首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The late Turonian to early Campanian calcareous nannofossil biostratigraphy of the Austrian Gosau Group is correlated with ammonite and planktonic foraminiferal zones. The standard Tethyan zonations for nannofossils and planktonic foraminifers are applied with only minor modifications. The basal marine sediments of the Gosau Group, bearing late Turonian-early Coniacian macrofossils, belong to the Marthasterites furcatus nannofossil Zone (CC13). The Micula decussata Zone (middle Coniacian to early Santonian) is combined with the Reinhardtites anthophorus Zone because of the rare occurrence of Renhardtites cf. R. anthophorus already in the Coniacian and taxonomic problems concerning the correct identification of this species. The Santonian-Campanian boundary lies within the Calculites obscures Zone (CCl7).  相似文献   

2.
《Cretaceous Research》2008,29(1):40-64
The proposed definition of the Turonian/Coniacian boundary, at the first occurrence of the inoceramid bivalve Cremnoceramus deformis erectus (Meek) (= Cremnoceramus rotundatus (sensu Tröger non Fiege)), prompted a rigorous study of the calcareous nannofossil events through this interval, both for calibration of the calcareous nannofossil biostratigraphy, and to provide an assessment of the suitability, in calcareous nannofossil terms, of the proposed stratotype section. New calcareous nannofossil data are presented here, detailing the biostratigraphy of the boundary interval from four locations. These include the candidate boundary-stratotype, the Salzgitter-Salder Quarry section (northern Germany), as well as the Slupia Nadbrzezna outcrop (central Poland), a potential secondary reference section. Also included is the Brezno Pd-1 Borehole and outcrops in the Brezno Formation (= Priesener Schichten) type-area (north-western Czech Republic), which represents an original boundary candidate (Copenhagen Stage Boundaries Meeting, 1983), and the Langdon Stairs coastal section (south-eastern England), part of the British Chalk succession. The calcareous nannofossil events derived from each section provide a sequence across the boundary of (in stratigraphical order): below the boundary, the first occurrence of Lithastrinus septenarius followed by that of Broinsonia parca expansa; above the boundary, the last occurrence of Helicolithus turonicus followed by the first occurrence of Micula staurophora (= Micula decussata of some authors). This places the boundary within Nannofossil Subzone UC9c. A similar sequence of events has previously been determined from sections in north-eastern England and in the south-eastern Indian Ocean. The presented data and correlations suggest that either the Salzgitter-Salder Quarry section or the Slupia Nadbrzezna outcrop section would make a suitable Global Stratotype Section for the Turonian/Coniacian boundary, as far as calcareous nannofossils are concerned. The use of the calcareous nannofossil Marthasterites furcatus, widely quoted as an indicator of this boundary, is discussed and proved to be untenable.  相似文献   

3.
Integration of calcareous nannofossil data, δ13C and δ18O values, and carbonate contents of the lower Paleocene–upper Paleocene sequence that crops out at the Misheiti section, East Central Sinai, Egypt, were used to denote the Danian/Selandian (D/S) and Selandian/Thanetian (S/T) stage boundaries. The study interval belongs to the Dakhla and Tarawan formations. Four calcareous nannofossil zones (NP4, NP5, NP6, and NP7/8) were recognized. The base of the Selandian Stage is tentatively placed at the lowest occurrences (LOs) of taxa ascribable to the second radiation of fasciculiths (i.e., Lithoptychius janii). This level is marked by a sudden drop of δ13C and δ18O values and carbonate content. No distinctive lithological changes were observed across the D/S boundary at the study section. A hiatus at the NP5/NP6 zonal boundary is indicated by the condensation of zones NP5 and NP6.The base of the Thanetian is placed at the base of Zone NP7/8 at the lithological change observed in correspondence to the boundary between the Dakhla and Tarawan formations. The δ13C and δ18O values abruptly decrease slightly above the base of Zone NP7/8. No consistent variations in the carbonate contents were recorded within Zone NP6 or across the NP6/NP7/8 zonal boundary.  相似文献   

