首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 723 毫秒
1.
Rainfall-induced landslide is a common geohazard in tropical and humid regions. Capillary barrier system (CBS) is a popular and widely studied mitigating measure for rainfall-induced landslides. However, several previous studies have shown that the performance of the conventional CBS under intense rainfalls has not been particularly convincing. This paper aims to explore the feasibility and effectiveness of a newly proposed system, known as “biomediated capillary barrier system” (B-CBS) in minimizing water infiltration into soil. A one-dimensional soil column was used to investigate the infiltration characteristics of the proposed system. The results showed that the B-CBS of biomediated residual soil overlying original residual soil (Test IV) could effectively control the infiltration into soil by taking advantage of the less-permeable biomediated soil cover. The B-CBS of biomediated residual soil overlying gravelly sand (Test V) and the three-layered B-CBS of fine sand overlying gravelly sand and biomediated residual soil (Test VI) showed the best performance in terms of minimizing the water infiltration. A suction of about 5 kPa still remained in the soil column after 60 min of infiltration from the ponded water on the soil surface.  相似文献   

2.
Extreme and/or prolonged rainfall events frequently cause landslides in many parts of the world. In this study, infiltration of rainfall into an unsaturated soil slope and triggering of landslides is studied through laboratory model (flume) tests, with the goal of obtaining the triggering rainfall intensity–duration (I–D) threshold. Flume tests with fine sand at two different relative densities (34 and 48%) and at slope angle of 56.5° are prepared, and rainfall (intensity in the range of 18 to 64 mm/h) is applied via a mist sprinkler system to trigger landslides. Soil water characteristic curve and hydraulic conductivity function of the fine sand are also presented. In flume tests, suction in the soil is measured with tensiometers, the progress of wetting front with time and deformations in the soil are also measured. Some of the findings of this study are: for the fine sand used in this study (a) the failure mechanism is infinite-slope type (mostly translational), and the failure surface is generally coincident with the wetting front or is in its vicinity, (b) the deformations leading to a landslide occurred abruptly, (c) both relatively high-intensity–short-duration rainfalls and relatively low-intensity–long duration rainfalls triggered landslides, (d) the shape of the I–D threshold is demonstrated to be a bilinear relation in log intensity–log duration plot, (e) below a certain rainfall intensity landslides are not triggered, (f) the effect of relative density of the soil on the I–D threshold is demonstrated by physical laboratory tests (as the relative density of the soil increases, the triggering rainfall intensity–duration threshold moves to larger rainfall events). The results of this study could be useful for accurate numerical modeling of rainfall-triggered landslides.  相似文献   

3.
Rainfall infiltration and suction variation in unsaturated soils must be taken into consideration in the analysis of most slope stability problems, particularly in the tropical regions where the annual precipitation is high. The process of rainfall infiltration into unsaturated soils is an extremely complex problem attributed to the non-linearity of the hydraulic property functions of the unsaturated soils. This paper describes in detail two instrumented laboratory models, i.e. one-dimensional soil column, and two-dimensional slope model used to provide experimental evidences for the transient suction variations in the unsaturated soils under certain rainfall conditions. The performances of the laboratory models were tested on four typical types of residual soils, i.e. sand-gravel, silty gravel, sandy silt, and silt (kaolin), and a two-layered soil system, i.e. sandy silt underlain by silty gravel. The results showed that the suction distributions for the single-layered homogeneous soils obtained from the simpler one-dimensional soil column were almost identical to that of two-dimensional slope model. However, the two-dimensional slope model should be employed for the two-layered soil system because of the dominant effect of the lateral flow mechanism. The capillary barrier effect was observed when a less permeable soil layer was underlain by a more permeable soil layer. The minimum suction value in soil is governed by the rainfall intensity, rainfall duration, and the saturated permeability of soil. The infiltration rate of the fine-grained soils that subjected to shrink and crack was independent of the soil permeability, but was significantly governed by the preferential flows developed in the soils.  相似文献   

