首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The isotopic composition of Fe was determined in water, Fe-oxides and sulfides from the Tinto and Odiel Basins (South West Spain). As a consequence of sulfide oxidation in mine tailings both rivers are acidic (1.45 < pH < 3.85) and display high concentrations of dissolved Fe (up to 420 mmol l− 1) and sulphates (up to 1190 mmol l− 1).The δ56Fe of pyrite-rich samples from the Rio Tinto and from the Tharsis mine ranged from − 0.56 ± 0.08‰ to + 0.25 ± 0.1‰. δ56Fe values for Fe-oxides precipitates that currently form in the riverbed varied from − 1.98 ± 0.10‰ to 1.57 ± 0.08‰. Comparatively narrower ranges of values (− 0.18 ± 0.08‰ and + 0.21 ± 0.14‰) were observed in their fossil analogues from the Pliocene–Pleistocene and in samples from the Gossan (the oxidized layer that formed through exposure to oxygen of the massive sulfide deposits) (− 0.36 ± 0.12‰ to 0.82 ± 0.07‰). In water, δ56Fe values ranged from − 1.76 ± 0.10‰ to + 0.43 ± 0.05‰.At the source of the Tinto River, fractionation between aqueous Fe(III) and pyrite from the tailings was less than would be expected from a simple pyrite oxidation process. Similarly, the isotopic composition of Gossan oxides and that of pyrite was different from what would be expected from pyrite oxidation. In rivers, the precipitation of Fe-oxides (mainly jarosite and schwertmannite and lesser amounts of goethite) from water containing mainly (more than 99%) Fe(III) with concentrations up to 372 mmol l− 1 causes variable fractionation between the solid and the aqueous phase (− 0.98‰ < Δ56Fesolid–water < 2.25‰). The significant magnitude of the positive fractionation factor observed in several Fe(III) dominated water may be related to the precipitation of Fe(III) sulphates containing phases.  相似文献   

2.
We used ICP–MS to measure the elemental concentrations and isotopic abundances of Cu and Zn in: nine Ti-rich lunar basalts (10017, 10022, 10024, 10057, 70215, 71055, 74255, 75055, and 75075); size-separated samples prepared by sieving of pyroclastic black glass 74001, orange glass 74022, and the lunar soils 15021, 15231, 70181, and 79221; a basalt from the Piton des Neiges volcano, Reunion Island; two samples of Pele’s hairs from the Nyiragongo volcano, Democratic Republic of Congo, and the martian meteorite Zagami.The isotopic fractionation of zinc in lunar basalts and Zagami is mass dependent relative to a terrestrial standard (JMC 400882B). These and published results imply that lunar, terrestrial, meteoritic, and perhaps martian zinc all come from one or more reservoirs linked by mass-dependent fractionation processes. Relative to terrestrial basalts, Ti-rich lunar basalts are enriched in the heavier isotopes of Cu and Zn: we find for Ti-rich lunar basalts the following ranges and averages ±1 − σ (‰): δ65Cu/63Cu ≡ δ65Cu, 0.1–1.4, 0.5 ± 0.1‰ (N = 7); δ66Zn/64Zn ≡ δ66Zn = 0.2–1.9, 1.2 ± 0.2‰ (N = 8; 10017 excluded). For two terrestrial samples, we find δ66Zn  +0.3‰ and δ65Cu  0‰, which are consistent with published values. The differences between the lunar basalts and terrestrial basalts could reflect minor, planetary-scale vaporization or igneous processes on the Moon.Data for size separates of the pyroclastic glasses 74001 and 74220 confirm the well-known surface correlation of Cu and Zn, but modeling calculations reveal no sharp differences between either the elemental ratios or the isotopic composition of grain interiors and exteriors. The absence of such differences indicates that the isotopic compositions for bulk samples are dominated by a light-isotope-rich surface component.Data for size separates of lunar soils also confirm the surface correlation of Cu and Zn, but an enrichment of heavy rather than light isotopes. Averages for bulk lunar soils from this work and the literature are (‰): δ65Cu, from 1.4 to 4.1, average 3.0 ± 0.3 (N = 9); δ66Zn, from 2.2 to 6.4, average 4.0 ± 0.3 (N = 14). As with the glasses, in all but soil 15231 our data show no strong differences between the isotopic composition of soil sub-samples with small and large grains.The size of the isotopic fractionation inferred for the surface component in the soils is 3× smaller than predicted by a published model of sputtering primarily by solar particles. At the same time, the observed fractionation is larger than predicted by calculations based on a model of micrometeorite impact heating and hydrodynamic quenching. Because impact heating appears unable to explain the observations, we conclude that sputtering must be important even though samples with very large isotopic fractionation of Cu and Zn have not yet been found.  相似文献   