4.
New carbon (δ13C) isotope records calibrated by planktonic bioevents provide general support for a late Campanian age assignment of the Shiranish Formation (Fm.) and its boundaries in the Dokan section (NE Iraq). The Shiranish Fm. is characterised at the base by a mid-Campanian unconformity as can be interpreted by absences of nannofossil zones CC20-21. The Shiranish Fm. then spans nannofossil biozones CC22-CC23a (UC15d-eTP to UC16aTP). Results obtained on carbon isotopes suggest that diagenesis affected and compromised a few carbonate samples in the uppermost 50 m of the section. However, once these samples are discarded, pristine trends suggest that the top of the section records a negative carbon isotope excursion that is interpreted as CMBa-c events that straddle the Campanian–Maastrichtian boundary. This interpretation is supported by the lowermost occurrence of planktic foraminifers Rugoglobigerina scotti and Contusotruncana contusa some 30 m above the base of the negative excursion and 10 m below a positive excursion identified as the Maastrichtian M1+ event. Discrepancies in the stratigraphic range of several planktic foraminifer bioevents are highlighted and advocate for the need of many more integrated records of planktic foraminifer and nannofossil biostratigraphy alongside carbon isotope stratigraphy in the eastern Tethys in order to improve regional and global schemes.  相似文献   

5.
An integrated biostratigraphic (foraminifera, calcareous nannofossils, crinoids), chemostratigraphic (stable carbon isotopes) and magnetostratigraphic study of the Bocieniec section (southern Poland) is presented here. The section presents a continuous and lithologically monotonous sedimentary record across the Santonian–Campanian boundary transition. A large number of macrofossil, foraminiferal and calcareous nannofossil bioevents along with several well-identified carbon-isotope excursions of the upper Santonian and lowermost Campanian are documented. The base of the Campanian is well-constrained by the last occurrence (LO) of the crinoid Marsupites testudinarius, and correlates to the onset of the first δ13C positive peak of the Santonian–Campanian Boundary Event (SCBE peak a). A presumable primary Cretaceous paleomagnetic signal highlights the potential presence of the C34N/C33R magnetic reversal although its exact position remains uncertain between peaks a and b of the SCBE. The planktic foraminifer Dicarinella asymetrica is very rare at Bocieniec but a potential LO of this important marker may be recorded in coincidence with peak b of the SCBE. The first occurrence (FO) of calcareous nannofossil Broinsonia parca parca coincides with the lower part of chron C33R and with the early Campanian pilula zone event. A large set of additional nannofossil events and benthic foraminifer events further constrain the stratigraphy of the section and along with the carbon isotopes, allows for correlation with other important sections of the Boreal realm. Although the Bocieniec section is relatively thin and condensed (5.5 m), the successive order of events and presence of all past proposed stratigraphic criteria for the Santonian-Campanian boundary makes it the most complete reference section for this interval at the European and at the global scale. Moreover, this section allows for a precise correlation of the Tethyan and Boreal domains. The Bocieniec section fulfils the geological criteria to be a potential boundary stratotype candidate for the base of the Campanian Stage.  相似文献   