4.
In the last 20 years, major efforts have been made to investigate shallow flow-type landslides. Such phenomena are usually rainfall-induced and in the geological context of Campania (Southern Italy) occur in pyroclastic soils resting on steep slopes mainly constituted by carbonate or volcanic bedrock and by flysch deposits. They are generally complex landslides with an early soil slide and a subsequent flow evolution. In this paper, a database of flowslides occurring in recent years within the flysch deposits of Avellino (Campanian Apennines) is first discussed and then the case study of Bosco de’ Preti landslide on March 4, 2005, is described. The geological and geotechnical characteristics of the soils involved are described and the monitoring of the groundwater heads collected over 1 year from June 2005 to June 2006 is also shown. The last part of the paper illustrates the results of numerical modelling of the landslide triggering to gain insights into such phenomena. Slope stability analyses are preceded by hydrological modelling of the slope based on the monitoring data. Numerical analysis demonstrated that the rainfall during the 2 months preceding the event was able to fully saturate the pyroclastic cover and to establish positive pore water pressure at the depth of the surface of rupture, a soil condition never witnessed in carbonatic contexts. Hence, a combination of antecedent (predisposing factors) and single rainfall events (triggering factors) led to slope failure, as usually happens in pyroclastic soils in carbonatic and volcanic contexts. Finally, analysis of the historical landslides together with detailed investigation of the Bosco de’ Preti case study permitted comparison between flow-type landslides in pyroclastic soils on carbonatic/volcanic bedrock and those on flysch.  相似文献   

5.
Landslide-prone slopes in earthquake-affected areas commonly feature heterogeneity and high permeability due to the presence of cracks and fissures that were caused by ground shaking. Landslide reactivation in heterogeneous slope may be affected by preferential flow that was commonly occurred under heavy rainfall. Current hydro-mechanical models that are based on a single-permeability model consider soil as a homogeneous continuum, which, however, cannot explicitly represent the hydraulic properties of heterogeneous soil. The present study adopted a dual-permeability model, using two Darcy-Richards equations to simulate the infiltration processes in both matrix and preferential flow domains. The hydrological results were integrated with an infinite slope stability approach, attempting to investigate the hydro-mechanical behavior. A coarse-textured unstable slope in an earthquake-affected area was chosen for conducting artificial rainfall experiment, and in the experiment slope, failure was triggered several times under heavy rainfall. The simulated hydro-mechanical results of both single- and dual-permeability model were compared with the measurements, including soil moisture content, pore water pressure, and slope stability conditions. Under high-intensity rainfall, the measured soil moisture and pore water pressure at 1-m depth showed faster hydrological response than its simulations, which can be regarded as a typical evidence of preferential flow. We found the dual-permeability model substantially improved the quantification of hydro-mechanical processes. Such improvement could assist in obtaining more reliable landslide-triggering predication. In the light of the implementation of a dual-permeability model for slope stability analysis, a more flexible and robust early warning system for shallow landslides hazard in coarse-textured slopes could be provided.  相似文献   

6.
陈宇龙  内村太郎 《岩土力学》2019,40(9):3373-3386
降雨是诱发滑坡最主要的因素。为减少滑坡灾害造成的人员伤亡和经济损失,滑坡早期预警系统成为了最佳选择之一。根据弹性波传播的基本原理和基于降雨型滑坡变形破坏的特点,提出利用弹性波波速来反映边坡表面土体含水率和位移的变化。开发研制了一套三轴渗流-弹性波测试三轴仪和相关系统。该装置能让水从底部渗入土体,模拟降雨入渗土体的过程,同时能测试弹性波波速。试验过程中同步测试含水率、变形和弹性波波速的变化。还进行了降雨滑坡模型试验。利用三轴弯曲元注水试验和降雨滑坡模型试验,深入分析和研究降雨引起的土体滑坡过程与弹性波波速演化规律,揭示波速与含水率和变形的耦合关系。研究结果表明,弹性波波速随着含水率的增大而缓慢减小,随着变形的增大而急剧减小,临近失稳时,波速骤然减小。根据试验结果对含水率和变形导致弹性波波速减小可能的机制进行了解释,提出弹性波在波速骤然减小时发出滑坡预警。研究结果为滑坡防灾减灾和预测预报提供新的方法和可靠的依据。  相似文献   

