首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We have conducted high pressure (to 3 kbar), water saturated melting experiments on an andesite (62 wt% SiO2) and a basaltic andesite (55 wt% SiO2) from western Mexico. A close comparison between the experimental phase assemblages and their compositions, and the phenocryst assemblages of the lavas, is found in water saturated liquids, suggesting that the CO2 content was minimal in the fluid phase. Thus the historic lavas from Volcan Colima (with phenocrysts of orthopyroxene, augite, plagioclase, and hornblende) were stored at a temperature between 950–975 °C, at a pressure between 700–1500 bars, and with a water content of 3.0–5.0 wt%. A hornblende andesite (spessartite) from Mascota, of nearly identical composition but with only amphibole phenocrysts, had a similar temperature but equilibrated at a minimum of 2000 bars pressure with a dissolved water content of at least 5.5 wt% in the liquid. Experiments on the basaltic andesite show that the most common natural phenocryst assemblages (olivine, ±augite, ±plagioclase) could have precipitated at temperatures from 1000–1150 °C, in liquids with a wide range of dissolved water content (∼2.0–6.0 wt%) and a corresponding pressure range. A lava of the same bulk composition with phenocrysts of hornblende, olivine, plagioclase, and augite is restricted to temperatures below 1000 °C and pressures below 2500 bars, corresponding to <5.5 wt% water in the residual liquid. Although there is some evidence for mixing in the andesites (sporadic olivine phenocrysts), the broad theme of the history of both lava types is that the phenocryst assemblages for both the andesitic magmas and basaltic andesitic magmas are generated from degassing and reequilibration on ascent of initially hydrous parents containing greater than 6 wt% water. Indeed andesitic magmas could be related to a basaltic andesite parent by hornblende-plagioclase fractionation under the same hydrous conditions. Received: 10 December 1996 / Accepted: 21 August 1997  相似文献   

2.
The relative ages of 21 lavas from Boqueron volcano in El Salvador were determined by superposition. The lavas are grey to black, porphyritic basalts, basaltic andesites and andesites with phenocrysts of plagioclase, augite, olivine, and magnetite. The andesitic lavas appear to have evolved from basaltic magma by fractionation of the observed phenocryst phases.The temporal variation in the chemical composition of the lavas at Boqueron is composed of three components. First, there is a crudely cyclical alternation of basalts and andesites. Second, these cycles are progressively shifted toward higher SiO2 contents. Third, approximately in the middle of the stratigraphic section sampled, there is an abrupt change in chemical variation trends from an Al-rich and Fe-poor trend to an Fe-rich and Al-poor trend. This change is interpreted to have been caused by an increased proportion of plagioclase fractionation and a decreased porportion of augite fractionation. The crudely cyclical change in SiO2 content with time is interpreted as a combination of crystal fractionation that increases SiO2 content, followed by influxes of basaltic magma that mix with residual magma to decrease SiO2 content. Successive cycles are shifted toward higher SiO2 content because there is a significant volume of fractionated magma remaining in the chamber before each influx of basalt.  相似文献   

3.
A series of basaltic and andesitic lavas from three centers in the Cascades (Lassen, Medicine Lake, Mt. Shasta) have been investigated. The lavas are weakly porphyritic, containing phenocrysts of plagioclase, augite, and olivine or orthopyroxene; these phases are also found in the groundmass. Titanomagnetite is a groundmass phase in most lavas but it appears to be absent in some. A sub-calcic augite is found in the groundmass in some of the basic lavas. Orthopyroxenes are present only in the salic lavas and show an increase in calcium with increasing iron. The range in composition shown by both phenocryst and groundmass plagioclase is very similar except that the phenocrysts extend to slightly more calcic compositions. The residual glasses in many of the lavas have a rhyolitic composition. However, only those from the Shasta andesites have normative salic constituents that plot near the ternary minimum in the Ab-Or-Qtz system at 500 bars. Both chemical and mineralogical data allow the lavas of the different centers to be distinguished from one another. The most likely origin for the orogenic lavas of the Cascades is by partial melting of the upper mantle.  相似文献   