6.
The Cretaceous outcrop belt of the Mississippi Embayment in the Gulf Coastal Plain (GCP) spans the Cretaceous/Paleogene (K/Pg) boundary. A detailed reconstruction of this time interval is critical for understanding the nature of biotic and environmental changes preceding the end-Cretaceous Mass Extinction event and for deciphering the likely extinction mechanism (i.e., bolide impact versus volcanism). Eight sections encompassing the K/Pg succession across the Mississippi Embayment were analyzed using biostratigraphic sampling of ammonites, dinoflagellates, and nannofossils. An upper Maastrichtian ammonite zonation is proposed as follows, from oldest to youngest: Discoscaphites conradi Zone, D. minardi Zone, and D. iris Zone. Our study documents that the ammonite zonation established in the Atlantic Coastal Plain (ACP) extends to the GCP. This zonation is integrated with nannofossil and dinoflagellate biostratigraphy to provide a framework to more accurately determine the age relationships in this region. We demonstrate that ammonites and dinoflagellates are more reliable stratigraphic indicators in this area than nannofossils because age-diagnostic nannofossils are not consistently present within the upper Maastrichtian in the GCP. This biostratigraphic framework has the potential to become a useful tool for correlation of strata both within the GCP and between the GCP, Western Interior, and ACP. The presence of the uppermost Maastrichtian ammonite D. iris, calcareous nannofossil Micula prinsii, and dinoflagellates Palynodinium grallator and Disphaerogena carposphaeropsis suggests that the K/Pg succession in the GCP is nearly complete. Consequently, the GCP is an excellent setting for investigating fine scale temporal changes across the K/Pg boundary and ultimately elucidating the mechanisms causing extinction.  相似文献   

7.
The stratigraphy, sedimentology and syn-depositional tectonic events (SdTEs) of the Upper Cretaceous/Paleogene (K–P) succession at four localities in north Eastern Desert (NED) of Egypt have been studied. These localities are distributed from south-southwest to north-northeast at Gebel Millaha, at North Wadi Qena, at Wadi El Dakhal, and at Saint Paul Monastery. Lithostratigraphically, four rock units have been recorded: Sudr Formation (Campanian–Maastrichtian); Dakhla Formation (Danian–Selandian); Tarawan Formation (Selandian–Thanetian) and Esna Formation (Thanetian–Ypresian). These rock units are not completely represented all over the study area because some of them are absent at certain sites and others have variable thicknesses. Biostratigrapgically, 18 planktonic foraminiferal zones have been recorded. These are in stratigraphic order: Globotruncana ventricosa Zone (Campanian); Gansserina gansseri, Contusotruncana contusa, Recimguembelina fructicosa, Pseudohastigerina hariaensis, Pseudohastigerina palpebra and Plummerita hantkenenoides zones (Maastrichtian); Praemurica incostans, Praemurica uncinata, Morozovella angulata and Praemurica carinata/Igorina albeari zones (Danian); Igorina albeari, Globanomanlina pseudomenradii/Parasubbotina variospira, Acarinina subsphaerica, Acarinina soldadoensis/Globanomanlina pseudomenardii and Morozovella velascoensis zones (Selandian/Thantian); and Acarinina sibaiyaensis, Pseudohastigerina wilcoxensis/Morozovella velascoensis zones (earliest Ypresian). Sedimentologically, four sedimentary facies belts forming southwest gently-dipping slope to basin transect have been detected. They include tidal flats, outer shelf, slumped continental slope and open marine hemipelagic facies. This transect can be subdivided into a stable basin plain plus outer shelf in the extreme southwestern parts; and an unstable slope shelf platform in the northeastern parts. The unstable slope shelf platform is characterized by open marine hemipelagic, fine-grained limestones and fine siliciclastic shales (Sudr, Dakhla, Tarawan and Esna formations). The northeastern parts are marked by little contents of planktonic foraminifera and dolomitized, slumped carbonates, intercalated with basinal facies. Tectonically, four remarkable syn-depositional tectonic events (SdTEs) controlled the evolution of the studied succession. These events took place strongly within the Campanian–Ypresian time interval and were still active till Late Eocene. These events took place at: the Santonian/Campanian (S/C) boundary; the Campanian/Maastrichtian (C/M) boundary; the Cretaceous/Paleogene (K/P) boundary; and the Middle Paleocene–Early Eocene interval. These tectonic events are four pronounced phases in the tectonic history of the Syrian Arc System (SAS), the collision of the Afro-Arabian and Eurasian plates as well as the closure of the Tethys Sea.  相似文献   

