首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A national groundwater-monitoring network consisting of 320 stations has been operated by the Ministry of Construction and Transportation and the Korea Water Resources Corporation since 1995. The network was established as a result of the Groundwater Act of Korea, and a supplementary local groundwater monitoring network containing 10,000 stations will be established throughout the country by the year 2011. A method of allocating stations and organizing the local monitoring network has been developed, based on the analytic hierarchy process (AHP), using pairwise comparison. Several evaluation criteria were selected for determining the required number of the monitoring stations at specific local districts. Weights of the selected criteria were assigned by the pairwise comparison, reflecting hydrogeological conditions and supported by pertinent questions to 93 groundwater experts. To evaluate appropriateness of this method, an example city, Jeonju, was selected where groundwater levels were monitored; seven stations were determined as to be required for the supplementary groundwater-monitoring network. The study demonstrated the usefulness of the AHP. The concepts of the development and the structure of the AHP model can be applied to site or well selections within a particular district.  相似文献   

2.
More than 99% of water use in Denmark is based on groundwater. Denmark has had a comprehensive national groundwater-monitoring programme since 1988 based on 74 well catchment areas and six small agricultural catchments with more than 1,500 screens at different depths for regular, mostly annual, water quality sampling. In addition, water samples from 10,000 abstraction wells are analysed every 3–5 years. The water is analysed for main components, inorganic trace elements, organic micro pollutants, and pesticides and their metabolites. A unique feature is the 20-year time-series data of inorganic pollutants. Groundwater modelling supports traditional monitoring to improve the conceptual geological understanding and to assess the quantitative status and the interaction between groundwater and surface water. The programme has been continuously adjusted to incorporate new knowledge from research programmes and meet new policy demands, currently the European Union Water Framework Directive, particularly with respect to an increased focus on quantitative aspects and on the groundwater/surface water interaction. The strengths and weaknesses of the Danish programme are assessed and compared with other national groundwater-monitoring programmes. Issues discussed include: strategic considerations for monitoring design, the link between research and monitoring, and adoption of responses to climate changes.  相似文献   

3.
An entropy-based approach is applied to identify redundant wells in the network. In the process of this research, groundwater-monitoring network is considered as a communication system with a capability to transfer information, and monitoring wells are taken as information receivers. The concepts of entropy and mutual information are then applied to measure the information content of individual monitoring well and information relationship between monitoring well pairs. The efficiency of information transfer among monitoring wells is the basis to judge the redundancy in the network. And the capacity of the monitoring wells to provide information on groundwater is the point of evaluation to identify redundant monitoring wells. This approach is demonstrated using the data from a regional-scale groundwater network in Hebei plain, China. The result shows that the entropy-based method is recommendable in optimizing groundwater networks, especially for those within media of higher heterogeneities and anisotropies.  相似文献   

4.
http://www.sciencedirect.com/science/article/pii/S1674987112000400   总被引:2,自引:0,他引:2  
Monitoring of regional groundwater levels provides important information for quantifying groundwater depletion and assessing impacts on the environment Historically,groundwater level monitoring wells in Beijing Plain,China,were installed for assessing groundwater resources and for monitoring the cone of depression.Monitoring wells are clustered around well fields and urban areas.There is urgent need to upgrade the existing monitoring wells to a regional groundwater level monitoring network to acquire information for integrated water resources management.A new method was proposed for designing a regional groundwater level monitoring network.The method is based on groundwater regime zone mapping.Groundwater regime zone map delineates distinct areas of possible different groundwater level variations and is useful for locating groundwater monitoring wells.This method was applied to Beijing Plain to upgrade a regional groundwater level monitoring network.  相似文献   

5.
Groundwater monitoring and pumping wells set in anoxic aquifers require attention to keep the groundwater free of dissolved oxygen (DO). In properly constructed monitoring or pumping wells, two processes can however still introduce oxygen to anoxic groundwater: (1) permeation of oxygen through polymer materials such as silicone, PVC, HDPE or Teflon, and (2) thermally driven convection, which can occur in all types of piezometers or wells, regardless of construction material, when the water table or pressure head is close (<10 m) to the land surface. Here, field measurements (temperature and DO well loggings) from a monitoring well in Bilthoven, the Netherlands, are combined with analytical and numerical modelling to investigate the role of both processes on oxygenation of anoxic groundwater in wells. The results of numerical and analytical modeling show that both permeation and convection can introduce oxygen into anoxic wells to near saturation concentrations. In the field data gathered, convection is primarily responsible for oxygen intrusion up to a depth of around 12 m. Oxygen intrusion through convection and permeation in monitoring and pumping wells may influence groundwater sampling and analyses, and may contribute to well clogging, depending on site conditions. The combination of field and modelling provides new insights into these processes, which can be used for both groundwater sampling and pumping well design.  相似文献   

