首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
新疆前震旦纪地层划分及地壳演化   总被引:1,自引:0,他引:1  
根据变质地质学的观点,新疆的前震旦纪地层可划分为太古界、下元古界和中一上无古界,它们在岩石组合、原岩建造、变质作用类型及形成环境等方面具有明显的区别,同时表明古西北陆台具有与古华北陆台完全不同的地质发展历史。  相似文献   

2.
Within the Caledonian complexes of northwestern Spitsbergen, high PT formations provide U---Pb zircon ages of 965±1 Ma of a metagranite and 955±1 Ma of a corona gabbro, indicating the influence of Grenvillian activity in the area. Various isotopic systems suggest that these rocks were partially derived by reworking of ancient crust (as old as Archaean). Eclogites and felsic agmatite indicate latest Proterozoic magmatic or metamorphic events (625−5+2 and 661±2 Ma, respectively) by U---Pb zircon dating. The eclogitic metamorphism age is not fully constrained and ranges between 540 and 620 Ma; this occurred prior to the superimposed Caledonian metamorphism, indicated by a part of the K---Ar and Rb---Sr mineral cooling ages. The new data and other evidence of Precambrian tectonothermal activity on Svalbard suggest that the Early Palaeozoic and Late Proterozoic successions exposed elsewhere on Svalbard may also be underlain by Grenvillian or older basement rocks. Relationships to other Grenvillian and older terrains in the Arctic are reviewed.  相似文献   

3.
The pre-Sinian basement on the southwestern margin of the Yangtze paraplatform consists of threemetamorphic rock series of different ages. Being products of different tectonic events and environments, theydiffer markedly in original rock sequences, metamorphism. tectonic style and characteristics of granitoids andmineral deposits. The Late Archean Kangdian cration mainly comprises the Kangding and Julin Groups with ametamorphic age of nearly 2500 Ma. They are supracrustal rocks dominated by mafic volcanics enclosed introndhjemitic rocks The craton is believed to represent a granite-greenstone terrane of Late Archaean age.There occur mineral deposits such as graphite and kyanite deposits of metamorphic origin, muscovite depositsin pegmatites and gold quartz veins in gneissic granites, banded hornblende-magnetite mineralization and cop-per and zinc mineralizations related to felsic volcanics. Large V-Ti-bearing magnetite deposits were also formedin the mafic. ultramafic stratiform intrusions emplaced on the margins of the craton during the MiddleProterozoic. Copper and nickel deposits are found in several ultramafic intrusions. Extending in a north-southdirection, the Proterozoic mobile belt consists mainly of the Early Proterozoic Hekou Group and MiddleProterozoic Huili and Kunyang Groups. and they are thought to be accumulations in a Proterozoic rift troughor aulacogen. During the Early Proterozoic, the rift trough was characterized by intense volcanism and pres-ence of iron ore deposits of volcano-magmatic type, iron-copper deposits of exhalative-sedimentary type. TheMid-Late Proterozoic of the rift trough mainly witnessed the formation of sedimentary stratiform copper de-posits and submarine sedimentary iron deposits. In the wake of the emplacement of the Jinningian andChengjiangian granites in the Late Proterozoic, skarn-type tin and tin-iron ore deposits were formed.  相似文献   

4.
The high-grade rocks of the Jianping Complex in Liaoning Provi nce, NE China, belong to the late Archaean to earliest Proterozoic granulite belt of the North China craton. Single zircon ages obtained by the Pb–Pb evaporation method and SHRIMP analyses document an evolutionary history that began with deposition of a cratonic supracrustal sequence some 2522–2551 Ma ago, followed by intrusion of granitoid rocks beginning at 2522 Ma and reaching a peak at about 2500 Ma. This was followed by high-grade metamorphism, transforming the existing rocks into granulites, charnockites and enderbites some 2485–2490 Ma ago. The intrusion of post-tectonic granites at 2472 Ma is associated with widespread metamorphic retrogression and ends the tectono–metamorphic evolution of this terrain. A similar evolutionary sequence has also been recorded in the granulite belt of Eastern Hebei Province. We speculate that the Jianping Complex was part of an active continental margin in the late Archaean that became involved in continental collision and crustal thickening shortly after its formation. There is a remarkable similarity between the 2500 Ma North China granulite belt and the equally old granulite belt of Southern India, suggesting that the two crustal domains could have been part of the same active plate margin in latest Archaean times.  相似文献   