8.
During the late Maastrichtian to early Danian the Neuquén Basin of Argentina was adjacent to an active volcanic arc to the west and an extensive land area to the northeast. Mineralogical and geochemical studies of the Bajada del Jagüel in the Neuquén Basin indicate a generally warm climate with seasonal changes in humidity and an open seaway to the South Atlantic that maintained marine conditions. Biostratigraphic and quantitative foraminiferal and nannofossil analyses indicate that sediment deposition during the late Maastrichtian (zones CF4-CF2, N. frequens) occurred in relatively shallow middle neritic (100 m) depths with largely dysaerobic bottom waters (abundant low O2 tolerant benthics) and fluctuating sea level. Calcareous nannofossils indicate a high stress marine environment dominated by Micula decussata. Planktic foraminifera mimic the post-K/T high stress environment with alternating blooms of the disaster opportunists Guembelitria and low oxygen tolerant Heterohelix groups, indicating nutrient-rich surface waters and an oxygen depleted water column. The high stress conditions were probably driven by high nutrient influx due to upwelling and terrestrial and volcanic influx. The K/T boundary is marked by an erosional surface that marks a hiatus at the base of a 15-25 cm thick volcaniclastic sandstone, which contains diverse planktic foraminiferal zone P1c assemblages and nannofossils of zone NP1b immediately above it. This indicates deposition of the sandstone occurred 500 ky after the K/T hiatus. No evidence of the Chicxulub impact or related tsunami deposition was detected.  相似文献   

9.
Recognition of the Campanian stage on the Brazilian Continental Margin, using calcareous nannofossils, has been historically problematic. This paper constitutes an overview of earlier works, showing how nannofossil biostratigraphic ideas have evolved since Troelsen & Quadros provided the first biozonation of this region in 1971. Recent studied have provided data which have helped to clarify these apparent biostratigraphic problems, and allows this region to be placed in a global biostratigraphic context.The earliest researchers identified the Santonian/Campanian boundary by the last occurrences of ‘Lithastrinus grillii’ andPetrobrasiella venata. P. venatawas later abandoned as an index species due to its rarity and, instead, the last occurrences ofMarthasterites furcatusand ‘Lithastrinus grillii’ became the most-used markers. However, the stratigraphic age of these biohorizons diverged from those quoted in the literature. In the Brazilian basins, these extinctions, rather than having occurred in the Campanian as was recorded elsewhere, were considered to mark the top of the Santonian, as suggested by correlations with other microfossil groups (primarily foraminifera and palynomorphs). To explain this phenomenon, the existence of a condensed sequence was postulated for most of the Brazilian marginal basins, where the uppermost Santonian deposits were apparently indistinguishable from those of the lowermost Campanian. In line with current correlations presented in the nannofossil literature, and with new information obtained from core and side-wall samples, it is now believed that the extinction of these speciesdidoccur in the Campanian in the Brazilian basins, whilst the last occurrence ofLithastrinus moratus(previously misidentified asLithastrinus grillii) has become a useful Santonian marker. Thus the Santonian/Campanian boundary in Brazil lies in a stratigraphic position similar to elsewhere in nannofossil terms, that is below CC18.The Campanian/Maastrichtian boundary was initially characterised in nannofossil terms in Brazil by the last occurrence ofBroinsonia parca constricta, and later by the last occurrence ofEiffellithus eximius. Recently acquired data has shown that the sequence of events in the Brazilian marginal basins is similar to that of the Sissingh/Perch-Nielsen standard biozonation scheme through this interval. Again, correlations in the literature with the recently defined boundary (in macrofossil terms) thus allow the boundary to be determined between the last occurrences ofBroinsonia parca constrictaandUniplanarius trifidus, that is, in CC23b.  相似文献   