4.
In the southern Gregory Rift valley a series of transitional basalt, ferrobasalt, and benmoreite flows (1.65–1.4 Myr) is overlain by flood trachyte lavas (1.3–0.9 Myr). Mass balance calculations for major element compositions of rocks of this suite and their phenocrysts and microphenocrysts suggest that the ferrobasalts and benmoreites formed from magma resembling the most primitive basalt by closed system fractionation of plagioclase, clinopyroxene, olivine, titanomagnetite, and apatite. The trachytes formed from evolved magmas largely by alkali feldspar fractionation. Estimates of phenocryst and liquid densities and Rayleigh-law modelling of trace element contents support these conclusions. From Rayleigh-law modelling, we derived a set of effective distribution coefficients. Partial melting of crustal rocks or volatile transfer processes had no significant effect on the petrogenesis of this suite. The duration of the eruptive cycle, cooling time calculations, and mass balance calculations suggest that fractionation occurred in a magma reservoir with volume of at least 3 × 104 km3 during an interval of about 0.8 Myr. Temperatures during fractionation probably ranged from about 1200 °C to 900 °C, and pressures may have been roughly 5 to 8 Kb. We suggest that rift development was accompanied by large-scale injection of basaltic magma and dilation of the crust, extensive fractionation, preferential eruption of low-density and fluid trachytic flood lavas, and by several episodes of normal faulting.  相似文献   

5.
Voluminous andesite and dacite lavas of Daisen volcano, SW Japan,contain features suggesting the reverse of normal fractionation(anti-fractionation), in the sense that magma genesis progressedfrom dacite to andesite, accompanied by rises in temperature.A positive correlation exists between phenocryst content (0–40vol. %) and wt % SiO2 (61–67%). Phenocryst-rich dacitescontain hornblende and plagioclase that are generally unaltered,clear, and euhedral. However, phenocryst-poor rocks containsieve-textured plagioclase, resorbed plagioclase, and opacitein which hornblendes are pseudomorphed. Some Daisen rocks containtwo coexisting pyroxenes. Many orthopyroxene phenocrysts fromtwo-pyroxene lavas have high-Ca overgrowth rims (up to 50 µm),a feature consistent with crystallization from a higher-temperaturemagma than the core. Rim compositions are similar from phenocrystto phenocryst in individual samples. Temperatures of 800–900°Care obtained from the cores, whereas temperatures of 1000–1100°Care indicated for the rims. Lavas ranging from aphyric andesite(  相似文献   

6.
The convergent margin of western Mexico is uniquely characterizedby a volcanic front of lamprophyric and related lavas located{small tilde}70 km closer to the Middle America trench thanthe main axis of andesitic volcanism. This front, defined bysmall volcanic centers ranging in age from {small tilde}1 kato 3 Ma, contains several lava types: minette, absarokite, leucitite,spessartite, and kersantite, all without feldspar phenocrysts.Many of the lavas contain hydrous phenocrysts; they are enrichedin potassium and other incompatible elements, and they are moreoxidized relative to the andesitic suite of the main axis. Intimatelyassociated are flows of basaltic andesite of comparable volume.They range in composition from 53 to 58 wt.%SiO2, have 5–9wt.%MgO and contain phenocrysts of olivine, sparse augite, andvarying amounts of plagioclase. Their alkali contents are typicalof calc-alkaline varieties, with average Na2O and K2O concentrationsof 4?2 and 1?1 wt.% respectively. The basaltic andesites oftencontain olivine of unusually high forsterite content, reflectingcrystallization under oxidizing conditions, and they have oxygenfugacities up to 3?3 log units above the Ni-NiO buffer. Manifestationsof high water contents are (1) the ubiquitous occurrence ofgroundmass olivine rather than orthopyroxene, and (2) the suppressionof plagioclase as an early crystallizing phase. Both featuresreflect the role of water in reducing the activity of silicain the melt. The progressive influence of water during crystallizationis also seen in the continuum between the two intermediate lavatypes, basaltic andesite and kersantite, as plagioclase is suppressedand hornblende is stabilized in the phenocryst assemblage. Thus,despite the absence of hydrous minerals in the basaltic andesites,their phenocryst assemblages reveal the influence of substantialamounts of water, and thereby show a genetic link to the variouslamprophyric lavas.  相似文献   

7.
The Cindery Tuff is an unusual tephra fall deposit that contains evidence for the mixing of basaltic and rhyolitic liquids prior to eruption. It contains clear rhyolitic glass shards together with brown basaltic glass spheres and a broadly bimodal phenocryst assemblage. Brown glasses are ferrobasaltic in composition and are similar to the voluminous Pliocene tholeiites of the surrounding west-central Afar volcanic field; both are enriched in the light rare earth and incompatible elements and possess higher 87Sr/86Sr and lower 143Nd/144Nd than MORB. Rhyolitic glasses are subalkaline and, compared to the basaltic glasses, are strongly depleted in the compatible elements and enriched in the incompatible elements. Both glass types have similar incompatible element and isotopic ratios, and with the rhyolite glass showing a 2-fold parallel enrichment in rare earth element abundances over the basaltic glass. These observations suggest that the two glasses are genetically related.Rare glasses with intermediate compositions occur as phenocryst melt inclusions, as mantles on phenocrysts and as free pumice clasts. Their major element contents do not point to an origin by simple hybrid mixing of the basaltic and rhyolitic melts. Rather, major element mixing calculations indicate formation of the intermediate and rhyolite melts by fractionation of the observed phenocryst assemblage, using a starting composition of the observed basaltic glass. Model calculations from trace element data, though lacking from the intermediate glasses, support fractional crystallization. The bimodal mineral assemblage argues against an immiscible liquid origin for the contrasting glass compositions.  相似文献   