5.
Abstract Polymetamorphic orthoamphibole-bearing gneisses from the vicinity of shear zones in Casey Bay, Enderby Land, Antarctica, record both the overprinting of Archaean granulite lithologies by Proterozoic metamorphism and the subsequent evolution of the latter episode during localized deformation.
Mineral chemistry and zoning relationships in orthoamphibole-garnet-kyanite-quartz and later orthoamphibole-garnet-cordierite-quartz assemblages are used together with interpretation of reaction and corona textures to constrain the Proterozoic pressure-temperature path experienced by the rocks. Consideration of reaction topologies, P-T-X(Fe-Mg-A1) relationships in orthoamphibole-bearing assemblages, and standard geothermobarometry indicate that the gneisses underwent a near-isothermal decompression P-T history (steep positive dP/dT) from ± 8 kbar and 700°C to <5.5kbar and 650°C. This uplift path is correlated with the general effects of Rayner Complex metamorphism and deformation which occurred after 1100 Ma in a major erogenic belt south of Casey Bay.  相似文献   

6.
Metamorphic and tectonic domains of China   总被引:5,自引:0,他引:5  
Abstract Ten metamorphic domains can be distinguished in China, comprising four cratonic, three intracratonic and three intercratonic domains. Each domain contains one or more metamorphic belts, each of which, in turn, contains a characteristic metamorphic facies or facies series that was formed during a distinct metamorphic epoch.
The metamorphic domains reflect the tectonic domains and tectonic evolution of China. Ancient continental nucleii in the North China and Tarim–Alxa cratons were probably unified with the Yangtze craton during the Early Proterozoic to form the China Platform. Widespread greenschist facies metamorphism, during the Middle and Late Proterozoic, accompanied by glaucophane–greenschist facies metamorphism, represents a rifting and closure event in the China Platform; a second rifting and closure event in the China Platform occurred during the Caledonian. The China and Siberian platforms were closed during the Hercynian to form the Eurasian Continent. Closure of the ancient Tethys Ocean occurred in the Indosinian epoch, and subduction and collision within Xizang (Tibet) and Taiwan occurred during Mesozoic–Cenozoic time.
The distribution in time of types of metamorphism in China suggests cyclical changes of metamorphism known as the Archaean, Proterozoic and Phanerozoic megacycles. Each megacycle since the Archaean consists of a change from progressive, low- to intermediate-grade metamorphism to lower grade, greenschist metamorphism that was superimposed on a general trend in which high-grade metamorphism became progressively less important with time. The change in metamorphic megacycles shows a general secular decrease in regional heat supply during metamorphism punctuated by episodic high-grade, progressive metamorphism within orogenic belts.  相似文献   

7.
The Archaean lower crust represented by granulite facies rocks, which is rare in China, is found to be exposed in the Shanxi-Hebei-Inner Mongolia border region. Studies of the regional structure and deformation and metamorphism of the region indicate that there occurred at least two phases of deformation and metamorphism in the region. Early-phase nearly E-W-directed deformational structure is well preserved in the Zhangjiakou-Xuanhua area. Observations of the features of the geological structure from north to south (in the Hengshan metamorphic terrain) have revealed a possible exposed cross-section through the Archaean lower crust. The structure was superimposed by a NE-SW-trending high-temperature ductile shear zone in the Datong area in the late phase, thus reworking the Archaean sequence.  相似文献   

8.
莲东铁矿是沉积变质型铁矿,成矿母岩为太古界老变质岩,区域变质作用为成矿提供动力。通过对磁法异常分析和验证,发现两条有一定规模的矿体。矿体似层状,矿石类型以磁铁矿为主,近矿围岩蚀变主要为硅化、碳酸盐化、绿泥石化。根据矿体特征和成矿规律分析,认为在太古界老变质岩中具有较好的找矿远景。  相似文献   