6.
乌鲁木齐河流域地下水水质监测网设计   总被引:1,自引:0,他引:1  
文章运用地下水易污性编图及污染源分布图法进行了乌鲁木齐河流域地下水水质监测网设计。共设计了130监测孔,现有46个监测孔,另需要84个新的监测孔。按监测类型分为面源监测点22个,点源监测点87个,重点水源地与泉水监测点21个。按监测运行分长期监测点55个,流域普查监测点75个。普查监测点监测频率为1次/5年,长期监测点监测频率为1次/年。首期有针对性地在污染严重的柴窝堡新化厂排污区、乌鲁木齐河谷老排污区、米泉污灌区、米泉工业污染区、老龙河污染区取了25个污染水样测试分析,结果显示地下水已经受到严重污染。  相似文献   

7.
In the Daqing region of China there are 34 groundwater well fields with a groundwater withdrawal of 81.9×104 m3/d. Due to over-abstraction of the groundwater resources from the 1960s to present, a cone of depression up to 4,000 km2 has formed in the area. To monitor the change in the groundwater environment, it is necessary to design an effective groundwater-monitoring network. The sites for monitoring groundwater level were selected by applying the finite-element method coupled with Kalman filtering to the area in which the groundwater resources have been extensively exploited. The criterion is a threshold value of the standard deviation of estimation error. This threshold value is determined by the tradeoff between maximum information and minimum cost, in which the maximum information is characterized by the standard deviation and the minimum cost is equivalent to the number of observation wells. The groundwater flow model was calibrated by an optimal algorithm coupled the finite-element method with Kalman filtering by using the data from 16 observation wells from 1986 to 1993. A simulation algorithm coupled with the finite-element method with Kalman filtering analyzed the location data obtained from the existing 38 observation wells in the same region. The spatial distribution of standard deviation of estimation error is computed and the locations that have the maximum standard deviation are selected as additional sites for augmenting the existing observational well network at a given threshold value of the standard deviation surface. Based on the proposed method for selecting a groundwater level monitoring network, an optimal monitoring network with 88 observation wells with the measurement frequency of 12 times per year is selected in the Daqing region of China.  相似文献   

8.
Geochemical observations, including major ion and trace element analysis, and isotopic tracing have been carried out in the Subarnarekha River system (northeastern India) during a surface-water- and groundwater-monitoring program aimed at evaluating impacts of mining. The aquifer is of fracture type. Groundwater flow conditions and pollutant transfer were observed through a network of 69 wells. δ18O and δ2H results suggest that transfer from rainfall towards groundwater storage through soils and the unsaturated zone is fast, without any major transformation like evaporation. The scatter of 87Sr/86Sr signatures in surface water and groundwater are explained by three end-members. One is compatible with rainwater inputs. The most mineralised end-member represents anthropogenic inputs (agricultural practices and ore processing). The third end-member, characterised by a high 87Sr/86Sr signature, is believed to be controlled by natural geochemical processes, although affected by human activities (e.g. drainage of mine waste). Potential flow paths, investigated north of the area, reveal that all groundwater types seem to evolve more in pockets than along a flow path. The limited extent of transfer and the predominance of natural phenomena help to explain the moderate level of groundwater contamination and the characteristics of surface water contamination by mining and the metallurgy industry.  相似文献   

9.
河套平原浅层地下水动态监测网优化设计   总被引:1,自引:0,他引:1  
河套平原的地下水动态监测网存在监测井空间布局不合理的问题,限制了地下水研究工作的进一步深入.采用水文地质分析法和克里金插值法,并结合实际情况对河套平原的浅层地下水监测网络进行了优化设计.地下水动态影响因素分区图的编制主要考虑了地貌、包气带岩性、浅水位埋深、含水层渗透系数、年均降水量、年均蒸发量以及地下水开采模数7个因子.结果表明,优化设计的监测网共有监测井428眼,优化后Kriging插值误差标准差为2.53~10.99 m,比优化前(2.75~27.00 m)显著降低,这说明优化设计的监测网精度有很大提高.此外,优化后的监测网不仅能够对河岸带、断裂带、咸淡水交互带、地下水降落漏斗区等关键地段的水位实施监测,还能够满足不同地区对监测井密度的需求,具有一定的参考和实践价值.  相似文献   