10.
Upper Jurassic–Lower Cretaceous transitional successions are widely distributed in the Tethyan Himalaya, southeast of Yangzuoyong Co Lake, southern Tibet. In ascending order, these include the Weimei (J3, Tithonian), Sangxiu/Jiabula formations (K1, Berriasian). The J/K boundary is located between the Weimei Formation and Sangxiu/Jiabula Formations. Ammonites found in J/K boundary sections in the research area have been classified into three assemblages: Valanginites–Phyllopachyceras assemblage zone (Valanginian), Spiticeras–Thurmanniceras assemblage zone (Berriasian) and Haplophylloceras–Blanfordiceras–Himalayites assemblage zone (Tithonian). Six nannofossil zones: Calcicalathina oblongata assemblage zone, Speetonia colligate zone, N. st. steinmannii zone, N. st. minor zone, P. beckmanni–N. st. minor interval zone, Conusphaera–Polycostella–Nannoconus–Watznaueria assemblage zone were recognized as well.On the basis of lithology, biostratigraphy and geochronology of the J/K transitional deposition succession, this study suggests that the J/K boundary, in southern Tibet, is located on the bottom of P. beckmanni–N. st. minor interval zone, which is further definited as and disappear of Polycostella beckmanni. To address the paucity of previously reported reliable ages for the J/K boundary, this study reports four U–Pb zircon ages (140–142 Ma) obtained with Secondary Ion Mass Spectrometry (SIMS) from the volcanic rocks interbedded in the lower Sangxiu Formation, which is expected to provides a direct date reference for the J/K boundary in the Tethyan Himalaya, southern Tibet. From integration of our new (SIMS) U–Pb zircon ages with calcareous nannofossils and ammonites, the age of the N. st. minor zone (NK-D) directly above the P. beckmanni-N. st. minor interval zone (NJK-C) of the basal Berriasian in the Tethyan realm is estimated to be 141–142 Ma. This research is not only helpful to improve the isotopic determination of absolute age for the J/K boundary, but also implies that the Tethyan Himalaya of southern Tibet may be an ideal location in which to explore the J/K boundary in both biostratigraphy and geochronology in future.  相似文献   

11.
The Pol Dokhtar section of southern Lorestan, faulted Zagros range of southwestern Iran, contains one of the most complete Early Campanian to Danian sequences. The lack of a good fundamental paleontological study is a strong motivation for investigating calcareous nannofossils in southwestern Iran. The majority of the section is made of shale, marl, and partly of marly limestone and clay limestone, respectively. As a result of this study, 24 genera and 45 species of nannofossils have been identified and presented for the first time. This confirms the existence of biozone CC18 of zonation scheme of Sissingh (Geologie en Minjbouw 56:37–65, 1977) to NP1 of zonation of Martini, which suggests the age of Early Campanian to Danian. All Early Campanian to Danian calcareous nannofossil biozones from CC18 (equivalent to the Aspidolithus parcus zone) to NP1 (equivalent to the Markalius inversus zone) are discussed. Also, the zonal subdivision of this section based on calcareous nannofossils has shown continuity in Cretaceous/Paleocene boundary in south part of Lorestan Province. We can also learn about the predominant conditions of the studied sedimentary basin that was in fact part of the Neotethys basin with the existence of indexed species calcareous nannofossils that indicate warm climate and high water depths of the basin in low latitudes.  相似文献   

12.
The biostratigraphy and the response of calcareous nannofossils to the End Cretaceous warming are investigated in the lower boundary of Kalat formation through the record of species richness, diversity, distribution patterns, and statistical treatments. The Kalat formation comprised of coarse-grained detritus limestone with subordinate sandstone intercalations. In the studied sections, the number of ten samples were taken and prepared with smear slide. In Dobaradar, section 22 species; in Kalat, section 25 species; and in Chahchaheh, section 32 species have been determined. Based on nannoplanktons and as a result of biostratigraphic studies, the nannofossil standard zones (CC25–CC26) were identified in all of sections. According to these zones in all of sections, the age of the studied thickness is Late Maastrichtian–Late Late Maastrichtian. In these sections, the presence of Micula murus at the end of Neyzar formation and the presence of this species at the lower part of Kalat formation indicate that the investigated boundary is Late Maastrichtian in age. The paleoecological results point to warm climate. The presence of warm water indicators (M. murus and Micula prinsii) and the absence of cool water indicators (Ahmuellerella octoradiata, Kamptnerius magnificus, and Nephrolithus frequens) suggest warm surface water conditions in these areas. In the lower boundary of Kalat formation, base on Lithraphidites spp. and Watznaueria barnesae, lowered fertility condition with low productivity at the end of the Maastrichtian were suggested, and the studied area was deposited in shallow marine environment in relatively low latitude.  相似文献   