7.
Rainfall has been considered the cause of the majority of slope failures and landslides that happened in regions experiencing high seasonal rainfalls. The mechanism of the failures was mainly due to the lost of matric suction of soils by rainwater. This paper presents the results of a laboratory model study on the effect of slope angle and surface cover on water infiltration into soil and soil matric suction. A field infiltration test is carried out for comparison. A parametric study is also done to examine the effect of permeability ratio, development of perched water table and rainfall intensity on the factor of safety against instability of a soil slope. Results of the model study show that different surface covers on slopes have an effect on the water infiltration. Generally the covered surface (grass or geosynthetic net) has a lower infiltration rate compared with the bare (no cover) surface. On the effect of slope angle, it was observed that water infiltration decrease with increase in the slope steepness. With regards to the movement of the wetting front, it appears that water infiltration is more at the toe compared with the top of the model slope. Based on the parametric study, it is found factor of safety of the slope against instability drops for slope with higher ratio of permeability for the permeable and impermeable stratum. As the perched water table is formed, the factor of safety decreased. The rainfall intensity also has a marked effect on the slope factor of safety. The higher the intensity of the rainfall, the higher is the infiltration rate into the soil, hence the lower is the factor of safety against slope instability.  相似文献   

8.
A seasonal rain front (Baiu front) accompanied a long-term accumulation of precipitation propagated over the wide areas of the main island of Japan during 15–24 July 2006. In Okaya City, Nagano Prefecture, several flow-type landslides occurred in the early morning of 19 July 2006, claiming eight lives. Among these landslides, a most peculiar complex earth slide–earth flow occurred on a north gentle slope of the upstream portion of the Motosawagawa River. In the source area, volcanoclastic soils overlying tuffaceous rocks at about 4-m depth slid due to the prolonged precipitation that raised the water table level in the soil. Along with the travel path, the failed materials fluidized causing the liquefaction of the volcanoclastic soils underlain by volcanic black ash soils. The resulting flow spread over a wide area up to the final deposition. Constant volume box-shear tests on undisturbed volcanoclastic soil specimens taken from the source area showed effective normal stress tended to decrease during shearing. The ring shear tests on saturated disturbed specimens produced the large loss of shear resistance, which may explain the fluidized motion of the complex landslide.  相似文献   

9.
Macropores developed in barrier layers in soil covers overlying acid-generating waste rock may produce preferential flow through the barrier layers and compromise cover performance. However, little has been published on the effects of preferential flow on water balance in soil covers. In the current study, an inclined, layered soil cover with a 10-cm-wide sand-filled channel pathway in a silty clay barrier layer was built over reactive waste rock in the laboratory. The channel or preferential flow pathway represented the aggregate of cracks or fissures that may occur in the barrier during compaction and/or climate-induced deterioration. Precipitation, runoff, interflow, percolation, and water content were recorded during the test. A commercial software VADOSE/W was used to simulate the measured water balance and to conduct further sensitivity analysis on the effects of the location of the channel and the saturated hydraulic conductivity of the channel material on water balance. The maximum percolation, 80.1% of the total precipitation, was obtained when the distance between the mid-point of the channel pathway and the highest point on the slope accounted for 71% of the total horizontal length of the soil cover. The modeled percolation increased steadily with an increase in the hydraulic conductivity of the channel material. Percolation was found to be sensitive to the location of the channel and the saturated hydraulic conductivity of the channel material, confirming that proper cover design and construction should aim at minimizing the development of vertical preferential flow in barrier layers. The sum of percolation and interflow was relatively constant when the location of the channel changed along the slope, which may be helpful in locating preferential flow pathways and repairing the barrier.  相似文献   

