首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The mercury and maceral content of subbituminous feed coals burned at six Canadian power plants was measured and compared to the mercury and carbon content of corresponding fly ashes. The fly ashes were collected from electrostatic precipitator (ESP) pollution controls used at the power plants. Four feed coals from the Upper Cretaceous to Tertiary age Scollard Formation were deposited in freshwater depositional environment and contain 35–44% inertinite. Two feed coals from the Upper Cretaceous age Horseshoe Canyon Formation were deposited in a brackish water environment and contain 14% inertinite.The data show that abundant inertinite equates to more unburned carbon in ESP fly ash, and to enhanced capture of mercury in cold-side ESP fly ash. This indicates that the inertinite content of a coal seam may be indicative of the percentage of unburned carbon and the percentage of mercury captured by a cold-side ESP.  相似文献   

2.
A detailed assessment of elements was carried out at a power plant rated at approximately 760 MW of electricity using western Canadian subbituminous coal. The concentrations of elements of environmental concern (As, Cd, Cr, Hg, Ni, and Pb) in milled coals, ashes, stack-emitted materials. Speciation of As, Cr, and Ni were determined. The polyaromatic hydrocarbons (PAHs) emitted from the stack were also measured. The rates of input of elemental input for As, Cd, Cr, Hg, Ni, and Pb were 28, 0.94, 230, 0.44, 44, and 88 kg/day, respectively; of which only 0.16, 0.01, 0.40, 0.27, 0.15, and 0.04 kg/day, respectively, were stack emitted. The total stack emission of toxic elements is 1.02 kg/day, with Cr being the highest contributor to this group with 0.4 kg/day. However, Hg at 0.27 kg/day has the highest percentage rate of emission at about 60%, while Cd has the lowest at about 1%. The electrostatic precipitator (ESP) removes a significant portion of the elements indicated by their relative enrichment (RE) ratios greater than 0.7. The results show that most of the elements in milled coal are low compared to world coals and other Canadian milled coals.Mercury is mostly ( 81%) emitted as gaseous elemental mercury (GEM), with 19% as reactive gaseous mercury (RGM). Particulate mercury is very low and averages about 0.1% of the total mercury at this station. Most of the arsenic in the milled coal is primarily associated with pyrite or as arsenate in its less toxic form of As+5 (> 95%). In both bottom and fly ashes, more than 95% of the total arsenic is present as As+5. Chromium in the milled coal and bottom ash is mostly non-toxic (Cr+3). The more toxic Cr+6 comprise less than 5% of the total Cr in the ESP fly ash and the stack-emitted ash. Nickel in milled coal and ashes is in the form of non-toxic Ni+2, predominantly in coordination with oxygen.The emitted PAHs include acenapthene, fluorene, 2-methyl-fluorene, phenathrene, anthracene, fluoanthene, and pyrene; which are emitted from stack at the combined rate of 3.6 g/day. The concentrations of elements of environmental concern (As, Cd, Hg, Ni, and Pb) emitted to the atmosphere by the power plant in the zone of maximum impact at ground level are lower than those listed in the Health Guidelines of the USEPA and Canadian National Air Pollution Surveillance. This is based on stable meteorological conditions, down wind from the power plant for a maximum distance of 3 km.  相似文献   

3.
Western Canadian subbituminous coal is mined using strip-mining methods. The coal is used to feed coal-fired power plants for electricity generation. Parameters that influence the mercury content of these coals include the occurrence and frequency of partings in the seam, weathering, and epigenetic mineralization. Most partings have higher mercury content than the coal layers in the same seam, with the single bentonite bed having the highest Hg content. However, some high ash components, such as sandy siltstone, do not follow this trend. The incorporation of the high mercury partings into the as-mined coal may increase the Hg content in the feed coal. Epigenetic mineralization may also increase the mercury content of coal, depending on the nature of the mineralization.Calculation of the weighted mean of mercury content for various combination of lithological components of a seam illustrates how these components influence the total mercury content of the seam. This approach also suggests how selective mining might be used to reduce mercury in “as-mined” coal.Results of weighted average calculations of mercury indicate that the thin lithological units with moderate mercury may not necessarily influence that overall weighted average of Hg for a seam. However, there can be exception, such as presence of thin (3.5 cm) bentonite parting with high mercury in a 94.5 cm seam that increased the mercury content of seam by 83.4%.  相似文献   

