首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
琼东南海域天然气水合物地震反射特征   总被引:1,自引:0,他引:1  
天然气水合物是一种新能源,目前,世界上许多国家都在进行天然气水合物研究。琼东南盆地是天然气水合物可能赋存的重点目标区,笔者针对琼东南海域二维地震资料进行以突出含天然气水合物地层地震反射特征为目的的处理,进一步识别含天然气水合物地层地震反射特征与分布。通过应用地震资料保幅处理技术,对该海域含天然气水合物地层地震反射特征,如似海底反射(BSR)、BSR强反射界面之上的高速异常带、BSR附近的振幅空白带、BSR的极性反转等,有了更多的认识,对开展全区含BSR特征研究有借鉴意义。  相似文献   

2.
海洋天然气水合物地震识别标志   总被引:1,自引:0,他引:1  
天然气水合物的地震识别标志对海洋天然气水合物勘探和研究具有十分重要的意义。本文根据国外探测和研究成果,详细分析了似海底反射波(BSR)、振幅空白、负极性和异常高速带等海洋天然气水合物的地震识别标志及其特征。  相似文献   

3.
南中国海存在天然气水合物的地球物理证据   总被引:6,自引:0,他引:6  
以多道高分辨率地震数据为基础,分析了天然气水合物地震识别的关键技术,即地震成像与地震反演.地震成像结果显示南中国海可能具有含天然气水合物地层的地震反射特征,包括似海底反射(BSR)、振幅空白带、BSR与沉积地层斜交等天然气水合物存在的标志性特征,是南中国海域存在天然气水合物的定性地球物理证据;而地震反演结果则揭示该研究区存在地层速度结构异常,是南中国海存在天然气水合物的定量地球物理证据.  相似文献   

4.
南海北部陆坡天然气水合物的地震速度研究   总被引:9,自引:6,他引:9  
梁劲  王宏斌  郭依群 《现代地质》2006,20(1):123-129
采用D ix公式法和速度反演法分别对南海北部陆坡测线A和B的层速度及纵波速度进行计算,结合BSR、振幅空白带以及波形极性反转等多种水合物赋存信息的分析,对水合物成矿带的速度特征进行了综合研究。结果表明:低速背景中的高速异常,是天然气水合物赋存的重要特征;高速异常体一般呈平行于海底的带状分布;在高速异常体的内部,速度也是不断变化的,一般在异常体的中心速度最高,由中心到边缘速度逐渐降低,反映在水合物矿带内部,水合物饱和度由矿体中心向边缘逐渐降低的特征。研究结果表明高精度速度分析不仅可以帮助寻找水合物矿点,还可以进一步判定水合物的富集层位。  相似文献   

5.
Jason反演技术在天然气水合物速度分析中的应用   总被引:1,自引:0,他引:1  
本文采用Jason反演技术对南海北部陆坡A测线纵波速度进行计算,结合BSR、振幅空白带以及波形极性反转等多种水合物赋存信息的分析,对水合物成矿带的速度特征进行了综合研究,结果表明:低速背景中的高速异常,是天然气水合物赋存的重要特征;高速异常体一般呈平行于海底的带状分布;在高速异常的内部,速度也是不断变化的。一般在异常体的中心速度最高,由中心到边缘速度逐渐降低,反映在水合物矿带内部,水合物饱和度由矿体中心向边缘逐渐降低的特征。本文的研究成果进一步表明高精度速度分析不仅可以帮助寻找水合物矿点,还可以进一步判定水合物的富集层位。  相似文献   

6.
琼东南盆地最新的水合物调查研究发现了大量疑似BSR(bottom simulating reflector)特征的地震反射界面,但BSR特征并不典型。为了解决在BSR特征不甚明显的地区进行天然气水合物识别和成矿远景研究的问题,本文首先通过对调查所取得的第一手资料的综合分析,指出了琼东南盆地海域天然气水合物地球物理标识——BSR识别的局限性;然后从天然气水合物成藏所必须具备的气源、运移通道、有利沉积条件等几个方面出发,探讨了琼东南盆地天然气水合物成藏必须具备的气源、气体运通道和储层等特征,对琼东南盆地天然气水合物地球物理识别标志——BSR判识提供了良好佐证。综合分析认为:琼东南盆地海域的中央坳陷带内发育了大量气烟囱的位置及其附近海底浅层应是天然气水合物发育的重点目标区。  相似文献   