9.
The Qinling-Dabie-Sulu high-pressure and ultra-high pressure metamorphic belt wasformed by subduction and collision between the North China and Yangtze plates. The study ofthe eclogite belt is very important in understanding the evolution of the Qinling Dabie orogen. Inthe present paper the geology, petrology, minerology and chronology of the eclogites in the Dabieand Sulu areas are described. The principal conclusions of this work are as follows: (1) Based up-on the field occurrence and the P-T conditions of the eclogites, two types of eclogite can be dis-tinguished: Type 1—the low-temperature and high-pressure eclogite in the mid-late Proterozoicmetamorphic series, and Type 2—the ultra-high pressure eclogite in the late Archaean to earlyProterozoic metamorphic complex. In the Dabie area, the ultra-high-pressure eclogite,high-pressure eclogite and epidote-blueschist units are nearly parallel to each other and stretchintermittently from north to south. (2) The P-T conditions of the high-pressure eclogites and ul-tra-high pressure eclogites have been estimated. The former are formed at 450-550℃ and1.4-1.6 GPa; while the latter at 650-870℃ and >2.7-2.9 GPa in the Dabie area and at820-1000℃ and >2.8-3.1 GPa in the Sulu area. The metamorphic temperatures of the eclogitesincrease progressively from west to east. (3) The ultra-high pressure eclogites were subjected to 5stages of metamorphism: pre-eclogite epidote amphibolite facies, peak coesite eclogite facies,post-eclogite amphibolite facies, epidote-blueschist facies or epidote amphibolite facies andgreenschist facies. The general features of the PTt path of the ultra-high pressure eclogite are:clockwise pattern, progressive metamorphism being a process of slow increasing temperature andrapid increasing pressure, and the retrogressive section with nearly isothermal decompression atthe early stage, isobaric cooling at the middle stage and nearly isothermal decompression at thelate stage. (4) At least two stages of high-pressure metamorphism occurred in the orogenic belt:the high-pressure eclogite and ultra-high pressure eclogite were formed by the subduction of theoceanic crust northward beneath the North China plate or the Dabie block during theCaledonian; while the epidote-blueschist belt came into being by subdution and collision be-tween the two continental plates during the Indosinian. (5) Due to the continuous sequentialsubduction of the cold plate, the ultra high-presssure metamorphic rocks were uplifted to thecrust by the underplating processes. They can be preserved just because of the "frozen effect" re-sulting from the continuous subduction of the cold plate. (6) The carbonates, such as magnesite,breunnerite, aragonite and dolomite, and the H_2O-bearing minerals, such as phengite, epidoteand zoisite, were stable during the high-pressure and/or ultra-high pressure metamorphism.  相似文献   

10.
据近期成果,贺兰山—阿拉善地区出露的巨厚变质杂岩可划分为中太古界贺兰山群和叠布斯格群(其全岩Rb—Sr等时年龄为3108.3和3218.8Ma),上太古界阿拉善群和下元古界的赵池沟群、阿拉坦敖包群;它们具不同的变质矿物共生组合,太古界变质岩属低压高温变质的麻粒岩相;下元古界为低—低中压区域动力(热流)变质的绿片岩相岩石。太古界有较强的混合岩化、花岗岩化作用,并蕴藏有铁、石墨、矽线石、刚玉等多种矿产。  相似文献   

11.
The Narryer Gneiss Complex of the Yilgarn Block is a key segment of the Western Australian Precambrian Shield. It is a regional granulite facies terrain comprised of predominantly quartzo-feldspathic gneisses derived from granitic intrusions c. 3.6–3.4 Ga old. Granulite facies metamorphism occurred c. 3.3 Ga ago, and conditions of 750–850°C and 7–10 kbar are estimated for the Mukalo Creek Area (MCA) near Errabiddy in the north. The P–T path of the MCA has been derived from metamorphic assemblages in younger rocks that intruded the gneisses during at least three subsequent events, and this path is supported by reaction coronas in the older gneisses. There is no evidence for uplift immediately following peak metamorphism of the MCA, and a period of isobaric cooling is inferred from the pressures recorded in younger rocks. Pressures and temperatures estimated from metadolerites, which intruded the older gneisses during ‘granite–greenstone’tectonism at about 2.6 Ga and during early Proterozoic thrusting show that the Errabiddy area remained in the lower crust, although it was probably reheated during the younger events. Isothermal uplift to upper crustal levels occurred at c. 1.6 Ga ago, and was followed by further deformation and patchy retrogression of high-grade assemblages. The effects of younger deformation, cooling and reheating can be discerned in the older gneisses, but as there has been no pervasive deformation or rehydration, the minerals and microstructures formed during early Archaean granulite facies metamorphism for the most part are retained. The MCA remained in the lower crust for about 1700 Ma following peak metamorphism and some event unrelated to the original metamorphism was required to exhume it. Uplift occurred during development of the Capricorn Orogen, when some 30–35 km were added to the crust beneath the Errabiddy area. The recognition of early Proterozoic thrusting, plus crustal thickening, suggests that the Capricorn Orogen is a belt of regional compression which resulted from convergence of the Yilgarn and Pilbara Cratons.  相似文献   