3.
Si stable isotopes in the Earth's surface: A review   总被引:2,自引:0,他引:2  
Silicon (Si) is the second most abundant element on Earth after oxygen. Only few studies have attempted to use stable isotopes of Si as proxies for understanding the Si cycle and its variations in the past. By using three different methods (IRMS, MC–ICP–MS and SIMS), the overall measurements show that the isotopic composition (δ30Si) of terrestrial samples ranges from − 5.7‰ to + 3.4‰. Dissolved Si in rivers and seawater is 30Si-enriched (− 0.8‰ < δ30Si < + 3.4‰) compared to Si in endogeneous rocks (− 1.1‰ < δ30Si < + 0.7‰). This global enrichment is counterbalanced by the Si-bearing phases (biogenic silica, clays, quartz) where Si is, in average, 30Si-depleted (− 5.7‰ < δ30Si < + 2.6‰). These values are the result of fractionation which have been measured or estimated from − 0.3‰ to − 3.8‰. The fractionation is modeled by two types of approaches: the Rayleigh distillation model (closed system) and the steady-state model (open system). These models have been used in the most recent studies to explain the observed δ30Si variations in continental environments and in the sub-Antarctic Ocean.  相似文献   

4.
Nitrogen geochemistry of Upper Carboniferous shales from the Central European Basin (CEB) was investigated by elemental analysis, stable isotope mass spectrometry and non-isothermal pyrolysis. Total N-contents of Namurian shales from four deep wells (4400–7000 m) in NE Germany ranged between 520 and 2680 ppm. Up to 90% of this nitrogen occurs as ammonium in minerals with δ15N values between + 1‰ and + 3.5‰. Low nitrogen contents (down to 460 ppm) and high δ15N values (up to + 5.6‰) in one well in the basin centre suggest a large-scale release of nitrogen associated with isotopic fractionation. Pyrolytic liberation of N2 from pelagic Namurian A shales of NW and NE Germany occurred at significantly lower temperatures than from paralic Namurian B shales and terrestrial Westphalian samples. On-line isotope analysis of N2 liberated between 400 and 1200 °C indicates the presence of precursor pools with different thermal stability and nitrogen isotopic composition.  相似文献   

5.
Porphyry-type Cu (Mo, Au) deposits have been discovered along the Gangdese magmatic arc in the southern Tibetan Plateau. Extensive field investigations and systematic studies of geochemistry, S–Pb isotopic tracing, together with Re–Os and 40Ar/39Ar isotopic dating indicate that the mineralisation of the copper belt is genetically related to emplacement of late orogenic granitic porphyries during the post-collisional crustal relaxation period of the Late Himalayan epoch. These porphyries are petrochemically K-enriched and belong to shoshonitic to high-K calc-alkaline series. They display enrichment of large ion lithophile elements (LILE) Rb, K, U, Th, Sr, Pb and depletion of high field strength elements (HFSE) Nb, Ta, Ti and the heavy rare earth elements (HREE) and Y without Eu anomalies. These characteristics demonstrate that subduction played a dominant role in their petrogenesis and residual garnet was left in the magma sources. Pb isotope data show a linear correlation in the plumbotectonic framework diagram ranging from orogenic Pb in the eastern segment of the copper belt to mantle Pb in the western segment. These constitute a mixing line of the Indian Oceanic MORB with Indian Oceanic sediments and suggest that the porphyry magmas were dominantly derived from partial melting of subducted oceanic crusts mixed with a minor quantity of sediments and mantle wedge components.The Gangdese porphyry copper polymetallic belt has alteration characteristics and zonation typical of porphyry-type copper deposits which include potassic alteration (K-feldspathisation and biotitisation), silicification, sericitisation, and propylitisation. Mineralisation mainly occurs in strongly altered granitic cataclasite at the exo-contact with veinlet-disseminated textures. The porphyries themselves are weakly mineralised with disseminated pyrite and chalcopyrite. The copper deposits contain simple ore mineral associations consisting of chalcopyrite, pyrite, bornite, molybdenite, sphalerite and oxidised minerals of malachite, covellite and molybdite. During supergene oxidation, primary ores underwent secondary enrichment to form economic orebodies with Cu grade ranging from 1% to 5%.Ore sulphides of the copper belt display S and Pb isotopic compositions identical to the ore-bearing porphyries. Their δ34S values vary between − 3.8‰ and + 2.4‰ and are typical of mantle sulphur. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios vary in the ranges: 18.106 to 18.752, 15.501 to 15.638, and 37.394 to 39.058, respectively, and yielded radiogenetic lead-enriched signatures. Twelve molybdenite samples from the copper belt yielded isochron ages of 14.76 ± 0.22 Ma and 13.99 ± 0.16 Ma for the Nanmu and Chongjiang deposits and model ages of 13.5 to 13.6 Ma for the Lakang'e deposit. Meanwhile, 40Ar/39Ar isotopic dating of two biotite phenocrysts from the Chongjiang and Lakang'e deposits give plateau ages of 13.5 ± 1.0 Ma and 13.42 ±0.10 Ma, respectively. During the geodynamic evolution of the Gangdese collision-orogenic belt, intrusion of the ore-bearing porphyries took place just before the rapid uplift and E–W extension of the southern Plateau. And the ore-forming process may have occurred simultaneously with the uplift and extension (14 ± 0.1 Ma).  相似文献   