8.
T. C. Feeley  G. S. Winer 《Lithos》1999,46(4):2249-676
St. Paul Island is the youngest volcanic center in the Bearing Sea basalt province. We have undertaken a field, petrographic, and geochemical study of select St. Paul volcanic rocks in order to better understand their differentiation; specifically, to test the hypothesis that magmas erupted from individual Bering Sea basaltic volcanoes are not related by shallow-level processes such as crystal fractionation. Petrographically, all of the St. Paul volcanic rocks are olivine-, plagioclase-, and clinopyroxene-phyric. Textural features and modal contents of olivine phenocrysts, however, vary widely throughout the spectrum of basalt compositions. Although differing in size and abundance, olivine phenocrysts in all rock compositions are euhedral and commonly skeletal, suggesting rapid growth during ascent or eruptive quenching. None, however, display reaction textures with surrounding groundmass liquid. Compositionally, the St. Paul volcanic rocks are basalts and tephritic basalts and all have high contents of normative nepheline (8% to 16%). Concentrations of many major and incompatible trace elements display no clear correlations with bulk-rock SiO2 and MgO contents or modal abundances of phenocrysts, suggesting that much of the compositional diversity of these magmas reflects variable mantle sources and degrees of partial melting. Similarly, chondrite-normalized REE patterns show variable degrees of light REE enrichment (Lan=70–90) that do not correlate with bulk-rock mg-numbers. In contrast, concentrations of compatible trace elements (Ni, Cr, and Co) are positively correlated with MgO contents and modal percentages of olivine phenocrysts. Maximum forsterite contents of olivine phenocryst cores in most St. Paul rocks decrease with decreasing bulk-rock mg-number and are similar to the calculated equilibrium range. This is evidence that the high mg-numbers are magmatic and do not result from olivine accumulation. Instead, major and compatible trace element mass balance calculations support derivation of the low mg-number lavas from the high mg-number lavas mainly by olivine fractionation, which, in turn, implies that St. Paul magmas may have temporarily resided in crustal magma chambers prior to eruption.  相似文献   

9.
The Bandas del Sur Formation preserves a Quaternary extra-calderarecord of central phonolitic explosive volcanism of the LasCañadas volcano at Tenerife. Volcanic rocks are bimodalin composition, being predominantly phonolitic pyroclastic deposits,several eruptions of which resulted in summit caldera collapse,alkali basaltic lavas erupted from many fissures around theflanks. For the pyroclastic deposits, there is a broad rangeof pumice glass compositions from phonotephrite to phonolite.The phonolite pyroclastic deposits are also characterized bya diverse, 7–8-phase phenocryst assemblage (alkali feldspar+ biotite + sodian diopside + titanomagnetite + ilmenite + nosean–haüyne+ titanite + apatite) with alkali feldspar dominant, in contrastto interbedded phonolite lavas that typically have lower phenocrystcontents and lack hydrous phases. Petrological and geochemicaldata are consistent with fractional crystallization (involvingthe observed phenocryst assemblages) as the dominant processin the development of phonolite magmas. New stratigraphicallyconstrained data indicate that petrological and geochemicaldifferences exist between pyroclastic deposits of the last twoexplosive cycles of phonolitic volcanism. Cycle 2 (0·85–0·57Ma) pyroclastic fall deposits commonly show a cryptic compositionalzonation indicating that several eruptions tapped chemically,and probably thermally stratified magma systems. Evidence formagma mixing is most widespread in the pyroclastic depositsof Cycle 3 (0·37–0·17 Ma), which includesthe presence of reversely and normally zoned phenocrysts, quenchedmafic glass blebs in pumice, banded pumice, and bimodal to polymodalphenocryst compositional populations. Syn-eruptive mixing eventsinvolved mostly phonolite and tephriphonolite magmas, whereasa pre-eruptive mixing event involving basaltic magma is recordedin several banded pumice-bearing ignimbrites of Cycle 3. Theperiodic addition and mixing of basaltic magma ultimately mayhave triggered several eruptions. Recharge and underplatingby basaltic magma is interpreted to have elevated sulphur contents(occurring as an exsolved gas phase) in the capping phonoliticmagma reservoir. This promoted nosean–haüyne crystallizationover nepheline, elevated SO3 contents in apatite, and possiblyresulted in large, climatologically important SO2 emissions. KEY WORDS: Tenerife; phonolite; crystal fractionation; magma mixing; sulphur-rich explosive eruptions  相似文献   