13.
High-resolution carbon isotope stratigraphy of the upper Campanian-Maastrichtian is recorded in the Boreal Realm from a total of 1968 bulk chalk samples of the Stevns-1 core, eastern Denmark. Isotopic trends are calibrated by calcareous nannofossil bio-events and are correlated with a lower-resolution δ13C profile from Rørdal, northwestern Denmark. A quantitative approach is used to test the reliability of Upper Cretaceous nannofossil bio-events and provides accurate biohorizons for the correlation of δ13C profiles. The Campanian-Maastrichtian boundary (CMB) is identified through the correlation of dinoflagellate biostratigraphy and δ13C stratigraphy between Stevns-1 and the Global boundary Standard Stratotype-section and Point at Tercis les Bains (SW France), allowing the identification of new chemical and biostratigraphic markers that provide a precise placement of the stage boundary on a regional scale. The boundary interval corresponds to the third phase of a stepwise 0.8‰ negative δ13C excursion, lies in calcareous nannofossil subzone UC16dBP, and encompasses the last occurrence of nannofossil Tranolithus stemmerikii and first occurrence of nannofossil Prediscosphaera mgayae. Fifteen δ13C events are defined and correlated to sixteen reliable nannofossil biohorizons, thus providing a well-calibrated standard high-resolution δ13C curve for the Boreal Realm.  相似文献   

14.
A biostratigraphical and palaeoecological survey employing calcareous nannofossils and planktonic and benthonic foraminifera has been carried out in four sections of hemipelagic marls and chalks of the Late Maastrichtian Abathomphalus mayaroensis Zone of eastern Sinai, in order to evaluate the mechanisms controlling the composition of the well preserved microfauna and nannoflora.The Abathomphalus mayaroensis Zone in eastern Sinai can be easily identified by the wide occurrence of the index fossil A. mayaroensis and can be further subdivided by the first occurrences of Plummerita reicheli (ex. P. hantkeninoides) and Micula prinsii. Microfossil abundances and lithologies are characterised by pronounced repetitive distribution patterns. These include low and high frequency fluctuations of the planktonic/benthonic (P/B) foraminiferal ratio, repetitive changes in the abundance of calcareous nannofossils and benthonic foraminifera, as well as the development of chalk-marl couplets and thinning upward chalk packets. both microfossil distribution patterns and the occurrence of rhythmites are attributed to changes in primary palaeoproductivity. Semiquantitative investigations of calcareous nannofossils and a few selected benthonic foraminifera yield evidence of the presence of high (HP) and low (LP) productivity assemblages.The interpreted HP assemblage is dominated by Glaukolithus diplogrammus, Manvitella pemmatoidea, Microrhabdulus decoratus and Micula murus and the benthonic foraminifera Neoflabellina jarvisi; the LP assemblage is characterised by Lithraphidites quadratus and Bolivinoides draco. However, further quantitative studies are necessary to reconstruct the exact composition of these assemblages and to explain deviatory developments. The chalk-marl couplets, thinning-upward chalk packets and the high frequency P/B patterns are interpreted to reflect productivity changes related to orbital forcing. These hemipelagites were deposited during the latest phase of the southern Tethyan upwelling system, which was active from the Santonian to the Late Maastrichtian with a peak in the Campanian. Termination of upwelling just before the K/T boundary also provides a good explanation for the change towards a palaeobathymetric control on foraminiferal distribution, as observed for the Palaeocene of central east Sinai.  相似文献   