6.
We have analysed the halogen concentrations and chlorine stable isotope composition of fluid inclusion leachates from three spatially associated Fe-oxide ± Cu ± Au mineralising systems in Norrbotten, Sweden. Fluid inclusions in late-stage veins in Fe-oxide–apatite deposits contain saline brines and have a wide range of Br/Cl molar ratios, from 0.2 to 1.1 × 10−3 and δ37Cl values from −3.1‰ to −1.0‰. Leachates from saline fluid inclusions from the Greenstone and Porphyry hosted Cu–Au prospects have Br/Cl ratios that range from 0.2 to 0.5 × 10−3 and δ37Cl values from −5.6‰ to −1.3‰. Finally, the Cu–Au deposits hosted by the Nautanen Deformation Zone (NDZ) have Br/Cl molar ratios from 0.4 to 1.1 × 10−3 and δ37Cl values that range from −2.4‰ to +0.5‰, although the bulk of the data fall within 0‰ ± 0.5‰.The Br/Cl ratios of leachates are consistent with the derivation of salinity from magmatic sources or from the dissolution of halite. Most of the isotopic data from the Fe-oxide–apatite and Greenstone deposits are consistent with a mantle derived source of the chlorine, with the exception of the four samples with the most negative values. The origin of the low δ37Cl values in these samples is unknown but we suggest that there may have been some modification of the Cl-isotope signature due to fractionation between the mineralising fluids and Cl-rich silicate assemblages found in the alteration haloes around the deposits. If such a process has occurred then a modified crustal source of the chlorine for all the samples cannot be ruled out although the amount of fractionation necessary to generate the low δ37Cl values would be significantly larger.The source of Cl in the NDZ deposits has a crustal signature, which suggests the Cl in this system may be derived from (meta-) evaporites or from input from crustal melts such as granitic pegmatites of the Lina Suite.  相似文献   

7.
Regional oxygen isotopic sytematics have been performed mainly on the felsic volcanic footwall rocks of the orebodies but also on purple schist characteristic of the hanging wall series, around two giant VMS deposits in the Spanish Iberian Pyrite Belt, Riotinto and La Zarza. As the terranes of the Iberian Pyrite Belt, these two giant deposits have been affected by the Hercynian tectono-metamorphic events, strongly modifying their geometry. About 60 and 40 samples were collected over a 10×4 km2 area at Riotinto and a 3×2 km2 area at La Zarza, respectively. Whole-rock powders were analysed for oxygen by CO2-laser fluorination. At both sites, a same type of low-δ18O anomaly down to +3.6‰, well differentiated from the regional background (up to 20‰), was identified near the orebodies. The lowest δ18O values (+4 to +11‰) correspond to the chlorite hydrothermal halo, essentially restricted to the feeder zones of the orebody. Intermediate δ18O values (+9 to +15‰) correspond to the sericite hydrothermal halo, mostly developed laterally to the orebody until 0.5–1 km. The regional background (+16 to +20‰) is represented by spilitised volcanic rocks. A same kind of low anomaly, but with less contrast, was defined in purple schist in the immediate hanging wall of the orebodies. All these results demonstrate that, despite high geometrical modifications of the orebodies related to the Hercynian tectonics, oxygen isotopic anomalies recorded by volcanic host rocks during the emplacement of the mineralising hydrothermal systems are still identified. This strongly suggests that oxygen isotopic systematics could be useful to identify target areas in the Iberian Pyrite Belt, as already demonstrated on other VMS targets in the world.  相似文献   