4.
This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (<1%) Danville Coal Member of the Dugger Formation (Pennsylvanian) and the other mines the high-sulfur (>5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal.  相似文献   

5.
《Applied Geochemistry》2001,16(7-8):911-919
A total of 48 samples, feed (run-of-mine) coals and their combustion residues (fly ash and bottom ash) were systematically collected twice a week over a 4 week period (June 1998) from two boiler units (I and II) of the Cayirhan power plant (630 MW) that burns zeolite-bearing coals of late Miocene age. The feed coals are high in moisture (22.8% as-received) content and ash (44.9%) yield and total S content (5.1%), and low in calorific value (2995 kcal/kg). The mineralogy of the feed coals contains unusually high contents of the zeolites (clinoptilolite/heulandite and analcime), which are distributed within the organic matter of coal. Other minerals determined are gypsum, quartz, feldspar, pyrite, dolomite, calcite, cristobalite and clays. Common minerals in the crystalline phase of the combustion residues are anhydrite, feldspar, quartz, hematite, lime and Ca–Mg silicate. Minor and trace amounts of magnetite, cristobalite, maghemite, gehlenite, calcite and clinoptilolite/heulandite are also present in the combustion residues. Trace element contents of the feed coals, except for W, fall within the estimated range of values for most world coals; however, the mean values of Mn, Ta, Th, U and Zr are near maximum values of most world coals. Elements such as As, Bi, Ge, Mo, Pb, Tl, W and Zn are enriched more in the fly ash compared to the bottom ash.  相似文献   

6.
北京市土壤Hg污染的区域生态地球化学评价   总被引:8,自引:1,他引:7  
城市土壤Hg异常/污染是中国普遍存在的重大生态环境问题。文章对北京市近1000km2范围内的地表土壤、壤中气、大气干湿沉降、大气颗粒物、大气中的Hg含量水平和空间分布模式进行了系统研究,查明北京地表土壤Hg平均含量为0.41mg/kg,大气干湿沉降物中的Hg平均含量为0.194mg/kg,壤中气Hg的平均含量为559.65ng/m3,大气颗粒物PM10和PM2.5中的Hg含量分别为0.59和0.67ng/m3,大气中的Hg平均含量为3.13ng/m3。北京市自2000年起实现了由燃煤转变为燃气的减排措施,导致干湿沉降物中的Hg沉降通量显著减少,2006年大气干湿沉降物中Hg的沉降通量1.837mg·m-2·a-1,北京市城区(近1000km2)Hg全年沉降为1837kg,空气中总Hg浓度由1998年的8.3~24.7ng/m3下降到2006年的3.13ng/m3,大气颗粒物中Hg含量由2003年的1.18ng/m3下降到2006年的0.59ng/m3(PM10)和0.67ng/m3(PM2.5),表明北京市煤改气减排措施的实施显著改善了大气环境质量。通过对土壤中Hg的存在形式研究,发现土壤中有硫化物(辰砂)及各种Hg盐(HgCl2)的含Hg矿物,Hg也可以各种吸附方式或壤中气方式存在。研究证实北京壤中气Hg与大气Hg存在显著的相关性(n=131,R=0.267,p<0.01),表明壤中气Hg是大气Hg的重要来源之一。利用2005年地表土壤总Hg与Hg释放速率的线性方程估算,土壤Hg平均释放速率为102.42ng·m-2·h-1,2005年土壤释放进大气的Hg通量为936.70kg。在查明土壤中存在大量辰砂矿物的同时,还分布有大量具有高温熔融特征的金属微球粒和玻璃质微球粒,证明燃煤和冶金烟尘是地表土壤Hg的主要来源。土壤中Hg、S、pH和辰砂颗粒浓度在空间上的高度耦合性表明,碱性条件下,土壤中高含量的S和Hg是辰砂形成的重要原因。按国家土壤环境质量标准,北京市I级土壤Hg环境质量的面积为176km2,Ⅱ级为808km2,Ⅲ级为24km2,超Ⅲ为36km2。Ⅲ级、超Ⅲ级主要分布在二环路以内的中心城区。城南(长安街为界)大气Hg环境质量明显优于城北,在北四、北五环之间的部分地区,大气颗粒Hg的环境质量为Ⅲ级或超Ⅲ级。在地表土壤Hg含量较高的中心城区,居民每天因呼吸摄入的Hg高达364ng,对人体健康构成潜在风险。根据我国"十一五"规划中每年实现10%节能减排的目标,对北京市未来50年土壤Hg含量的时空演变趋势预测,预测2050年北京因干湿沉降带来的Hg输入量为16.03kg,地表土壤释放Hg的输出量为37.36kg,明显大于Hg的输入通量,土壤Hg的环境质量将得到根本改善。预测到2040年Ⅲ级土壤Hg环境质量的区域将完全消失,到2060年以Ⅰ级土壤为主。  相似文献   