7.
似海底反射(BSR)是目前天然气水合物层识别的主要依据,但是当BSR不明显或者缺失的时候怎样识别水合物层,以及水合物层顶面和下伏游离气层底面如何确定,仍然是水合物识别中难以圆满解决的两大难题。以布莱克海台USGS95-1测线地震数据为例利用小波变换进行多尺度研究发现水合物层和游离气层表现出不同的尺度特征:水合物层表现出大尺度特征,而游离气层具有小尺度特征;在最佳尺度剖面上,水合物层表现为低尺度背景中的近似平行于海底的高尺度带。利用水合物层和游离气层的这种尺度差异不但可以识别水合物层,而且还可以推断水合物层的顶面和游离气层的底面。  相似文献   

8.
采用射线追踪法对南海北部陆坡A测线层速度进行计算,结合BSR(Bottom Simulating Reflector)、振幅空白带,以及波形极性反转等多种水合物赋存信息的分析,对水合物成矿带的速度特征进行了综合研究。结果表明:低速背景中的高速异常,是天然气水合物赋存的重要特征;高速异常体一般呈平行于海底的带状分布;在高速异常体的内部,速度也是不断变化的,一般在异常体的中心速度最高,由中心到边缘速度逐渐降低,反映在水合物矿带内部,水合物饱和度由矿体中心向边缘逐渐降低的特征。研究结果还表明,高精度速度分析不仅可以帮助寻找水合物矿点,还可以进一步判定水合物的富集层位。  相似文献   

9.
琼东南盆地南部隆起带天然气水合物赋存特征分析   总被引:2,自引:1,他引:1  
天然气水合物是21世纪最具潜力的接替煤炭、石油和天然气的新型洁净能源之一。我国南海蕴藏着丰富的水合物资源,目前已在南海北部陆坡神狐、东沙、海马区发现丰富的水合物资源。本文分析了琼东南盆地南部隆起带天然气水合物赋存的地质条件,开展了地球物理资料的分析与海底反射(BSR)识别,计算了水合物热动力学稳定带厚度。研究表明,琼东南盆地南部隆起带具备水合物赋存的地质条件,渗漏构造发育,游离气丰富,BSR表现为强振幅、不连续等特征,水合物稳定带厚度大,具有较大的天然气水合物资源潜力。  相似文献   

10.
利用AVO(Amplitude Versus Offset)属性分析技术,对南海北部测线B进行了AVO属性处理,结合BSR(Bottom Simulating Reflector),振幅空白带以及波形极性反转等多种水合物赋存信息,对水合物成矿带及游离气带的AVO属性特征进行了综合研究.结果表明:①AVO 1和AVO 9可用于检测BSR和水合物成矿带;②AVO 4、AVO 6 、AVO 9用于游离气带的检测;③AVO 1高截距值表示上、下层P波速度差值大,弱反射或空白反射表示水合物分布均匀,是水合物富集和稳定的表现;④AVO 4高值表示有游离气存在,强反射特征为游离气顶的反射;⑤AVO 6正值,表示有游离气存在,强反射的发育厚度代表游离气的发育厚度;⑥AVO 9低幅值表示水合物成矿带,正值表示游离气带.研究结果表明,高精度AVO分析不仅可以帮助寻找水合物矿点,还可以进一步判定水合物的富集层位.  相似文献   

11.
东海与泥底辟构造有关的天然气水合物初探   总被引:4,自引:2,他引:4  
根据所获得的高分辨率地震资料分析,发现冲绳海槽南部西侧槽坡附近以及海槽内部发育有一系列泥火山(底辟)构造,在地形上表现为泥火山地貌,在穿过泥火山的地震剖面上,表现出典型的泥底辟构造。对穿过泥底辟构造的DMS01-5地震剖面进一步的处理和解释发现,泥底辟构造顶部存在明显的似海底反射(BSR),其与海底反射波组极性相反,在BSR之上存在振幅空白带,在速度谱上出现速度异常,指示存在与泥火山有关的天然气水合物。从世界广泛发现的与泥底辟构造有关的天然气水合物来看,天然气水合物既可以在泥底辟构造的丘状外围成藏,也可以在其外围的海底沉积物中产出。在泥底辟构造的丘状外围附近,天然气水合物的形成机制类似于传统的矿物低温热液的形成;在泥底辟构造外围海底沉积物中,其形成过程类似于传统的矿物交代形成机制。冲绳海槽泥底辟构造的发育与很高的沉积速率和槽坡的活动断层有关。在冰期期间,长江携带大量的陆源物质直接输送到大陆坡地区,沉积速率达300 m/Ma,产生异常高压,同时张性断层极为发育,为流体的迁移提供了良好的通道,在异常压力以及上覆地层压力作用下大量流体向上运移,从而发育大量的泥底辟构造。富含甲烷的流体易在其外围及外围海底沉积物中形成天然气水合物藏。  相似文献   