10.
A major problem of the islanders is the availability of fresh water for drinking purpose. Groundwater is the only source of fresh water for the islanders. The demand for groundwater is increasing very year due to growing population and urbanization. A proper understanding of the groundwater condition is important in order to meet this increasing demand and to formulate future development and management strategies. It is in this context, principal hydrogeologic units; water table fluctuation pattern, general groundwater potential, existing groundwater withdrawal structures and draft, water quality, etc. have been studied in an elliptical shape Andrott Island of Union Territory of Lakshadweep, India, through field investigation and secondary data collection. Groundwater occurs under phreatic condition and seawater is in hydraulic continuity with the groundwater as evidenced by the tidal influence in almost all the wells. Groundwater level fluctuation due to seasonal variation varies from 0 to 0.542 m depending on the distance of the well from the coast. Depth to groundwater level varies from less than 1.234 to 3.520 m depending on the topography. Groundwater level fluctuation is due to the combination of factors like rainfall, tidal activities, sub-surface runoff, and draft. Large diameter dug wells are the main groundwater extraction structures in this island. There are 2,143 dug wells with almost each family having its own well and the density of the dug wells is about 437/km2. The stage of groundwater development is estimated as 37% and hence “Safe” for further groundwater development in this island. However, considering the very limited fresh-water resources and also the growing demand for groundwater, various management strategies such as rainwater harvesting, artificial recharge of groundwater, public participation in water conservation and wise use of groundwater, etc., have been suggested.  相似文献   

11.
Well-developed karst aquifers tend to be heterogeneous and consist of variable porosities. Groundwater monitoring and the associated data interpretations in such aquifers are often more complicated than porous medium aquifers. Collection of representative data in karst aquifers often requires monitoring at appropriately located wells and/or springs that are proven to connect to the groundwater system. Water samples are to be collected under different flow conditions, including base flow, high-flow, and low-flow. The sampling frequencies may vary from several months for base flows to minutes in response to recharge events. The groundwater monitoring program presented in this paper is for a cement kiln dust mono-fill site in a karst area of southern Indiana. Following dye tracing and extensive geophysical investigations, one spring was selected as a monitoring location. A second spring should be used as a monitoring location when the last cell of the mono-fill begins receiving the wastes. The paper discusses results from the first spring, at which nine background sampling events were completed to evaluate the natural variations of the water quality. Based on the background data, a statistical evaluation plan was developed for 12 water-quality parameters to determine the integrity of the landfill. The statistical power of the statistical analyses was evaluated by Monte Carlo simulations.  相似文献   

12.
The purpose of this study is to evaluate the groundwater-withdrawal potential of the Fraser River watershed, a mountainous drainage system in north-central Colorado. Laboratory tests, field investigations, and numerical modeling are conducted to present a quantitative understanding of the watershed’s groundwater-flow system. Aquifer hydraulic conductivity values obtained from aquifer tests range from 1E?5 to 1E?3 m/s. Groundwater withdrawal is concentrated in channel-fill deposits of the Troublesome Formation within the Fraser basin. A steady state groundwater-flow model of the Fraser River watershed is developed and calibrated using 24 observation wells in the Fraser River valley and estimated baseflow of the Fraser River. Modeling results suggest that surface recharge is the major source of groundwater in the watershed. Groundwater exits the watershed through evapotranspiration and discharge to rivers. Transient groundwater-flow modeling evaluates future withdrawal scenarios using the hydraulic head distribution from the steady state model as the initial condition. Drawdown within Troublesome Formation aquifers from the current pumping schedule approaches 2 m. When the daily pumping rate is doubled, drawdown approaches 4 m. The radius of influence is hundreds of meters to 1 km. Pumping wells withdraw approximately 2 and 15 % of groundwater flowing through the well field for hydraulic conductivity of 1E?3 and 1E?5 m/s, respectively. This study suggests that the groundwater system at the Fraser Valley could sustain current and future withdrawals, given that the current recharge condition is maintained.  相似文献   