7.
粉煤灰土壤及所产蔬菜的有害元素含量变化和环境意义   总被引:1,自引:0,他引:1  
利用南京第二热电厂湿排的粉煤灰,进行了改良蔬菜土壤的试验,并对试验用的粉煤灰、不同施灰量的土壤及所产蔬菜共38 个样品的有害元素和放射性元素含量进行了系统的测定。结果表明:这些元素在土壤中的含量与粉煤灰施用量无明显相关性;在本次试验范围内施用粉煤灰没有造成土壤的污染;其所产蔬菜的这些元素含量也均低于国家卫生标准限值,食用是安全的。  相似文献   

8.
粉煤灰土壤主所产蔬菜的有害元素含量变化的环境意义   总被引:1,自引:0,他引:1  
利用南京第二热电厂湿排的粉煤灰,进行了改良蔬菜土壤的试验,并对试验用的粉煤灰,不同施灰量的土壤及所产蔬菜的38个样品的有害元素和放射性元素含量进行了系统的测定。结果表明:这些元素在土壤中的含量与粉煤灰施用量无明显相关性;在本次试验范围内施用粉煤灰没有造成土壤的污染,其所产蔬菜的这些元素含量也均低于国家卫生标准限值,食用是安全的。  相似文献   

9.
Systematic changes in mineralogy, enrichment and depletion of selected elements, and mineralogical speciation of selected elements in fly ash and bottom ash samples from the Lingan Power Plant were compared to run-of-mine and pulverized feed coal from the Sydney coalfield, Nova Scotia, eastern Canada. The analytical techniques used were an electron microprobe equipped with energy and wavelength X-ray dispersive spectrometers, X-ray diffraction, neutron activation, scanning electron microscopy with energy dispersive X-ray and incident light petrography. Three types of glasses (Fe/O-rich, Fe/Al/Si/O-rich and or Al/Si/O-rich) were identified in the combustion residues; they were formed as a result of the interaction of melted pyrite and clay minerals. Compared to the feed coal, most elements were enriched 10 to20 times in the fly ash. The concentration of the elements in both the fly ash and bottom ash are comparable to coal ash that is generated by the low temperature asher in the laboratory. Some chalcophile elements such as arsenic and lead occurred as a solid solution in pyrite in the feed coal and were concentrated in the float fraction (density: <2.81 g/cm3) of the fly ash with non-crystalline Fe-oxides. X-ray mapping of arsenic in the fly ash and bottom ash indicates that arsenic was evenly distributed as oxide within the Fe/O- and Fe/Al/Si/O-rich glass and crystalline phases in the fly ash, possibly in solid solution. Arsenic is associated with Fe/O and Fe/S crystalline phases in the bottom ash.  相似文献   