10.
The origin of island arc high-alumina basalts   总被引:5,自引:1,他引:5  
A detailed examination of the hypothesis that high-alumina basalts (HAB) in island arcs are primary magmas derived by 50–60% partial melting of subducted ocean crust eclogite shows that this model is unlikely to be viable. Evidence suggests that the overwhelming majority of arc HAB are porphyritic lavas, enriched in Al2O3 either by protracted prior crystallization of olivine and clinopyroxene, or by plagioclase phenocryst accumulation in magmas of basaltic andesite to dacite composition. Experimentally-determined phase relationships of such plagioclase-enriched (non-liquid) compositions have little bearing on the petrogenesis of arc magmas, and do not rule out the possibility that arc HAB can be derived by fractionation of more primitive arc lavas. Although models invoking eclogite-melting can match typical arc HAB REE patterns, calculations indicate that the Ni and Cr contents of proposed Aleutian primary HAB are many times lower than such models predict. In contrast, Ni vs Sc and Cr vs Sc trends for arc HAB are readily explained by olivine (+Cr-sp) and clinopyroxene-dominated fractionation from more primitive arc magmas. GENMIX major element modelling of several HAB compositions as partial melts of MORB eclogite, using appropriate experimentally (26–34 kb)-determined garnet and omphacite compositions yields exceptionally poor matches, especially for CaO, Na2O, MgO and Al2O3. These mismatches are easily explained if the HAB are plagioclase-accumulative. Groundmasses of arc HAB are shown to vary from basaltic andesite to dacite in composition. Crystal fractionation driving liquid compositions toward dacite involves important plagioclase separation, resulting in development of significant negative Eu anomalies in more evolved lavas. Plagioclase accumulation in such evolved liquids tends to diminish or eliminate negative Eu anomalies. Therefore, the absence of positive Eu anomaly in a plagioclase-phyric HAB does not indicate that plagioclase has not accumulated in that lava. In addition, we show that plagioclase phenocrysts in arc HAB are not in equilibrium with the liquids in which they were carried (groundmass). Exceptional volumes of picrite and olivine basalt occur in the Solomons and Vanuatu arcs; the presence in lavas from these and other arcs (Aleutian, Tonga) of olivine phenocrysts to Fo94, finds no ready explanation in the primary eclogite-derived HAB model. We suggest that most lavas in intra-oceanic arcs are derived from parental magmas with >10% MgO; fractionation of olivine (+Cr-sp) and clinopyroxene drives liquids to basalt compositions with <7% MgO, but plagioclase nucleation is delayed by their low but significant (<1%?) H2O contents. Thus evolved liquid compositions in the basaltic andesite—andesite range may achieve relatively high Al2O3 contents (<17.5%). The majority of arc basalts, however, have Al2O3 contents in excess of 18%, reflecting plagioclase accumulation. We give new experimental data to show that HAB liquids may be generated by anhydrous, low-degree (<10%) partial melting of peridotite at P<18 kb. Relative to arc HAB, these experimental melts have notably higher Mg#(69–72) and are in equilibrium with olivine Fo87–89. Only further detailed trace element modelling will show if they might be parental magmas for some arc HAB.  相似文献   

11.
The Pleistocene Humbu and Moinik formations of the Peninj Group in northern Tanzania preserve an important archaeological and paleontological record, in addition to a record of local volcanism in the form of tephra and lavas. Samples of the major Humbu and Moinik formations' basaltic and trachytic tephra were collected and characterized using phenocryst composition and both primary and authigenic mineral assemblage, since the volcanic glass was completely altered to zeolite. Some tephra are distinguishable solely using phenocrysts, but some are too similar in mineral composition or too poor in phenocrysts to definitively “fingerprint” without glass. Titanomagnetite phenocrysts were mostly altered; characterization was thus limited to feldspar, augite, and hornblende compositions for most tephra. Phenocryst compositions were compared to Olduvai tephra compositions to see if any regional tephra could be identified that could help correlate the sites. Augite or hornblende composition rules out potential correlations of Olduvai Bed I Tuff IF and the Bed II Bird Print Tuff or Tuff IID to otherwise similar Peninj Group tephra. Despite their overlap in age and locations at less than ~ 80 km from the Ngorongoro Volcanic Highlands, Peninj and Olduvai have different tephra records, which limits the possibilities for establishing a regional tephrostratigraphic framework.  相似文献   