13.
A groundwater-monitoring network has been in operation in the Red River Delta, Vietnam, since 1995. Trends in groundwater level (1995?C2009) in 57 wells in the Holocene unconfined aquifer and 63 wells in the Pleistocene confined aquifer were determined by applying the non-parametric Mann-Kendall trend test and Sen??s slope estimator. At each well, 17 time series (e.g. annual, seasonal, monthly), computed from the original data, were analyzed. Analysis of the annual groundwater-level means revealed that 35?% of the wells in the unconfined aquifer showed downward trends, while about 21?% showed upward trends. On the other hand, confined-aquifer groundwater levels experienced downward trends in almost all locations. Spatial distributions of trends indicated that the strongly declining trends (>0.3?m/year) were mainly found in urban areas around Hanoi where there is intensive abstraction of groundwater. Although the trend results for most of the 17 time series at a given well were quite similar, different trend patterns were detected in several. The findings reflect unsustainable groundwater development and the importance of maintaining groundwater monitoring and a database in the Delta, particularly in urban areas.  相似文献   

14.
北京市平原区地下水位自动化监测网建设   总被引:1,自引:0,他引:1  
刘久荣  韩征  林沛 《城市地质》2011,6(4):1-3,35
地下水监测是一项重要的基础性水文地质工作,北京市进行地下水监测已有50多年的历史,为城市建设提供了有效服务。本文介绍了北京市地下水位自动化监测网现状技术特征,提出了监测井空间分布优化与自动化监测设备优化等措施,以进一步提高监测效率与精度,更好地为城市经济建设和环境保护提供有关基础性资料和服务。  相似文献   

15.
Temporal monitoring of the pesticide 1,2-dibromo-3-chloropropane (DBCP) and nitrate and indicators of mean groundwater age were used to evaluate the transport and fate of agricultural chemicals in groundwater and to predict the long-term effects in the regional aquifer system in the eastern San Joaquin Valley, California. Twenty monitoring wells were installed on a transect along an approximate groundwater flow path. Concentrations of DBCP and nitrate in the wells were compared to concentrations in regional areal monitoring networks. DBCP persists at concentrations above the US Environmental Protection Agency’s maximum contaminant level (MCL) at depths of nearly 40 m below the water table, more than 25 years after it was banned. Nitrate concentrations above the MCL reached depths of more than 20 m below the water table. Because of the intensive pumping and irrigation recharge, vertical flow paths are dominant. High concentrations (above MCLs) in the shallow part of the regional aquifer system will likely move deeper in the system, affecting both domestic and public-supply wells. The large fraction of old water (unaffected by agricultural chemicals) in deep monitoring wells suggests that it could take decades for concentrations to reach MCLs in deep, long-screened public-supply wells, however.  相似文献   

16.
Hydraulic gradient is a fundamental aquifer characteristic required to estimate groundwater flow and quantify advective fluxes of pollutants. Graphical and local estimation schemes using potentiometric head information from three or four wells are used to compute hydraulic gradients but suffer from imprecision and subjectivity. The use of linear regression is recommended when hydraulic head data from a groundwater monitoring network consisting of several wells are available. In such cases, statistical influence analysis can be carried out to evaluate how each well within the network impacts the gradient estimate. A suite of five metrics, namely—(1) the hat-values, (2) studentized residuals, (3) Cook’s distance, (4) DFBETAs and (5) Covariance ratio (COVRATIO) are used in this study to identify influential wells within a regional groundwater monitoring network in Kleberg County, TX. The hat-values indicated that the groundwater network was reasonably well balanced and no well exerted an undue influence on the regression. The studentized residuals and Cook’s distance indicated the wells with the highest influence on the regression predictions were those that were close to high groundwater production centers or affected by coastal-aquifer interactions. However, the wells in the proximity of the production centers had the highest impact on the estimated gradient values as ascertained using DFBETAs. The covariance ratio which indicates the sensitivity of a monitoring well on the estimated standard error of regression was noted to be significant at most wells within the network. Therefore, networks seeking to address changes in groundwater gradients due to climate and anthropogenic influences need to be denser than those used to ascertain synoptic gradient estimates alone. The magnitude of the groundwater velocity was greatly underestimated when the influential wells were excluded from the network. The direction of flow was affected to a lesser extent, but a complete gradient reversal was noted when the network consisted of only four peripheral wells. The influence analysis therefore provides a valuable tool to assess the importance of individual wells within a monitoring network and can therefore be useful when existing networks are to be pruned due to fiscal constraints.  相似文献   