10.
植被在世界各地被广泛用于防止滑坡,但在我国东南沿海的台风季节,植被覆盖较好的地区受台风暴雨诱发常有大量滑坡发生。为了研究台风暴雨条件下植被对滑坡发育的促进作用,通过风洞物理模拟实验研究了风荷载和植被摇曳对滑坡稳定性的影响。结果表明: 台风通过植被对边坡施加的荷载不容忽视,在超强台风条件下(风速≥17 m/s),风荷载可使潜在滑坡体的下滑力增加10%以上; 由于台风的风荷载,植被会通过根部对土壤施加强大的扭矩,导致土壤出现裂缝,这些裂缝为雨水渗透提供了快速通道,土壤的渗透系数会增加10倍以上。因此在东南沿海地区的台风季节,应注意植被、特别是高大乔木对滑坡稳定性的不利影响。  相似文献   

11.
降雨对滑坡稳定性影响过程分析   总被引:4,自引:0,他引:4  
通过对滑坡土条的受力分析进行改进,建立起能考虑滑带内存在任意孔隙水压分布情况下的稳定性计算公式。结合Lumb入渗理论和太沙基一维固结理论得到了滑坡在降雨期间的极限稳定性计算方法,该方法能够同时考虑降雨入渗导致土体重度和滑带内孔隙水压力变化。利用上述结果,提出了某些深层滑坡触发的一种机理,并可根据常用的土质参数比较容易得到滑坡在降雨期间稳定性演化过程。通过对某滑坡分析得到,降雨导致滑体重量增加而降低滑坡稳定性小于孔隙水压增加对稳定性的影响;超孔隙水压力的存在大幅提高了剩余下滑力值。  相似文献   

12.
受界面效应影响,毛细水在层状土中运移规律还难以用描述均质土中水分运移规律的Lucas-Washburn(LW)渗吸模型进行描述。基于此,本文设计了层状土室内模型试验,采用分布式的主动加热光纤法(简称AHFO)监测毛细水上升过程。根据AHFO测试结果,进一步对LW模型进行了修正,提出了适用于描述层状土中毛细水上升规律的ILW模型,并对ILW模型进行了试验验证。试验结果表明:(1)当毛细水湿润锋抵达“黏土(下部)-砂土(上部)”界面时,会产生“毛细屏障作用”,从而导致上部砂土中毛细水含水率急剧下降;(2)“毛细屏障作用”由砂土和黏土中的基质吸力不均衡造成,基质吸力大小由含水率决定;(3)当毛细水湿润锋抵达“砂土(下部)-黏土(上部)”界面时,在界面处出现“反毛细屏障作用”,从而导致上部黏土层中的含水率比相邻下部砂土层含水率更高;(4)虽然常见的LW模型可准确预测均质土中毛细水上升高度及速率,但受“毛细屏障作用”和“反毛细屏障作用”影响,LW模型在层状土中失效;(5)相比LW模型,ILW模型精度更高,能够更加准确地描述层状土中毛细水上升规律。  相似文献   

13.
The Clapar landslide induced debris flow consisted of the Clapar landslide occurred on 24 March 2017 and the Clapar debris flow occurred on 29 March 2017. The first investigation of the Clapar landslide induced debris flow was carried out two months after the disaster. It was followed by UAV mapping, extensive interviews, newspaper compilation, visual observation and field measurements, and video analysis in order to understand chronology and triggering mechanism of the landslide induced debris flow in Clapar. The 24 March 2016 landslide occurred after 5 hours of consecutive rainfall (11,2 mm) and was affected by combination of fishponds leak and infiltration of antecedent rain. After five days of the Clapar landslide, landslide partially mobilized to form debris flow where the head scarp of debris flow was located at the foot of the 24 March 2016 landslide. The Clapar debris flow occurred when there was no rainfall. It was not generated by rainstorm or the surface erosion of the river bed, but rather by water infiltration through the crack formed on the toe of the 24 March 2016 landslide. Supply of water to the marine clay deposit might have increased pore water pressure and mobilized the soil layer above. The amount of water accumulated in the temporary pond at the main body of the 24 March 2016 landslide might have also triggered the Clapar debris flow. The area of Clapar landslide still shows the possibility of further retrogression of the landslide body which may induce another debris flow. Understanding precursory factors triggering landslides and debris flows in Banjarnegara based on data from monitoring systems and laboratory experiments is essential to minimize the risk of future landslide.  相似文献   