15.
One hundred and thirty nine samples have been studied from the Late Campanian–Early Maastrichtian of three deep wells drilled in Jiza’-Qamar Basin, Eastern Yemen to determine the calcareous nannofossil zones and the age of the sediments. Forty-seven calcareous nannofossil species were identified and four biozones were determined in the present study (CC21–CC24). These biozones are assigned to the Late Campanian–Early Maastrichtian ages. Most of the studied species in this work refer to tropical–subtropical environment. The Campanian–Maastrichtian Boundary was determined in Al-Fatk well based on the last occurrence of Eiffelithus eximus and the last occurrences of Uniplanarius sissinghii and Uniplanarius trifidus.  相似文献   

16.
By attention to the stratigraphic value of calcareous nannoplanktons for the age determination of sedimentary beds, for the first time Late Cretaceous calcareous nannofossil taxa, their distributions and relative abundances were recorded from the lower and the upper boundary of Aitamir Formation located in northeast Iran. In the present study, biostratigraphy and paleoecological conditions were reconstructed. The Aitamir Formation comprises glauconitic sandstones and olive-green shales. In this work, samples were prepared with smear slides, and nannofossils of these boundaries are listed and figured. They were photographed under a light microscope. Based on nannoplanktons and as a result of biostratigraphic studies, the age of the lower boundary of the Aitamir Formation in the east Kopet Dagh is Early/Middle Turonian, the age of the lower boundary in the west Kopet Dagh is Late Turonian/Early Coniacian, the age of the upper boundary of the Aitamir Formation in the east Kopet Dagh is Late Santonian, and the age of the upper boundary of this Formation in the west Kopet Dagh is Early Campanian. Based on paleoecological interpretation, the Aitamir Formation was deposited in a shallow marine environment, at relatively low latitude. A deepening trend of the sedimentary basin is recognized passing from Aitamir Formation to the overlying Abderaz Formation while in the lower boundary from Sanganeh to Aitamir Formation depth decreased.  相似文献   

17.
Study of floral succession from the Cretaceous-Paleogene boundary interval in Russian Far East (Zeya-Bureya depression), Northeastern Russia (Koryak Upland), and Northern Alaska (Sagavanirktok River basin) is crucial for better understanding palaeoclimatic and palaeogeographic factors, which controlled events in vegetation evolution at that time. The succession of fossil floras in the Zeya-Bureya depression includes plant assemblages of the Santonian, Campanian, early Danian, Danian, and Danian-Selandian age. The early Danian Boguchan Flora keeps continuity in composition and dominating taxa with the Campanian Late Kundur Flora. The Koryak Flora of the Amaam Lagoon area (Northeastern Russia) is dated as late Maastrichtian based on correlation of plant-bearing beds with marine biostratigraphy, whereas the Early and Late Sagwon floras of Northern Alaska are dated back to the Danian-Selandian and early Paleocene based on palynological and macrofloristic data. The Early Sagwon Flora is most close to the late Maastrichtian Koryak Flora of the Amaam Lagoon area in composition and main dominants, while the Late Sagwon Flora is comparable with the Danian or Danian-(?) Selandian flora from the Upper Tsagayan Subformation of the Amur area. In a florogenic aspect, trans-Beringian plant migrations from northeastern Asia and southern palaeolatitudes of the Far East, which became possible due to Paleocene climate warming in Arctic, have played an important role in forming of the Paleocene floras of Northern Alaska. Floras of the Far East and high latitudes of Asia and North America show no evidence of catastrophic event at the Cretaceous-Paleogene boundary. Their development was most probably controlled by climate changes, plant evolution and migration.  相似文献   