12.
天然气水合物地震空白带现象正演模型研究   总被引:7,自引:1,他引:7  
空白带现象是人工地震方法识别含天然气水合物沉积地层的重要标志之一。针对水合物沉积物的 3种微观模式 ,首先采用度量振幅空白程度的振幅比方法 ,计算并分析了水合物饱和度不随孔隙度变化 ,以及水合物的饱和度随孔隙度变化 (即CGHC和VGHC)两种情况 ,然后对上述两种情况设计了地震模型 ,合成了水合物沉积物地震纪录 ,获得了地震空白带现象。研究结果表明 :水合物沉积物饱和度的变化是振幅空白的主要原因。对孔隙度和饱和度都不固定的复杂情况 ,沉积物的岩性存在多解性 ,需用各种方法的多元信息进行对比研究 ,才能更好地解释空白带的产生及其特征。  相似文献   

13.
Multichannel seismic (MCS) data from the Yaquina forearc basin off Peru reveal a complex distribution of gas and gas hydrate related reflections. Lateral variations of the reflection pattern at the assumed base of the gas hydrate stability zone in terms of continuity, amplitude, and signal attenuation underneath are observed, as well as the possible occurrence of paleo-bottom simulating reflectors (BSRs). Phase reversed reflections above the bottom simulating reflector point to free gas within the gas hydrate stability zone (GHSZ). To constrain the interpretation of the observed reflection pattern we calculated the velocity distribution along the MCS line from high-resolution ocean bottom hydrophone recordings with two independent methods. Heat flux values estimated on the basis of the velocity-depth functions increase with decreasing amplitude of the BSR and peak near chemoherms. These results suggest a model of the Yaquina Basin where free gas is trapped under parts of the BSR, and within the GHSZ, particularly under the seafloor and under an erosional unconformity. The hypothesis of a paleo-BSR that reflects the uplift of the base of the hydrate stability zone caused by the deposition of a particular sediment sequence is supported by the estimated heat flux values.  相似文献   

14.
Abstract: Interstitial waters extracted from the sediment cores from the exploration wells, “BH‐1” and “MITI Nankai Trough”, drilled ~60 km off Omaezaki Peninsula in the eastern Nankai Trough, were analyzed for the chloride and sulfate concentrations to examine the depth profiles and occurrence of subsurface gas hydrates. Cored intervals from the seafloor to 310 mbsf were divided into Unit 1 (~70 mbsf, predominated by mud), Unit 2 (70–150 mbsf, mud with thin ash beds), Unit 3 (150–250+ mbsf, mud with thin ash and sand), and Unit 4 (275–310 mbsf, predominated by mud). The baseline level for Cl “concentrations was 540 mM, whereas low chloride anomalies (103 to 223 mM) were identified at around 207 mbsf (zone A), 234–240 mbsf (zone B), and 258–265 mbsf (zone C) in Unit 3. Gas hydrate saturation (Sh %) of sediment pores was calculated to be 60 % (zone A) to 80 % (zones B and C) in sands whereas only a few percent in clay and silt. The total amount of gas hydrates in hydrate‐bearing sands was estimated to be 8 to 10 m3 of solid gas hydrate per m2, or 1.48 km3 CH4 per 1 km2. High saturation zones (A, B and C) were consistent with anomaly zones recognized in sonic and resistivity logs. 2D and high‐resolution seismic studies revealed two BSRs in the study area. Strong BSRs (BSR‐1) at ~263 mbsf were correlated to the boundary between gas hydrate‐bearing sands (zone C) and the shallower low velocity zone, while the lower BSRs (BSR‐2) at~289 mbsf corresponded to the top of the deeper low velocity zone of the sonic log. Tectonic uplift of the study area is thought to have caused the upward migration of BGHS. That is, BSR‐1 corresponds to the new BGHS and BSR‐2 to the old BGHS. Relic gas hydrates and free gas may survive in the interval between BSR‐1 and BSR‐2, and below BSR‐2, respectively. Direct measurements of the formation temperature for the top 170 m interval yield a geothermal gradient of ~4.3d?C/ 100 m. Extrapolation of this gradient down to the base of gas hydrate stability yields a theoretical BGHS at~230 mbsf, surprisingly ~35 m shallower than the base of gas hydrate‐bearing sands (zone C) and BSR‐1. As with the double BSRs, another tectonic uplift may explain the BGHS at unreasonably shallow depths. Alternatively, linear extrapolation of the geothermal gradient down to the hydrate‐bearing zones may not be appropriate if the gradient changes below the depths that were measured. Recognition of double BSRs (263 and 289 mbsf) and probable new BGHS (~230 mbsf) in the exploration wells implies that the BGHS has gradually migrated upward. Tectonically induced processes are thought to have enhanced dense and massive accumulation of gas hydrate deposits through effective methane recycling and condensation. To test the hypothetical models for the accumulation of gas hydrates in Nankai accretionary prism, we strongly propose to measure the equilibrium temperatures for the entire depth range down to the free gas zone below predicted BGHS and to reconstruct the water depths and uplift history of hydrate‐bearing area.  相似文献   