12.
Lead isotopic ages were determined for seven localities of gneissic granite and granodiorite from the Pilbara Region of Western Australia. For four of the localities Rb-Sr ages were also measured. In the lead isotopic system all localities showed some evidence of post-emplacement disturbance; lead redistribution varied from very slight effects to complete equilibration of K-feldspars during metamorphism. In one case, lead and Rb-Sr ages agreed within experimental error; in two cases, Rb-Sr mineral ages were younger than Pb-Pb ages, and in one case, the Rb-Sr age was intermediate between the primary and metamorphic ages recorded by the Pb isotopic system.Four localities show evidence of metamorphism at 2950 my. It is suggested that this represents the time of formation of the granite dome structures in the southeastern Pilbara. At least two of these localities were also affected by post-tectonic metamorphism (2600–2770 my). The other three localities show a more extended history of events starting at about 2900 my and ending between 2000 and 2250 my. The younger metamorphic ages are interpreted to record a thermal event at the time of outpouring of the Proterozoic Fortescue Group which formerly overlay the Archaean rocks.  相似文献   

13.
The eastern margin of the East European Craton (EEC) has a long lasting geological record of Precambrian age. Archaean and Proterozoic strata are exposed in the western fold-and-thrust belt of the Uralides and are known from drill cores and geophysical data below the Palaeozoic cover in the Uralides and its western foredeep. In the southern Uralides, sedimentary, metamorphic and magmatic rocks of Riphean and Vendian age occur in the Bashkirian Mega-anticlinorium (BMA) and the Beloretzk Terrane. In the eastern part of the BMA (Yamantau anticlinorium) and the Beloretzk Terrane, K-Ar ages of the <2-µm-size fraction of phyllites (potassic white mica) and slates (illite) give evidence for a complex pre-Uralian metamorphic and deformational history of the Precambrian basement at the southeastern margin of the EEC. Interpretation of the K-Ar ages considered the variation of secondary foliation and the diagenetic to metamorphic grade. In the Yamantau anticlinorium, the greenschist-facies metamorphism of the Mesoproterozoic siliciclastic rocks is of Early Neoproterozoic origin (about 970 Ma) and the S1 cleavage formation of Late Neoproterozoic (about 550 Ma). The second wide-spaced cleavage is of Uralian origin. In the central and western part of the BMA, the diagenetic to incipient metamorphic grade developed in Late Neoproterozoic time. In post-Uralian time, Proterozoic siliciclastic rocks with a cleavage of Uralian age have not been exhumed to the surface of the BMA. Late Neoproterozoic thrusts and faults within the eastern margin of the EEC are reactivated during the Uralian deformation.  相似文献   