18.
The Gurpi section in western Shiraz, faulted Zagros range of southwestern Iran, contains one of the most complete Early Santonian to Late Maastrichtian sequences. The lack of a good fundamental paleontological study is a strong motivation for investigating calcareous nannofossils in southwestern Iran. The Gurpi Formation is mainly made up of grey shale. As a result of this study, 23 genera and 47 species of nannofossils have been identified for the first time. This confirms the existence of biozones CC14–CC26, which suggests the age of Early Santonian to Late Maastrichtian. All Early Santonian to Late Maastrichtian calcareous nannofossil biozones from CC14 (equivalent to the Micula decussate Zone) to CC26 (equivalent to the Nephrolithus frequens Zone) are discussed. Additionally, the zonal subdivision of this section based on calcareous nannofossils, is correlated with planktonic foraminiferal zones (Dicarinella asymetrica Zone to Abathomphalus mayaroensis Zone). We can also learn about the predominant conditions of the studied sedimentary basin that was in fact a part of the Neotethys basin with the existence of index species of calcareous nannofossils indicating a warm climate and high depths of the basin in low latitudes.  相似文献   

19.
This study is based on calcerous nannofossil assemblages changes and fluctutions of stable carbon and oxygen isotopes was collected clayey limestones, limestones, and marls in the Maastrichtian to Selandian from Akveren Formation (Western Black Sea). As the relative abundances of species of Micula spp, Watznauera barnesiae, and Arkhangelskiella cymbiformis, which tolerated changes of temperature and nutrition, carbon and oxygen isotopes compositions, and low species richness imply strong diagenesis effect at the Maastrichtian, there is no important diagenesis effect at Paleocene. Just after the Cretaceous/Tertiary (K-Pg) boundary, Thoracosphaera spp. and Braarudosphaera bigelowi were dominant species; Danian is characterized by Thoracosphaera, Ericsonia ovalis, Cruciplacolithus spp., Coccolithus pelagicus, and Ericsonia subpertusa. Generally, the nutrition productivity is good–moderate in Lower Maastrichtian, and decreasing carbon isotope values during the Uppermost Maastrichtian shows the presence of oligotrophic environmental conditions suitable with global nutrition crises before the K-Pg boundary and diagenesis in study area. Throughout the Danian, mesotrophic–oligotrophic environmental conditions dominate; however, the decrease in nutrition before Selandian represents oligotrophic environmental conditions. The increasing nutrition at Selandian is related to the change in the environmental conditions.  相似文献   

20.
The chronostratigraphy of a long, onshore Early–Middle Pleistocene marine sedimentary sequence on the south‐east part of Zakynthos island, Greece, is presented. Correlation of the succession with the isotope record of Ocean Drilling Program Site 963 reveals the combined influence of tectonics and eustacy in this area. The sequence is divided into three formations by two main unconformities that apparently relate to sea‐level lowstands associated with two major northern hemisphere glaciations, those of marine isotope stages (MIS) 22 and 12. The Zakynthos sequence in many ways is comparable with the Italian Valle di Manche section. Magnetostratigraphic and rock magnetic analyses, supported by biostratigraphy, document the position of the Matuyama/Brunhes Chron boundary (0.77 Ma), the top and base of the Jaramillo Subchron (0.99–1.07 Ma), the Cobb Mountain Subchron (1.173–1.185 Ma) and the top of the Olduvai Subchron (1.78 Ma). The underlying strata are constrained exclusively by detailed nannofossil biostratigraphy extending at least to the lowermost Pleistocene at around 2.54 Ma and therefore certainly incorporating the base of the Olduvai Subchron (1.95 Ma) and possibly the Gauss/Matuyama Chron boundary (2.58 Ma). In addition, a remarkable increase in sedimentation rate (from 3.2 and 28 cm ka?1 to 167 cm ka?1) and hence resolution above the Matuyama/Brunhes boundary (Middle Pleistocene) reveals one short‐lived magnetic excursion, possibly 17a (0.66 Ma), within the normal polarity Brunhes Chron. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号