12.
The late Pleistocene Lake Basalt of Medicine Lake volcano, California is comprised of variably porphyritic basalt and basaltic andesite flows and scoria. These eruptives are similar in composition and phenocryst abundance to the low-MgO, high-Al2O3 mafic magmas common in convergent margin settings. The petrogenesis of the magmas that produced the Lake Basalt has been inferred from field relations, melting experiments and subsequent major and trace element modeling. Their formation involved both hydrous differentiation and plagioclase accumulation and thus the Lake Basalt can be used to constrain the relative contributions of these processes to the production of high-Al2O3 arc basalt. Phenocryst-poor lavas of the Lake Basalt formed by hydrous differentiation; their compositions and observed phenocrysts were reproduced in 1 kbar, H2O-saturated melting experiments. Anorthite-rich plagioclase compositions of the lavas of the Lake Basalt necessitate crystallization from melts with between 4 and 6 wt% dissolved H2O. Phenocryst-rich lavas of the Lake Basalt, with 18 modal% phenocrysts and greater, formed by plagioclase accumulation in magmas similar to the phenocryst-poor lavas. This interpretation is supported by the depleted incompatible element abundances and enriched Sr/Zr ratio of the more porphyritic lavas relative to the phenocryst-poor lavas. We model the formation of the Lake Basalt as a two-stage process that combines a differentiation model and a plagioclase accumulation model. Stage one involved hydrous fractionation, granitic assimilation and mixing with undifferentiated parent magma. This process generated lavas with up to 19.2 wt% A12O3 and 7 modal% phenocrysts. In stage two, plagioclase accumulated in these liquids and produced more aluminous and porphyritic lavas with up to 21.8 wt% A12O3 and 33 modal% phenocrysts.  相似文献   

13.
The Huerto Andesite is the largest of several andesite sequences interlayered with the large-volume ash-flow tuffs of the San Juan volcanic field, Colorado. Stratigraphically this andesite is between the region's largest tuff (the 27.8 Ma, 3,000 km3 Fish Canyon Tuff) and the evolved product of the Fish Canyon Tuff (the 27.4 Ma, 1,000 km3 Carpenter Ridge Tuff), and eruption was from vents located approximately 20–30 km southwest and southeast of calderas associated with these ashflow tuffs. Olivine phenocrysts are present in the more mafic, SiO2-poor samples of andesite, hence the parent magma was most likely a mantle-derived basaltic magma. The bulk compositions of the olivine-bearing andesites compared to those containing orthopyroxene phenocrysts suggest the phenocryst assemblage equilibrated at 2–5 kbar. Two-pyroxene geothermometry yields equilibrium temperatures consistent with near-peritectic magmas at 2–5 kbar. Fractionation of phenocryst phases (olivine or orthopyroxene + clinopyroxene + plagioclase + Ti-magnetite + apatite) can explain most major and trace element variations of the andesites, although assimilation of some crustal material may explain abundances of some highly incompatible trace elements (Rb, Ba, Nb, Ta, Zr, Hf) in the most evolved lavas. Despite the great distance of the San Juan volcanic field from the inferred Oligocene destructive margin, the Huerto Andesite is similar to typical plate-margin andesites: both have relatively low abundances of Nb and Ta and similar values for trace-element ratios such as La/Yb and La/Nb.Deriving the Fish Canyon and Carpenter Ridge Tuffs by crystal fractionation from the Huerto Andesite cannot be dismissed by major-element models, although limited trace-element data indicate the tuffs may not have been derived by such direct evolution. Alternatively, heat of crystallization released as basaltic magmas evolved to andesitic compositions may have caused melting of crust to produce the felsic-ash flows. Mafic magmas may have been gravitationally trapped below lighter felsic magmas; mafic magmas which ascended to the surface probably migrated upwards around the margins of silicic chambers, as suggested by the present-day outcrops of andesitic units around the margins of recognized ash-flow calderas.  相似文献   