14.
Soviet geologists consider the Precambrian to be divided into two groups — Archaean and Proterozoic; but such a division is unsatisfactory. A major unconformity separates Proterozoic volcanic and sedimentary formations from an underlying sequence that contains two supergroups of supercrustal formations. The oldest of these is unanimously considered to be Archaean. Rocks of that supergroup play an essential part in the composition of the Baltic, Ukrainian, Aldan and Anabar Shields and of the ancient fold belts of the East-European and Siberian platforms.Distinctive features in the composition, tectonic structure, metamorphism and metallogeny of Archaean complexes lead to the conclusion that they were formed in specifically mobile areas, different from geosynclinal areas.The other supergroup of high-grade metamorphic rocks has no clear place in the accepted two-fold stratigraphic scheme of the Precambrian, and it is considered sometimes to be Archaean and sometimes to be Early Proterozoic. We propose restoring the forgotten name “Eozoic” for that supergroup. Eozoic complexes are characterized by peculiarities of composition and inner structure, which signify changes in the tectonic regime of the earth at the lower and upper boundaries of the Eozoic Supergroup. These peculiarities give grounds for distinguishing the Eozoic Supergroup as an independent stratigraphic division.The Stanovoy Complex of the southern part of the Aldan Shield is a stratotype for the Eozoic Supergroup. Many well-known stratigraphic subdivisions of the Siberian Platform (e.g., the Eniseiskaya, the Birusinskaya series and others), the Taratash Complex of the Urals, the Goranskaya and Shahdarinskaya series of the South-West Pamir, the Tikitch complex and Aulskaya series of the Ukrainian Shield, and in part the Belomorsky Complex of the Baltic Shield, as well as some others, are also Eozoic.The Eozoic complexes are characterized by the following specific features: only some supercrustal formations are typical for them; the small number of rock types which have a total thickness about 5–6 km; relatively monotonous mineral composition of the rocks; variable quantitative ratios of rocks; absence of contrasting marker beds; regional metamorphism and ultrametamorphism in the amphibolite facies; wide development of ultrametamorphic granitoids and migmatites; distinct tectonic differentiations of the basin of sedimentation.Dates determined by isotopic analyses, which mostly reflect the metamorphism of the deposits, fall predominantly in the range 2600–3100 Ma.  相似文献   

15.
Distinctive lithological associations and geological relationships, and initial geochronological results indicate the presence of an areally extensive region of reworked Archaean basement containing polymetamorphic granulites in the Rauer Group, East Antarctica.
Structurally early metapelites from within this reworked region preserve complex and varied metamorphic histories which largely pre-date and bear no relation to a Late Proterozoic metamorphism generally recognized in this part of East Antarctica. In particular, magnesian metapelite rafts from Long Point record extreme peak P–T conditions of 10–12 kbar and 100–1050°C, and an initial decompression to 8 kbar at temperatures of greater than 900°C. Initial garnet–orthopyroxene–sillimanite assemblages contain the most magnesian (and pyrope-rich) garnets ( X Mg= 0.71) yet found in granulite facies rocks. A high-temperature decompressional P–T history is consistent with reaction textures in which the phase assemblages produced through garnet breakdown vary systematically with the initial garnet X Mg composition, reflecting the intersection of different divariant reactions in rocks of varied composition as pressures decreased. This history is thought to relate to Archaean events, whereas a lower-temperature ( c. 750–800°C) decompression to 5 kbar reflects Late Proterozoic reworking of these relict assemblages.
The major Late Proterozoic ( c. 1000 Ma) granulite facies metamorphism is recorded in a suite of younger Fe-rich metapelites and associated paragneisses in which syn- to post-deformational decompression, through 2–4 kbar from maximum recorded P–T conditions of 7–9 kbar and 800–850°C, is constrained by geothermobarometry and reaction textures. This P–T evolution is thought to reflect rapid tectonic collapse of crust previously thickened through collision.  相似文献   

16.
闽北前寒武纪变质岩的P—T—t轨迹和其形成的动力学过程   总被引:2,自引:0,他引:2  
梅华林  庄建民 《福建地质》1993,12(3):182-194
闻北前寒武纪变质岩是华夏古陆基底的重要组成部分。本文通过对闽北麻源群和马面山群变质岩详细的变质变形关系的研究和石榴子石环带测定P-T-t轨迹的应用,结合构造地质和同位素年代学的资料,证实了麻源群变质岩形成于早元古代或更老年代,在早元古代末期遭受过中压、中高温变质,但在晚元古代晋宁期与中元古代形成的马面山群岩石一起经历了强烈的变质变形作用,表现为早元古代麻源群岩石遭受强烈改造,具有早期地壳再活化特点。麻源群岩石完整的晋宁期变质P-T-t轨迹不支持正常大陆碰撞的假说,它的形成与异常的地幔热流有关,很可能为一种地壳增厚和地幔减薄的动力学模式。  相似文献   