14.
长江三峡花岗岩林地坡面降雨渗流与水土流失关系研究   总被引:2,自引:1,他引:2  
在大量的野外观测试验的基础上,根据土壤水分的形态和能态,对长江三峡花岗岩林地坡面降雨渗流机制进行了分析研究,研究发现在试验区当降雨强度大于表层土壤入渗率,即地表产生积水的情况下,长江三峡花岗岩林地坡面优先流在土壤含水量未达到最大毛管持水量时开始产流,早于土壤渗流产流的时间;在降雨强度小于表层土壤入渗率,即地表不产生积水的情况下,土壤渗流产流早于优先流产流;从壤中流产流过程来看,在地表不产生积水的条件下,土壤渗流先于优先流产生;在地表产生积水而土壤水分含量未达到最大毛管持水量的条件下,优先流先于土壤渗流产生。在两种情况下,优先流的峰值都先于土壤渗流。  相似文献   

15.
Flow-like mass movements in granular materials are among the most serious natural hazards, systematically producing huge amounts of damage and numerous victims, especially when involving volcanic soils. This is the case of the events in Southern Italy in May 1998, when rainfall triggered many destructive landslides along the slopes of a carbonate massif mantled by pyroclastic soils. Due to the complexity of the occurred phenomena, a shared interpretation of their triggering stage is still not available.

As a contribution to the topic, the paper initially discusses the geological and geomorphological features of the massif combining them in three hillslopes models. The models are then associated to the hydrogeological features and anthropogenic factors in order to define six typical landslides source areas that are not casually distributed on the massif. The study subsequently focuses on the most frequent type of source areas, associated to the largest unstable soil volumes and longest run-out distances. For these source areas, the triggering mechanism is discussed, with an example of geotechnical validation being proposed for a well monitored mountain basin. The geotechnical modelling at site scale confirms the geological analyses at massif scale and provides further insights into the events, thus highlighting the potential of a multidisciplinary approach for the interpretation of very complex slope instability phenomena.  相似文献   


16.
Surficial slope failures in residual soils are common in tropical and subtropical regions as a result of rainfall infiltration. This study develops an analytical solution for simulating rainfall infiltration into an infinite unsaturated soil slope. The analytical solution is based on the general partial differential equation for water flow through unsaturated soils. It can accept soil–water characteristic curve and unsaturated permeability function of the exponential form into account. Numerical simulations are conducted to verify the assumptions of the analytical solution and demonstrate that the proposed analytical solution is acceptable for the coarse soils with low air entry values. The pore‐water pressure (pwp) distributions obtained from the analytical solution can be incorporated into a limit equilibrium method to do infinite slope stability analysis for a rain‐induced shallow slip. The analysis method takes into account the influence of the water content change on unit weight and hence on factor of safety. A series of analytical parametric analyses have been performed using the developed model. The analyses indicate that when the residual soil slope, consisting of a completely decomposed granite layer underlain by a less permeable layer, is subjected to a continuous heavy rainfall, the loss of negative pwp and the reduction in factor of safety were found to be most significant for the shallow soil layer and during the first 12 h. The antecedent and subsequent rainfall intensity, depth of a less permeable layer and slope angle all have a significant influence on the pwp response and hence the slope stability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A mechanism for fracture generation and for triggering land subsidence is presented. Infiltration through a pre-existing fracture zone into a two-layered system, as well as the deformation of unconsolidated sediments on the land surface, was numerically investigated. The numerical simulation of infiltration is based on a two-phase flow-model concept for porous media, and for the deformation, it is based on a Mohr-Coulomb model concept. Different studies with variations of the fracture parameter and infiltration conditions have been carried out. The infiltration results show that fast infiltration in a partially saturated aquifer leads to land subsidence, extension of pre-existing fractured zones and the generation of new cracks. If the water column is only on the fracture, the clay layer acts like a barrier and inhibits the infiltration through the fracture. If the water column covers the entire surface, the barrier effect is overcome; the infiltration intensity depends on the height of the water column, the fracture permeability and the fracture width. The deformation results show that a strong rainfall event of 2 h leads to deformations that are about 30 % of the vertical and 70 % of the horizontal annual land-subsidence rates.  相似文献   