10.
Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture.  相似文献   

11.
Fly ashes from two stoker boilers burning Pennsylvanian Eastern Kentucky high volatile A bituminous coal blends were examined for their petrology and chemistry. The source coals have similar trace element contents. One of the ash collection systems was retrofitted with a baghouse (fabric filter) system, collecting a finer fly ash at a cooler flue gas temperature than the plant that has not been reconfigured. The baghouse ash has a markedly higher trace element content than the coarser fly ash from the other plant. The enhanced trace element content is most notable in the As concentration, reaching nearly 9000 ppm (ash basis) for one of the collection units. Differences in the ash chemistry are not due to any substantial differences in the coal source, even though the coal sources were from different counties and from different coal beds, but rather to the improved pollution control system in the steam plant with the higher trace element contents.  相似文献   

12.
Twenty-nine low sulfur coal samples were selected to determine the magnitude and variability of mercury (Hg) content in a well-documented stratigraphy system including ten continuous coal seams in Zhuji Coal Mine, Huainan Coalfield, Anhui Province, North China. Mercury content of samples was measured on a direct mercury analyzer and confident results were obtained as evaluated by standard references, sample replicates and procedural blanks. The calculated overall mine average Hg content is 71.19?±?9.28 ng/g based on seam averages and weighting by the estimated reserve of each coal seam. The estimated Hg emission potential for Huainan coalfield is obviously lower than that calculated from coal emission factor in industrial use. An increasing trend of Hg content with the evolution of depositional environment was observed from Nos. 3 to 11-2 coal seams. Combining the evidence of sedimentology and paleontology, a better understanding was gained of the mechanism of Hg sequestration in specific coal benches. A large portion of Hg residing in the low sulfur coals presumably integrated to the functional groups of organic constitution, whereas pyrite was generally abundant in the high sulfur coals.  相似文献   

13.
《Applied Geochemistry》2005,20(7):1309-1319
Petroleum coke has been used as a supplement or replacement for coal in pulverized-fuel combustion. At a 444-MW western Kentucky power station, the combustion of nearly 60% petroleum coke with moderate- to high-sulfur Illinois Basin coal produces fly ash with nearly 50% uncombusted petroleum coke and large amounts of V and Ni when compared to fly ash from strictly pulverized coal burns. Partitioning of the V and Ni, known from other studies to be concentrated in petroleum coke, was noted. However, the distribution of V and Ni does not directly correspond to the amount of uncombusted petroleum coke in the fly ash. Vanadium and Ni are preferentially associated with the finer, higher surface area fly ash fractions captured at lower flue gas temperatures. The presence of uncombusted petroleum coke in the fly ash doubles the amount of ash to be disposed, makes the fly ash unmarketable because of the high C content, and would lead to higher than typical (compared to other fly ashes in the region) concentrations of V and Ni in the fly ash even if the petroleum coke C could be beneficiated from the fly ash. Further studies of co-combustion ashes are necessary in order to understand their behavior in disposal.  相似文献   