17.
鞍本地区鞍山群变质矿物及变质作用   总被引:6,自引:0,他引:6  
鞍本地区鞍山群变质岩出露区可分为鞍山、辽阳、本溪三个小区。所有的变质岩均属角闪岩相,从西向东,变质程度递增。三个小区最先出现的特征变质矿物分别是铁铝榴石、十字石和夕线石。退化变质作用由西向东递减,在东-西鞍山矿区已退变为绿片岩相,在绿泥片岩中普通角闪石仅作为残留矿物出现在绿泥石的核心。鞍山小岭子矿区有紫苏辉石、红柱石和尖晶石组合,它们是燕山期花岗岩围岩中的接触变质矿物。  相似文献   

18.
塔里木南缘浅变质岩系变质矿物特征及变质条件   总被引:1,自引:0,他引:1  
在塔里木盆地南缘和田地区的阿其克、皮牙曼、杜瓦、康开依、桑株水库一带断续出露一套浅变质岩地层,主要岩石类型有变质杂砂岩、变质钙质砂岩、细粒片岩及少量千枚岩、变质砾岩、大理岩等.岩石中主要变质矿物为绿泥石、白云母、石英、方解石和少量黑云母、钠长石.本文着重就岩石中片状变质矿物绿泥石、白云母、黑云母的发育特点、化学成分特征、变质矿物组合以及它们的晶体化学成分所反映的变质温、压条件进行了研究,并在此基础上推断出该套变质岩属于由区域低温动力变质作用引起的低绿片岩相变质产物.  相似文献   

19.
Sapphirine-kornerupine-bearing rocks from the Reynolds Range, Northern Territory, Australia preserve spectacular metamorphic reaction textures that provide valuable insights into the regional metamorphic uplift history. The rocks occur in pods that are several meters in diameter within high-temperature, low-pressure (750 to 800°C and 4 to 5 kbar) granulite facies exposures of the early Proterozoic Lander Rock beds, a laterally extensive sequence of folded pelitic and quartzose metasediments. The pods are not associated with large volumes of partial melts and are likely to have formed by metasomatism near the peak of M2 metamorphism. The rocks in the pods consist of high-temperature Mg- and Al-rich minerals such as boron-free korneurpine, and are coarse-grained (0.5 to >15 cm), non-foliated, and locally nearly monomineralic. The growth of the coarse minerals in the pods largely post-dated the high-grade regional metamorphic D2 fabric and completely reconstructed the precursor rocks. The retrograde metamorphic reaction textures show that the early retrogression from the M2 granulite facies conditions was characterized not by isobaric cooling as previously proposed, but by nearly isthermal decompression. These data imply that the Reynolds Range did not follow a simple anticlockwise P-T-t path. Because rocks such as these preserve information from a only restricted portion of the metamorphic history and can preserve evidence of decompression reactions more clearly than many more ordinary lithologies, they can be especially important for discerning metamorphic P-T-t paths.This paper is a contribution to IGCP Project 304, Lower Crustal Processes.  相似文献   

20.
Early studies in the Rum Jungle area suggested an intrusive relationship between the Rum Jungle and Waterhouse “Granites”, and the overlying sediments. It was later shown that the granitic “intrusions” were Archaean basement complexes onto which Lower Proterozoic sediments had been deposited. Polyphase folding was postulated as being responsible for doming of the basement and cover rocks.This paper proposes to show that the domed structures in the Rum Jungle area, and the emplacement of Middle Proterozoic granites in the Pine Creek Geosyncline were related, and caused by diapiric intrusion of granites, in a solid state, into basement complexes and cover rocks.Structural and metamorphic evidence in support of diapiric intrusion in the Rum Jungle area includes: pebble deformation within steeply dipping beds of quartz conglomerate; disappearance of polyphase fold structures away from the basement complexes; bending of folded country-rock strata into concordance with the complex—sediment contact; and metamorphic and metasomatic alteration of sediments in contact with the basement complexes. Gravity data show mass deficiencies in the Archaean complexes which possibly coincide with young granite diapirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号