockets. Graphic intergrowths of plagioclase and amphibole are present in the matrix. Small euhedral neoblasts of garnet against plagioclase are interpreted as formed from a peritectic reaction during partial melting. Polymineralic inclusions of albite+K‐feldspar and clinopyroxene+quartz±kyanite±plagioclase in large anhedral garnet display plagioclase cusps pointing into the host, which are interpreted as crystallized melt pockets. These textures, along with the mineral composition, suggest partial melting of the eclogite by reactions involving phengite and, to a large extent, an epidote‐group mineral. Calculated and experimentally determined phase relations from the literature reveal that partial melting occurred on the exhumation path, at pressures below the coesite to quartz transition. A calculated P–T phase diagram for a former melt‐bearing domain shows that the formation of the peritectic garnet rim occurred at 1.4 GPa and 900°C, with an assemblage of clinopyroxene, amphibole, and plagioclase equilibrated at 1.3 GPa and 720°C. Isochemical phase equilibrium modelling of a symplectite of clinopyroxene, plagioclase, and amphibole after omphacite, combined with the mineral composition, yields a P–T range at 1.0–1. 6 GPa, 680–1,000°C. The assemblage of amphibole and plagioclase is estimated to reach equilibrium at 717–732°C, calculated by amphibole–plagioclase thermometry for the former melt‐bearing domain and symplectite respectively. The results of this study demonstrate that partial melt formed in the UHP eclogite through breakdown of an epidote‐group mineral with minor involvement of phengite during exhumation from peak pressure; melt was subsequently crystallized on the cooling path.  相似文献   

13.
The textures and mineral chemistries of silicate inclusions in the Udei Station (IAB) and Miles (fractionated IIE) iron meteorites were studied using optical and electron microscopy, SEM, EMPA, and LA-ICP-MS techniques to better understand the origin of silicate-bearing irons. Inclusions in Udei Station include near-chondritic, basaltic/gabbroic, feldspathic orthopyroxenitic, and harzburgitic lithologies. In Miles, most inclusions can be described as feldspathic pyroxenite or pyroxene-enriched basalt/gabbro. The trace-element compositions of both orthopyroxene and plagioclase grains are similar in different lithologies from Udei Station; whereas in different inclusions from Miles, the compositions of orthopyroxene grains are similar, while those of clinopyroxene, plagioclase, and especially Cl-apatite are variable. Orthopyroxene in Miles tends to be enriched in REE compared to that in Udei Station, but the reverse is true for plagioclase and clinopyroxene.The data can be explained by models involving partial melting of chondritic protoliths, silicate melt migration, and redox reactions between silicate and metal components to form phosphate. The extent of heating, melt migration, and phosphate formation were all greater in Miles. Silicates in Miles were formed from liquids produced by ∼30% partial melting of a chondritic precursor brought to a peak temperature of ∼1250 °C. This silicate melt crystallized in two stages. During Stage 1, crystallizing minerals (orthopyroxene, clinopyroxene, chromite, and olivine) were largely in equilibrium with an intercumulus melt that was evolving by igneous fractionation during slow cooling, with a residence time of ∼20 ka at ∼1150 °C. During Stage 2, following probable re-melting of feldspathic materials, and after the silicate “mush” was mixed with molten metal, plagioclase and phosphate fractionally crystallized together during more rapid cooling down to the solidus. In Udei Station, despite a lower peak temperature (<1180 °C) and degree of silicate partial melting (∼3-10%), silicate melt was able to efficiently separate from silicate solid to produce melt residues (harzburgite) and liquids or cumulates (basalt/gabbro, feldspathic orthopyroxenite) prior to final metal emplacement. Olivine was generally out of equilibrium with other minerals, but orthopyroxene and plagioclase largely equilibrated under magmatic conditions, and clinopyroxene in basalt/gabbro crystallized from a more evolved silicate melt.We suggest that a model involving major collisional disruption and mixing of partly molten, endogenically heated planetesimals can best explain the data for IAB and fractionated IIE silicate-bearing irons. The extent of endogenic heating was different (less for the IABs), and the amount of parent body disruption was different (scrambling with collisional unroofing for the IAB/IIICD/winonaite body, more complete destruction for the fractionated IIE body), but both bodies were partly molten and incompletely differentiated at the time of impact. We suggest that the post-impact secondary body for IAB/IIICD/winonaite meteorites was mineralogically zoned with Ni-poor metal in the center, and that the secondary body for fractionated IIE meteorites was a relatively small melt-rich body that had separated from olivine during collisional break-up.  相似文献   