14.
Fly ash samples were collected from a Portuguese power plant that burns low-sulphur coals from South Africa, U.S.A., Colombia, and Australia. The fly ashes were collected from the hoppers of the economizers, air heaters, electrostatic precipitators, and from the stack. The power plant air monitoring system was also sampled. The fly ash characterization was conducted by micro-Raman spectroscopy (MRS). The micro-Raman spectroscopic analysis permitted an efficient identification and characterization of different inorganic and organic materials present in fly ash: quartz, hematite, magnetite, calcite, glass, aluminium and calcium oxides, and different types of organic constituents.The study of the structural evolution of the unburned carbon/char material during their path through the power plant, though the use of Raman spectra and Raman parameters reveal that despite the high temperatures they reached, these materials are still structurally disordered. However, a structural evolution occurs in the char from the economizer up to the electrostatic precipitators where the char is structurally more disordered.The different features of the Raman spectra observed for carbon particles collected from the stack, together with the high range of variation of the Raman parameters, confirm the existence of different carbon particles in the stack, i.e., char and others (probably soot).The filters from the surroundings contain a variety of carbon particles with Raman parameters different from the ones obtained in the fly ash hoppers and stack. These are diesel particles as indicated by the values of WD1, FWHMD1, FWHMG, WG and ID1/IG obtained.  相似文献   

15.
Two monitoring studies were carried out at four-year intervals on a power plant that uses western Canadian subbituminous coal and generates approximately 800 Mw/h of electricity. The distributions of elements of environment concern (As, Hg, Ni, Pb, and Cd) and elements of environmental interest (B, Ba, Be, Cl, Co, Cr, Cu, Mn, Mo, Th, Se, V, U, and Zn) in milled coals, power plant ashes, and emitted materials from the stack were determined using neutron activation analysis (NAA), Inductively Coupled Plasma Emission Spectroscopy (ICPES), and Inductively Coupled Plasma-Mass spectroscopy (ICP-MS) for most elements, Graphite Furnace Atomic Absorption (GFAA) for Pb, and Cold Vapor Atomic Absorption (CVAA) for Hg.The concentrations of most of elements in milled coal are low as compared to world coals and other Canadian milled coals. For example, in both studies mercury is within the lower range of world coal. Bottom ashes from both studies have low concentrations of As, Cd, Hg, Pb, and Zn, as well as low relative enrichment factors (RE) for the same elements, indicating that they were not enriched in the bottom ash. The ESP's remove most of the elements of environmental interest as indicated by their high RE ratios of greater than > 0.7.The rates of input of elements of environmental concern (As, Cd, Hg, Pb and Ni) for this station were 23.65, 1.24, 0.54, 98.2 and 95.2 kg/day, respectively, of which only 0.20, 0.02, 0.31, 0.48 and 0.36 kg/day were emitted from the stack. Thus only a small amount of these elements found in the milled coal was emitted while most were captured in the bottom and the ESP ashes. Nickel has the highest rate of emission (0.48 kg/day) within the elements of environmental concern group. However, the Ni emitted from this station does not belong to the toxic species. The element with the lowest rate of emission is Cd (0.02 kg/day). The total emission of elements of environmental concern is 1.37 kg/day, which is low as compared their ambient concentrations in either rural or urban air. The total rate of emission of B, Ba, Be, Co, Cr, Cu, Mn, Mo, Se, Th, U, V, and Zn is 56.51 kg/day and is mostly comprised of the total emission of Ba (21.73 kg/day) and Zn (19.14 kg/day).  相似文献   

16.
系统采集淮北卧龙湖煤矿岩浆蚀变煤层中岩浆岩、煤及顶底板岩石样品,测试分析了样品中汞、灰分、挥发分、水 分以及各形态硫的含量,探讨了岩浆蚀变煤层中汞的分布与赋存特征。结果表明:(1) 岩浆侵入导致煤中灰分升高,挥发 分降低,煤中硫主要以黄铁矿硫和有机硫存在;(2) 岩浆侵入导致煤中汞的富集,卧龙湖煤矿岩浆蚀变煤层中汞的平均含 量高达0.23×10-6,是华北石炭-二叠纪煤、中国煤以及美国煤中汞的平均含量的1.4 倍,1.2 倍和1.3 倍;(3) 煤中汞的含量 随离岩浆侵入体距离增大有逐渐降低的趋势,但在煤岩接触带附近,汞在岩浆侵入体上方和下方的煤中呈现不同的分布特 征;(4) 煤中的汞主要以无机结合态的形式存在,且大部分赋存在煤中的黄铁矿中,同时亦存在与有机硫结合的汞。岩浆 热液对煤层的侵入,导致煤质以及煤中汞的含量和赋存方式发生了显著变化。  相似文献   