14.
Trace element systematics throughout the cal-calkaline high alumina basalt — basaltic andesite — andesite — dacite — rhyodacite lavas and dyke rocks of the Main Volcanic Series of Santorini volcano, Greece are consistent with the crystal fractionation of observed phenocryst phases from a parental basaltic magma as the dominant mechanism involved in generating the range of magmatic compositions. Marked inflection points in several variation trends correspond to changes in phenocryst mineralogy and divide the Main Series into two distinct crystallisation intervals — an early basalt to andesite stage characterised by calcic plagioclase+augite+olivine separation and a later andesite to rhyodacite stage generated by plagioclase augite+hypersthene+magnetite+apatite crystallisation. Percent solidification values derived from ratios of highly incompatible trace elements agree with previous values derived from major element data using addition-subtraction diagrams and indicate that basaltic andesites represent 47–69%; andesites 70–76%; dacites ca. 80% and rhyodacite ca. 84% crystallisation of the initial basalt magma. Least squares major element mixing calculations also confirm that crystal fractionation of the least fractionated basalts could generate derivative Main Series lavas, though the details of the least squares solutions differ significantly from those derived from highly incompatible element and addition-subtraction techniques. Main Series basalts may result from partial melting of the mantle asthenosphere wedge followed by limited olivine+pyroxene+Cr-spinel crystallisation on ascent through the sub-Aegean mantle and may fractionate to more evolved compositions at pressures close to the base of the Aegean crust. Residual andesitic to rhyodacite magmas may stagnate within the upper regions of the sialic Aegean crust and form relatively high level magma chambers beneath the southern volcanic centres of Santorini. The eruption of large volumes of basic lavas and silicic pyroclastics from Santorini may have a volcanological rather than petrological explanation.  相似文献   

15.
Major element, trace element, and Sr isotope data are used to study the temporal variation in the chemistry of the ejecta from the 1979 eruption of Soufriere volcano, St. Vincent, and to compare the compositions of the 1979 and 1971/2 magmas. Both the 1971/2 and 1979 products were basaltic andesites almost identical in petrography. A small temporal variation in chemistry is apparent in the 1979 samples but these cannot be related to the 1971/2 lava by fractional crystallisation of phenocryst phases, and the two eruptions may therefore have sampled different batches of magma. 87Sr/86Sr ratios of the two magmas were identical within analytical error.Microprobe analyses of phenocryst phases and glasses from the 1979 ejecta are presented. Clinopyroxene phenocryst cores with very high Mg/Fe ratios indicate that the basaltic andesites are products of fractionation of magnesian parents. Such magmas are represented by lavas on St. Vincent similar to the microphyric alkali picrites found to the south in Grenada. A common origin for the basaltic andesites of both islands by fractional crystallisation of picritic magmas is suggested. Dacitic glass is abundant in the groundmass of scoria blocks from the eruption. It does not represent the liquid originally in equilibrium with the phenocryst phases, but rather this liquid modified by quench crystallisation. Published interpretations suggesting that dacitic glass compositions in tephra from eruptions of the Soufriere are evidence of mixed-magma eruptions are therefore rejected.  相似文献   

16.
Heterogeneous andesitic and dacitic lavas on Cordn El Guadalbear on the general problem of how magmas of differing compositionsand physical properties interact in shallow reservoirs beneathcontinental arc volcanoes. Some of the lavas contain an exceptionallylarge proportion (<40%) of undercooled basaltic andesiticmagma in various states of disaggregation. Under-cooled maficmagma occurs in the silicic lavas as large (<40 cm) basalticandesitic magmatic inclusions, as millimeter-sized crystal-clotsof Mg-rich olivine phenocrysts plus adhering Carich plagioclasemicrophenocrysts (An50–70), and as uniformly distributed,isolated phenocrysts and microphenocrysts. Compositions andtextures of plagioclase phenocrysts indicate that inclusion-formingmagmas are hybrids formed by mixing basaltic and dacitic melts,whereas textural features and compositions of groundmass phasesindicate that the andesitic and dacitic lavas are largely mechanicalmixtures of dacitic magma and crystallized basaltic andesiticmagma. This latter observation is significant because it indicatesthat mechanical blending of undercooled mafic magma and partiallycrystallized silicic magma is a possible mechanism for producingthe common porphyritic texture of many calc-alkaline volcanicrocks. The style of mafic-silicic magma interaction at CordonEl Guadal was strongly dependent upon the relative proportionsof the endmembers. Equally important in the Guadal system, however,was the manner in which the contrasting magmas were juxtaposed.Textural evidence preserved in the plagioclase phenocrysts indicatesthat the transition from liquid-liquid to solid-liquid mixingwas not continuous, but was partitioned into periods of magmachamber recharge and eruption, respectively. Evidently, duringperiods of recharge, basaltic magmas rapidly entrained smallamounts of dacitic magma along the margins of a turbulent injectionfountain. Conversely, during periods of eruption, dacitic magmagradually incorporated small parcels of basaltic andesitic magma.Thus, the coupled physical-chemical transition from mixed inclusionsto commingled lavas is presumably not coincidental. More likely,it probably provides a partial record of the dynamic processesoccurring in shallow magma chambers beneath continental arevolcanoes. KEY WORDS: Chile; commingling; magma mixing; magmatic inclusions *Present address: Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA  相似文献   