17.
区域地下水位监测网优化设计方法   总被引:8,自引:4,他引:8  
区域地下水位监测提供了定量评价含水层地下水位持续下降及其对环境影响必不可少的信息。历史上的地下水位监测网是为了评价地下水资源或监测水源地降落漏斗而设立的,目前它们已经不能适应为流域水资源综合管理提供必需的信息。本文在综述国际地下水位监测现状的基础上,介绍了区域地下水位监测网优化设计的方法。采用地理信息系统编制的地下水动态类型图为地下水位监测井位置的选择提供了坚实的水文地质基础;克里金插值法能定量评价监测网观测值绘制的地下水位等高线的精度,因而可以用来定量设计地下水位监测网;时间序列分析和统计检验提供了优化地下水位监测频率的定量标准。这些方法已被应用于北京平原、乌鲁木齐河流域和济南岩溶泉域,其成果将在本刊分期发表。  相似文献   

18.
Groundwater is crucial for multiple uses over the world, especially in arid and semiarid regions. However, human activities significantly decreased groundwater quality. In this study, the spatiotemporal variation of groundwater quality was evaluated in an arid area where long-term paper wastewater irrigation has been implemented. For this study, seven wells were regularly monitored for physicochemical parameters over a period of 1 year. Statistical and graphical approaches were applied to interpret the spatiotemporal variation of groundwater quality parameters in the wastewater irrigation zone. Correlation analysis was also carried out to reveal the sources of some major ions. The results indicate that the groundwater type in the study area is dominated by the Cl–Na, followed by the HCO3–Na, the HCO3–Ca·Mg, and the SO4·Cl–Ca·Mg types. Groundwater in the area is significantly contaminated locally with fluoride, nitrite and ammonia, and the chemical oxygen demand levels were increased in some groundwater monitoring wells. Most contaminants showed an increasing trend from the Yellow River water irrigation zone toward the wastewater irrigation zone. Rock weathering, mineral dissolution, and cation exchange are important processes controlling groundwater quality, but human activities, such as wastewater irrigation, play an undeniable role in affecting groundwater quality in this area. The results of this study contribute to the understanding of the formation and circulation of groundwater under human activities and provide a scientific basis for regional water quality evaluation, water quality improvement, and protection.  相似文献   

19.
Groundwater salinization in the Azores archipelago (Portugal)   总被引:1,自引:1,他引:0  
Groundwater salinization in coastal regions causes severe constraints to water supply and economic losses to society worldwide. In the Azores archipelago, groundwater abstraction in wells drilled in coastal aquifers is very important for water supply, and quality problems have been reported. Therefore, a groundwater chemistry dataset from wells was compiled to study groundwater salinization in these aquifers. Waters are mainly of the Na–Cl type, presenting a slightly acidic to slightly alkaline character, with a pH between 5.63 and 8.50 (median 7.40). Electrical conductivity measurements range from 127 to 9,670 μS/cm (median 862), suggesting highly variable mineralization, with higher values observed on Santa Maria, São Miguel, Pico, Graciosa, and São Jorge islands. The major-ion composition reflects the contribution of seawater to the groundwater compositional evolution, which is essentially explained by seawater intrusion into wells. In many samples, exchange reactions of Na+ + K+ for Ca2+ + Mg2+ are associated with salinization. The seawater fraction in groundwater composition reaches a maximum of 22.5%. These results are extremely challenging to water managers in the Azores because failure to comply with national water quality regulations and with European Union groundwater directive requirements often occurs.  相似文献   

20.
The management of groundwater resources is very important in the semiarid Sahel region, which is experiencing rapid urban development. Impacts of urbanization on groundwater resources were investigated in the unconfined aquifer of the Continental Terminal beneath the city of Niamey, Niger, using water level and chemical data. Hydrodynamic and chemical changes are best described by a combination of factors including the historical development of the city, current land use, water-table depth and topography. Seasonal groundwater recharge occurs with high spatial variability, as indicated by water-level monitoring in all wells, but there was no interannual trend over the 5-year study period. Groundwater salinity shows high spatial variability and a minor rising trend. The highest salinity is in the old city centre, with Na–NO3 dominant, and it increases seasonally with recharge. Salinity is much lower and more variable in the suburbs (Ca–HCO3, Ca–NO3, and Na–NO3 dominant). Nitrate is the main ionic contaminant and is seasonally or permanently above the international guidelines for drinking water quality in 36 % of sampled wells, with a peak value of 112 mg L?1 NO3–N (8 meq L?1). Comparison of urban and rural sites indicates a long-term increase in groundwater recharge and nitrate enrichment in the urban area with serious implications for groundwater management in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号