17.
Geotechnical Properties of Low Calcium and High Calcium Fly Ash   总被引:1,自引:0,他引:1  
In this paper, a comparative study has been made for physical and engineering properties of low calcium and high calcium Indian fly ash. The grain size distribution of fly ash is independent of lime content. Fly ash particles of size >75 μm are mostly irregular in shape whereas finer fractions are spherical for low calcium fly ash. For high calcium fly ash, chemical and mineralogical differences have been observed for different size fractions. Compared to low calcium fly ash, optimum moisture content is low and maximum dry density is high for high calcium fly ash. Optimum moisture content is directly proportional and maximum dry density is inversely proportional to the carbon content. The mode and duration of curing have significant effect on strength and stress–strain behavior of compacted fly ash. The gain in strength with time for high calcium fly ash is very high compared to that of low calcium fly ash due to presence of reactive minerals and glassy phase.  相似文献   

18.
Partitioning of elements and macerals during preparation of Antaibao coal   总被引:3,自引:1,他引:3  
Analyses of the macerals, ash, sulfur and 43 major and trace elements were performed on samples of feed coal, cleaned coal, middlings and slime collected from the Antaibao coal preparation plant, China, and also on samples from coal preparation experiments. This study is focused on the partitioning of elements and macerals during coal preparation and potential environment aspects of the elements.The conclusions are as follows: (1) in comparison with the feed coal, the cleaned coal has a higher vitrinite content and relatively lower inertinite and exinite contents, whereas the middlings and slime have lower vitrinite and exinite contents, and relatively higher inertinite contents. The vitrinite contents in the size-segregated cleaned coals were observed to show a slightly increasing tendency with increasing particle size, while the inertinite contents decreased. (2) Physical coal cleaning is not only effective for removal of ash and sulfur, but also in reducing the concentration of most elements. As, Cd, Co, Cs, Hg, Fe, K, Mg, Nb and Ni are observed to show a high degree of removal, while Br, Be, Cu, U, Mn, Zn and organic sulfur are enriched in the cleaned coal and show a lower degree of removal. The large-sized cleaned coal is cleaner than the smaller sized fractions. (3) The middlings, especially the slime, are enriched in S, Hg, Cr, V, Zn, etc., so that these fractions should not be directly used as fuel. In addition, the concentration of Pb and V in the process water exceeds the limit of relevant environmental water quality standard. Consequently, it is necessary to develop new processes to remove ash, sulfur and hazardous trace elements to the maximum extent. Further studies on deep processing of the middlings and slime and cleaning of the process water should also be performed.  相似文献   

19.
INTRODUCTIONMany environmental problems may arise during coal min-ing and utilization. Among these prob1ems, much attention hasbeen paid to S(), and NO. emission during coal combustion.But the environmental effects produced by hazardous elementsduring coal mining and utilization are also important and de-serve to be studied (Goodazi, 1995; Finkelman, 1993; Valk-ovic, l983). For example, when coal wastes are used for landreclamation, the harmful elements in them may pollute water,soil an…  相似文献   

20.
The use of fly ash in geotechnical engineering depends greatly on its pozzolanic reactivity. Though many factors influence the reactivity of fly ash it is well recognized that reactive silica and lime content play a major role. A new, accurate and reliable method for the determination of reactive silica content of fly ash has been established. The reactive silica content, obtained as acid soluble silica in about 2 to 3 N hydrochloric acid, is found to correlate well with unconfined compressive strength of fly ashes. The reactive silica content of fly ash is also important in the stabilization of soils using fly ash. © Rapid Science Ltd. 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号