18.
黄土滑坡诱发因素及其形成机理研究   总被引:17,自引:0,他引:17  
近年来,黄土滑坡灾害发生频率呈现增加的趋势,研究黄土滑坡诱发因素及其形成机理是有效减缓黄土滑坡灾害风险的基础.据西北黄土高原地质灾害详细调查,黄土滑坡的诱发因素有自然和人为2类.自然因素包括地震、河流及沟谷侵蚀、降雨及冻融等;人为因素有堆载与开挖、农业灌溉、修建水库等.研究表明,降水和人类工程活动是最积极的诱发因素.地...  相似文献   

19.
Landslides are mainly triggered by decrease in the matric suction with deepening the wetting band by rainfall infiltrations. This paper reports rainfall-induced landslides in partially saturated soil slopes through a field study. A comprehensive analysis on Umyeonsan (Mt.) landslides in 2011 was highlighted. The incident involves the collapse of unsaturated soil slopes under extreme-rainfall event. Fundamental studies on the mechanism and the cause of landslides were carried out. A number of technical findings are of interest, including the failure mechanism of a depth of soil and effect of groundwater flow, the downward movement of wetting band and the increase of groundwater level. Based on this, an integrated analysis methodology for a rainfall-induced landslide is proposed in this paper that incorporates the field matric suction for obtaining hydraulic parameters of unsaturated soil. The field matric suction is shown to govern the rate of change in the water infiltration for the landslide analysis with respect to an antecedent rainfall. Special attention was given to a one-dimensional infiltration model to determine the wetting band depth in the absence of the field matric suction. The results indicate that landslide activities were primarily dependent on rainfall infiltration, soil properties, slope geometries, vegetation, and groundwater table positions. The proposed methodology has clearly demonstrated both shallow and deep-seated landslides and shows good agreement with the results of landslide investigations.  相似文献   

20.
Landslide is one of the devastating natural phenomenon that threatens human life and property. Every year a number of persons lost their lives due to the landslides. Therefore, a better understanding and characterization of landslide is very essential for adopting mitigation strategies to contain the adversities of this natural hazard. Information on landslides from different climatic setup are very essential for better understanding of the influence of weathering, rainfall, or topography on landslide generation. Weathering is one of the important causative factor for landslide generation in the moderate topography or inactive mountainous terrain. The Western Ghats including the Deccan Traps, an inactive mountain range, receives torrential rainfall. Intense rainfall in these areas enhances the weathering processes and fabricates thick soil covers. Mahabaleshwar area, Maharashtra was chosen as a case study, where high elevated part is covered by lateritic layer and each lava flow unit is separated by a thin weathered bed of red bole. The area experiences series of landslides during the summer monsoon months. Mainly two types of landslides have been identified in the area confined with the red bole bed and powdery lateritic soil. The first type of landslides occur at higher elevations (≥1200m) where horizontal beds of permeable laterites underlined by impermeable thick basalt beds. The rain water infiltrates down and spread laterally within the permeable lateritic beds. It finally spouts at lower plateau elevations and triggers mainly debris flows. The other category of landslides occurs where the weathered red bole bed separates two successive lava flows. The percolating water from the secondary porosities (joints and inter connected vugs) comes out from the contact zones of basalt and red bole bed in the form of seepages. It erodes the red bole bed and as a result the overlying masses hang and consequently lead to rock fall. The Chemical Index of Alteration (CIA) of the representative samples from landslide locations indicates significant weathering. The CIA values for the fine lateritic soil are up to 98% whereas for the red bole bed it varies from 77 to 85%. This suggests a high chemical weathering and higher erodibility. The association of active landslide locations with the red bole bed and fine lateritic soil suggests a close relation between weathering and landslide occurrences in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号