14.
One mantle xenolith from a basanite host of the Mt. Melbourne Volcanic Field (Ross Sea Rift) is extraordinary in containing veins filled with leucite, plagioclase, clinopyroxene, nepheline, Mg-ilmenite, apatite, titaniferous mica, and the rare mineral zirconolite. These veins show extensive reaction with the dunitic or lherzolitic host (olivine+spinel+orthopyroxene+clinopyroxene). The reaction areas contain skeletal olivine and diopside crystals, plagioclase, phlogopite, aluminous spinel and ilmenite in a fine grained groundmass of aluminous spinel, clinopyroxene, olivine, plagioclase and interstitial leucite. The vein composition estimated from modal abundances and microprobe analyses is a mafic leucite-phonolite with high amounts of K, Al, Ti, Zr and Nb but low volatile contents. The melt is unrelated to the host basanite and was probably derived by smallscale melting of incompatible element-enriched phlogopite-bearing mantle material and must have lost most of its volatile content during migration, crystallization and reaction with the host dunite. While the veins are completely undeformed the dunitic host shows slight deformation. Vein minerals crystallized at high temperatures above 1000°C and pressures below 5 kbar according to the phase assemblage including leucite, nepheline and K-feldspar. Spinel/olivine geothermometry yielded 800–920°C for the re-equilibration of the host peridotite. Thus the xenolith must have been at shallow depth prior to and during the late veining event. Mantle material at shallow depths is consistent with rifting and the regional extreme displacement at the transition from the rifted Victoria Land Basin in the Ross Sea to the uplifted Trans-Antarctic Mountains.  相似文献   

15.
This paper presents a study of melt and fluid inclusions in minerals of an olivine-leucite phonolitic nephelinite bomb from the Monticchio Lake Formation, Vulture. The rock contains 50 vol.% clinopyroxene, 12% leucite, 10% alkali feldspars, 8% hauyne/sodalite, 7.5% nepheline, 4.5% apatite, 3.2% olivine, 2% opaques, 2.6% plagioclase, and < 1% amphibole. We distinguished three generations of clinopyroxene differing in composition and morphology. All the phenocrysts bear primary and secondary melt and fluid inclusions, which recorded successive stages of melt evolution. The most primitive melts were found in the most magnesian olivine and the earliest clinopyroxene phenocrysts. The melts are near primary mantle liquids and are rich in Ca, Mg and incompatible and volatile elements. Thermometric experiments with the melt inclusions suggested that melt crystallization began at temperatures of about 1200 °C. Because of the partial leakage of all primary fluid inclusions, the pressure of crystallization is constrained only to minimum of 3.5 kbar. Combined silicate–carbonate melt inclusions were found in apatite phenocrysts. They are indicative of carbonate–silicate liquid immiscibility, which occurred during magma evolution. Large hydrous secondary melt inclusions were found in olivine and clinopyroxene. The inclusions in the phenocrysts recorded an open-system magma evolution during its rise towards the surface including crystallization, degassing, oxidation, and liquid immiscibility processes.  相似文献   

16.
Plagioclase-bearing peridotites are commonly associated with gabbroic rocks sampled around the Moho Transition Zone. Based on mineral chemistry, texture, and spatial relations, the formation of plagioclase-bearing peridotites has been attributed to impregnation of basalt into residual peridotites. We conducted reactive dissolution and crystallization experiments to test this hypothesis by reacting a primitive mid-ocean ridge basalt with a melt-impregnated lherzolite at 1,300 °C and 1 GPa and then cooling to 1,050 °C as pressure decreased to 0.7 GPa. Crystallization during cooling produced lithologic sequences of gabbro–wehrlite or gabbro–wehrlite–peridotite, depending on reaction time. Wehrlitic and peridotitic sections contain significant amounts of plagioclase interstitial to olivine and clinopyroxene and plagioclase compositions are spatially homogeneous. Clinopyroxene in the wehrlite–peridotite section is reprecipitated from the melt and exhibits poikilitic texture with small rounded olivine chadacrysts. Mineral composition in olivine and clinopyroxene varies spatially, both at the scale of the sample and within individual grains. Olivine grains that crystallized close to the melt–peridotite interface are enriched in iron due to their proximity to the basaltic melt reservoir. Consistent with many field studies, we observed gradual spatial variation in olivine and clinopyroxene composition across a lithologically sharp boundary between the gabbro and wehrlite–peridotite. Plagioclase compositions show no obvious dependence on distance from the melt–rock interface and were precipitated from late-stage trapped melts. Compositional trends of olivine, pyroxene, and plagioclase are consistent with previous experimental results and natural observations of the Moho Transition Zone. Different lithological sequences form based primarily on the melt–rock ratio, composition of the melt and host peridotite, and thermochemical conditions, but are expected to grade from gabbro to wehrlite or troctolite to peridotite. Plagioclase-bearing peridotite represents the low melt–rock ratio end member where pyroxene is only partially replaced by olivine and melt, whereas dunite is expected to form where melts overwhelm and consume all other phases. This study confirms that under nominally anhydrous conditions, the gabbro–wehrlite–plagioclase-peridotite sequence can be formed by reaction between basalt and lherzolite and subsequent crystallization at intermediate to low pressures. Melt–rock reaction is a fundamental process in the formation of new crust at the shallowest part of the melting column where pyroxene-undersaturated melts percolate through depleted peridotite.  相似文献   