17.
The crustal history of volcanic rocks can be inferred from the mineralogy and compositions of their phenocrysts which record episodes of magma mixing as well as the pressures and temperatures when magmas cooled. Submarine lavas erupted on the Hilo Ridge, a rift zone directly east of Mauna Kea volcano, contain olivine, plagioclase, augite ±orthopyroxene phenocrysts. The compositions of these phenocryst phases provide constraints on the magmatic processes beneath Hawaiian rift zones. In these samples, olivine phenocrysts are normally zoned with homogeneous cores ranging from ∼ Fo81 to Fo91. In contrast, plagioclase, augite and orthopyroxene phenocrysts display more than one episode of reverse zoning. Within each sample, plagioclase, augite and orthopyroxene phenocrysts have similar zoning profiles. However, there are significant differences between samples. In three samples these phases exhibit large compositional contrasts, e.g., Mg# [100 × Mg/(Mg+Fe+2)] of augite varies from 71 in cores to 82 in rims. Some submarine lavas from the Puna Ridge (Kilauea volcano) contain phenocrysts with similar reverse zonation. The compositional variations of these phenocrysts can be explained by mixing of a multiphase (plagioclase, augite and orthopyroxene) saturated, evolved magma with more mafic magma saturated only with olivine. The differences in the compositional ranges of plagioclase, augite and orthopyroxene crystals between samples indicate that these samples were derived from isolated magma chambers which had undergone distinct fractionation and mixing histories. The samples containing plagioclase and pyroxene with small compositional variations reflect magmas that were buffered near the olivine + melt ⇒Low-Ca pyroxene + augite + plagioclase reaction point by frequent intrusions of mafic olivine-bearing magmas. Samples containing plagioclase and pyroxene phenocrysts with large compositional ranges reflect magmas that evolved beyond this reaction point when there was no replenishment with olivine-saturated magma. Two of these samples contain augite cores with Mg# of ∼71, corresponding to Mg# of 36–40 in equilibrium melts, and augite in another sample has Mg# of 63–65 which is in equilibrium with a very evolved melt with a Mg# of ∼30. Such highly evolved magmas also exist beneath the Puna Ridge of Kilauea volcano. They are rarely erupted during the shield building stage, but may commonly form in ephemeral magma pockets in the rift zones. The compositions of clinopyroxene phenocryst rims and associated glass rinds indicate that most of the samples were last equilibrated at 2–3 kbar and 1130–1160 °C. However, in one sample, augite and glass rind compositions reflect crystallization at higher pressures (4–5 kbar). This sample provides evidence for magma mixing at relatively high pressures and perhaps transport of magma from the summit conduits to the rift zone along the oceanic crust-mantle boundary. Received: 8 July 1998 / Accepted: 2 January 1999  相似文献   

18.
The mineralogy and geochemical characteristics of intermediate composition ferrolatites and related lavas from the Magic Reservoir eruptive center (central Snake River Plain) have been investigated to evaluate the origin and petrologic significance of these hybrid lavas. The ferrolatites are chemically uniform, but contain a disequilibrium phenocryst/xenocryst assemblage derived in part from mixed rhyolitic and basaltic magmas that are closely represented by extrusive units in the area. The hybrid lavas also contain xenoliths of Archean granulites and have high 87Sr/ 86Sr and low 143Nd/144Nd ratios, all of which suggest significant magma-crust interaction. Quantitative models including magma mixing, minor crystal fractionation, and crustal contamination very closely reproduce the observed compositions of these ferrolatites; closed system fractionation and (or) simple bulk contamination models are not as successful and can be ruled out. It appears that preexisting mafic and silicic magmas from distinct sources (e.g., mantle and crust) encounter one another in crustal-level magma chambers under conditions where intimate mixing may occur despite wide differences in the physical properties of these liquids.  相似文献   