15.
Multi-channel seismic (MCS) reflection data recorded offshore from Valdivia (40° S), in the Chilean margin, were processed to obtain a seismic image to establish structural characteristics and relate them to the presence of the bottom-simulating reflector (BSR). Seismic structure velocity of the BSR was determined using 1-D forward modeling. Recorded seismograms for two representative common mid-point (CMP) gathers were compared with synthetics, using different physical parameters to fit the waveforms. Our results confirm the presence of gas hydrates above the BSR. The BSR spatial continuity appears to be either interrupted or irregular due to the presence of faults. Tectonic movements can change the gas hydrate stability zone and consequently the BSR disappears or becomes weaker. Structural and topographic factors, differences in concentration, vertical distribution characteristics and internal structure of gas hydrates can influence BSR amplitude behavior. Variability in the concentration, volume, and extra supply of free gas coming from faults could be the main factors in the change of BSR amplitudes. The inclusion of the attenuation factor in the modeling supports the existence of free gas below the BSR. It is possible that the free gas below the BSR is distributed in bubbles or “bags”.  相似文献   

16.
陈建文 《地球学报》2014,35(6):726-732
冲绳海槽位于东海的东部,区内天然气水合物调查研究程度低。本文分析了冲绳海槽的区域地质背景和天然气水合物调查研究现状,根据已有资料和前人研究成果,分析了研究区天然气水合物形成的地形地貌、水深、温度、热流值特征,地层、沉积、构造、气源等条件,以及区内存在天然气水合物的地球物理、地球化学和其他证据,在此基础上推测区内天然气水合物成藏存在4种可能的地质类型。即成岩型、断裂构造型、底劈构造型和滑塌型。研究认为,冲绳海槽天然气水合物资源潜力巨大。  相似文献   

17.
《China Geology》2020,3(1):16-27
Bottom simulating reflector (BSR) has been recognized as one of the indicators of gas hydrates. However, BSR and hydrate are not one-to-one correspondence. In the Xisha area of South China Sea (SCS), carbonate rocks wildly develop, which continuously distribute parallel to the seafloor with high amplitude on seismic sections, exhibiting reflections similar to BSRs in the Shenhu area nearby. This phenomenon causes some interference to hydrates identification. In this paper, the authors discussed the typical geophysical differences between carbonate rocks and hydrates, indicating that the main difference exists in relationship between porosity and velocity, causing different amplitude versus offset (AVO) characters. Then the authors proposed a new model assuming that the carbonates form the matrix and the hydrate fill the pore as a part of the matrix. The key modeling parameters have been optimized constrained by P-velocities and S-velocities simultaneously, and the model works well both for carbonate rock and gas hydrate bearing sediments. For quantitative identification, the authors calculated the velocities when carbonates and hydrates form the matrix together in different proportions. Then they proposed a carbonate and hydrate identification template (CHIT), in which the possible hydrate saturation (PHS) and possible carbonate content (PCC) can be both scaled out for a group of sample composed by P-velocity and S-velocity. If PHS is far larger than PCC, it is more likely to be a hydrate sample because carbonates and hydrates do not coexist normally. The real data application shows that the template can effectively distinguish between hydrates and carbonate rocks, consequently reducing the risk of hydrate exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号