17.
Mantle xenoliths (lherzolites, clinopyroxene dunites, wehrlites, and clinopyroxenites) in the Early Cretaceous volcanic rocks of Makhtesh Ramon (alkali olivine basalts, basanites, and nephelinites) represent metasomatized mantle, which served as a source of basaltic melts. The xenoliths bear signs of partial melting and previous metasomatic transformations. The latter include the replacement of orthopyroxene by clinopyroxene in the lherzolites and, respectively, the wide development of wehrlites and olivine clinopyoroxenites. Metasomatic alteration of the peridotites is accompanied by a sharp decrease in Mg, Cr, and Ni, and increase of Ti, Al, Ca contents and 3+Fe/2+Fe ratio, as well as the growth of trace V, Sc, Zr, Nb, and Y contents. The compositional features of the rocks such as the growth of 3+Fe/2+Fe and the wide development of Ti-magnetite in combination with the complete absence of sulfides indicate the high oxygen fugacity during metasomatism and the low sulfur concentration, which is a distinctive signature of fluid mode during formation of the Makhtesh Ramon alkali basaltic magma. Partial melting of peridotites and clinopyroxenites is accompanied by the formation of basanite or alkali basaltic melt. Clino- and orthopyroxenes are subjected to melting. The crystallization products of melt preserved in the mantle rock are localized in the interstices and consist mainly of fine-grained clinopyroxene, which together with Ti-magnetite, ilmenite, amphibole, rhenite, feldspar, and nepheline, is cemented by glass corresponding to quartz–orthopyroxene, olivine–orthopyroxene, quartz–feldspar, or nepheline–feldspar mixtures of the corresponding normative minerals. The mineral assemblages of xenoliths correspond to high temperatures. The high-Al and high-Ti clinopyroxene, calcium olivine, feldspar, and feldspathoids, amphibole, Ti-magnetite, and ilmenite are formed at 900–1000°. The study of melt and fluid inclusions in minerals from xenoliths indicate liquidus temperatures of 1200–1250°C, solidus temperatures of 1000–1100°C, and pressure of 5.9–9.5 kbar. Based on the amphibole–plagioclase barometer, amphibole and coexisting plagioclase were crystallized in clinopyroxenites at 6.5–7.0 kbar.  相似文献   

18.
Primitive andesites from the Taupo Volcanic Zone formed by magma mixing   总被引:1,自引:0,他引:1  
Andesites with Mg# >45 erupted at subduction zones form either by partial melting of metasomatized mantle or by mixing and assimilation processes during melt ascent. Primitive whole rock basaltic andesites from the Pukeonake vent in the Tongariro Volcanic Centre in New Zealand’s Taupo Volcanic Zone contain olivine, clino- and orthopyroxene, and plagioclase xeno- and antecrysts in a partly glassy matrix. Glass pools interstitial between minerals and glass inclusions in clinopyroxene, orthopyroxene and plagioclase as well as matrix glasses are rhyolitic to dacitic indicating that the melts were more evolved than their andesitic bulk host rock analyses indicate. Olivine xenocrysts have high Fo contents up to 94%, δ18O(SMOW) of +5.1‰, and contain Cr-spinel inclusions, all of which imply an origin in equilibrium with primitive mantle-derived melts. Mineral zoning in olivine, clinopyroxene and plagioclase suggest that fractional crystallization occurred. Elevated O isotope ratios in clinopyroxene and glass indicate that the lavas assimilated sedimentary rocks during stagnation in the crust. Thus, the Pukeonake andesites formed by a combination of fractional crystallization, assimilation of crustal rocks, and mixing of dacite liquid with mantle-derived minerals in a complex crustal magma system. The disequilibrium textures and O isotope compositions of the minerals indicate mixing processes on timescales of less than a year prior to eruption. Similar processes may occur in other subduction zones and require careful study of the lavas to determine the origin of andesite magmas in arc volcanoes situated on continental crust.  相似文献   

19.
Olivinites of the Krestovskaya Intrusion consist of predominant amount of olivine, and minor Ti-magnetite, perovskite, and clinopyroxene (from single grain to a few vol %). Primary crystallized melt inclusions were found and studied in olivine, perovskite, and diopside of the olivinites. Daughter phases in olivine-hosted melt inclusions are monticellite, perovskite, kalsilite, phlogopite, magnetite, apatite, and garnet andradite. Perovskite-hosted melt inclusions contain such daughter phases as kalsilite, pectolite, clinopyroxene, biotite, magnetite, and apatite, while daughter phases in clinopyroxene-hosted melt inclusions are represented by kalsilite, phlogopite, magnetite, and apatite. According to melt inclusion heating experiments, olivine crystallized from above 1230°C to 1180°C. It was followed by perovskite crystallizing at ≥1200°C and clinopyroxene, at 1170°C. According to analysis of quenched glass of the melt inclusions, the chemical composition of melts hosted in the minerals corresponds to the larnite-normative alkali ultramafic (kamafugite) magma significantly enriched in incompatible elements. The high incompatible element concentrations, its distribution, and geochemical indicator ratios evidenced that the magma was derived by the partial melting of garnet-bearing undepleted mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号