19.
Basaltic andesites are the dominant Tongan magma type, and are characterized by phenocrysts of augite, orthopyroxene (or rarely pigeonite), and calcic plagioclase (modally most abundant phase, and interpreted as the liquidus phase). The plagioclase phenocrysts exhibit slight oscillatory reverse zoning except for abrupt and thin more sodic rims, which are interpreted to develop during eruptive quenching. These rim compositions overlap those of the groundmass plagioclase. The pyroxene phenocrysts also exhibit only slight compositional zoning except for the outermost rim zones; the compositions of these rims, together with the groundmass pyroxenes, vary throughout the compositional range of subcalcic augite to ferroaugite through pigeonite to ferropigeonite, and are interpreted in terms of quench-controlled crystallization. This is supported, for example, by the random distribution of Al solid solution in the groundmass pyroxenes, compared to the more regular behaviour of Al in the phenocryst pyroxenes. The analysed Niua Fo'ou olivine tholeiites are aphyric; groundmass phases are plagioclase (An17–88), olivine (Fa18–63), titanomagnetite (usp. 59–73), and augite-ferroaugite which does not extend to subcalcic compositions; this is interpreted to be due to higher quenching temperatures and lower viscosities of these tholeiites compared to the basaltic andesites.Application of various geothermometers to the basaltic andesites suggest initial eruptive quenching temperatures of 1,008–1,124 ° C, plagioclase liquidus temperatures (1 bar) of 1,210–1,277 ° C, and orthopyroxene-clinopyroxene equilibration of 990–1,150 ° C. These calculated temperatures, together with supporting evidence (e.g. absence of olivine and amphibole, liquidus plagioclase, and plagioclase zoning patterns) are interpreted in terms of phenocryst crystallization from magmas that were either strongly water undersaturated, nearly anhydrous, or at best, water saturated at very low pressures (< 0.5 kb). This interpretation implies that these Tongan basaltic andesites did not originate by any of the currently proposed mechanisms involving hydrous melting within or above the Benioff zone.  相似文献   

20.
The lavas of Nisyros were erupted between about 0?2 m.y B.P.and 1422 A.D., and range in composition from basaltic andesiteto rhyodacite. Most were erupted prior to caldera collapse (exactdate unknown), and the post-caldera lavas are petrographically(presence of strongly resorbed phenocrysts) and chemically (lowerTiO2 K2O, P2O5, and LIL elements) distinct from the pre-calderalavas. The pre-caldera lavas do not form a continuous seriessince lavas with SiO2 contents between 60 and 66 wt.% are absent.Nevertheless, major element variations demonstrate that fractionalcrystalliz ation (involving removal of olivine, dinopyroxene,plagioclase, and Fe-Ti oxide from the basaltic andesites andandesites and plagioclase, clinopyroxene, hypersthene, Ti-magnetite,ilmenite, apatite, and zircon from the dacites and rhyodacites)played a major role in the evolution of the pre-caldera lavas.Several lines of evidence indicate that other processes werealso important in magma evolution: (1) Quantitative modelingof major element data shows that phenocryst phases of unlikelycomposi tion or unrealistic assemblages of phenocryst phasesare required to relate the dacites and rhyodacites to the basalticandesites and andesites; (2) The proportions of olivine andclinopyroxene required in quantitative models for the initialstages of evolution differ from those observed petrographicallyand this is not likely to reflect either differential ratesof crystal settling or the curvature of cotectics along whichliquids of basaltic andesite to andesite composition lie; (3)The concentrations of Rb, Cs, Ba, La, Sm, Eu, and Th in therhyod.acites are too high for these lavas to be related to thedacites by fractional crystallization alone; and (4) 87Sr/86Srratios for the andesites and rhyodacites are higher than thosefor the basaltic andesites and dacites, respectively. It isshown that fractional crystallization was accompanied by assimilation,and that magma mixing played a minor role (if any) in the evolutionof the pre-caldera lavas. Trace element and isotopic data indicatethat the andesites evolved from the basaltic andesites by AFCinvolving average crust or upper crust, whereas the rhyodacitesevolved from the dacites by AFC involving lower crust. Additionalevidence for polybaric evolution is provided by the occurrenceof distinct Ab-rich cores of plagioclase phenocrysts in thedacites and rhyodacites, which record a period of high pressurecrystallization, and by the occurrence of both normal and reverse-zonedphenocrysts in the basaltic andesites and andesites. Furthermore,calculated pressures of crystallization are {small tilde}8 kbfor the dacites and rhyodacites and 3?5–4 kb for the basalticandesites and andesites. It is concluded that the dacites andrhyodacites evolved via AFC from basaltic andesites and andesiteslargely in chambers sited near the base of the crust whereasthe basaltic andesites and andesites mostly evolved in chamberssited at mid-crustal levels. Eruption from different chambersexplains the compositional gap in the chemistry of the pre-calderalavas since eruptive products represent a more or less randomsampling of residual liquids which separate (via filter pressing)from bodies of crystallizing magma at various depths. Magmamixing was important in the evolution of the post-caldera lavas,but geochemical data require that these magmas evolved fromparental magmas which were derived from a more refractory sourcethan the parental magmas to the pre-caldera lavas. *Present address: Netherlands Energy Research Foundation (ECN), P.O. Box 1, 1755 ZG Petten, The Netherlands  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号