8.
We have studied the paleomagnetism of the middle Cretaceous Iritono granite of the Abukuma massif in northeast Japan together with 40Ar–39Ar dating. Paleomagnetic samples were collected from ten sites of the Iritono granite (102 Ma 40Ar–39Ar age) and two sites of its associated gabbroic dikes. The samples were carefully subjected to alternating field and thermal demagnetizations and to rock magnetic analyses. Most of natural remanent magnetizations show mixtures of two components: (1) H component, high coercivity (Bc > 50–90 mT) or high blocking temperature (Tb > 350–560 °C) component and (2) L component, relatively low Bc or low Tb component. H component was obtained from all the 12 sites to give a mean direction of shallow inclination and northwesterly declination (I = 29.9°, D = 311.0°, α95 = 2.7°, N = 12). This direction is different from the geocentric axial dipole field at the present latitude (I = 56.5°) and the typical direction of the Cenozoic remagnetization in northeast Japan. Since rock magnetic properties indicate that the H component of the Iritono granite is carried mainly by magnetite inclusions in plagioclase, this component probably retains a primary one. Thus the shallow inclination indicates that the Abukuma massif was located at a low latitude (16.1 ± 1.6°N) about 100 Ma and then drifted northward by about 20° in latitude. The northwesterly deflection is attributed mostly to the counterclockwise rotation of northeast Japan due to Miocene opening of the Japan Sea. According to this model, the low-pressure and high-temperature (low-P/high-T) metamorphism of the Abukuma massif, which has been well known as a typical location, would have not occurred in the present location. On the other hand, the L component is carried mainly by pyrrhotite and its mean direction shows a moderate inclination and a northwesterly declination (I = 42.8°, D = 311.5°, α95 = 3.3°, N = 9). Since this direction is intermediate between the H component and early Cenozoic remagnetization in northeast Japan, some thermal event would have occurred at lower temperature than pyrrhotite Curie point ( 320 °C) during the middle Cretaceous to early Cenozoic time to have resulted in partial remagnetization.  相似文献   

9.
Coal-derived hydrocarbons from Middle–Lower Jurassic coal-bearing strata in northwestern China are distributed in the Tarim, Junggar, Qaidam, and Turpan-Harmi basins. The former three basins are dominated by coal-derived gas fields, distributed in Cretaceous and Tertiary strata. Turpan-Harmi basin is characterized by coal-derived oil fields which occur in the coal measures. Based on analysis of gas components and carbon isotopic compositions from these basins, three conclusions are drawn in this contribution: 1) Alkane gases with reservoirs of coal measures have no carbon isotopic reversal, whereas alkane gases with reservoirs not of coal measures the extent of carbon isotopic reversal increases with increasing maturity; 2) Coal-derived alkane gases with high δ13C values are found in the Tarim and Qaidam basins (δ13C1: − 19.0 to − 29.9‰; δ13C2: − 18.8 to − 27.1‰), and those with lowest δ13C values occur in the Turpan-Harmi and Junggar basins (δ13C1: − 40.1 to − 44.0‰; δ13C2: − 24.7 to − 27.9‰); and 3) Individual specific carbon isotopic compositions of light hydrocarbons (C5–8) in the coal-derived gases are lower than those in the oil-associated gases. The discovered carbon isotopic reversal of coal-derived gases is caused by isotopic fractionation during migration and secondary alteration. The high and low carbon isotopic values of coal-derived gases in China may have some significance on global natural gas research, especially the low carbon isotope value of methane may provide some information for early thermogenic gases. Coal-derived methane typically has much heavier δ13C than that of oil-associated methane, and this can be used for gas–source rock correlation. The heavy carbon isotope of coal-derived ethane is a common phenomenon in China and it shed lights on the discrimination of gas origin. Since most giant gas fields are of coal-derived origin, comparative studies on coal-derived and oil-associated gases have great significance on future natural gas exploration in the world.  相似文献   

10.
Fractionation of silicon isotopes during biogenic silica dissolution   总被引:2,自引:0,他引:2  
Silicon isotopes have been investigated for their potential to reveal both past and present patterns of silicic acid utilization, primarily by diatoms, in surface waters of the ocean. Interpretation of this proxy has thus far relied on characteristic trends in the isotope composition of the dissolved and particulate silicon pools in the upper ocean, as driven by biological fractionation during the production of biogenic silica (bSiO2, or opal) by diatoms. However, other factors which may influence the silicon isotope composition of diatom opal, particularly post-formational aging and maturation processes, remain largely uninvestigated. Here, we report a consistent fractionation of silicon isotopes during the physicochemical dissolution of diatom bSiO2 suspended in seawater under closed conditions. This fractionation acts counter to that occurring during bSiO2 production and at about half its absolute magnitude, with dissolution discriminating against the release of the heavier isotopes of silicon at an enrichment factor εDSi–BSi of −0.55‰, corresponding to a fractionation factor α30/28 of 0.99945. The enrichment factor did not vary with source material, indicating the lack of a significant species effect, or with temperature from 3 to 20 °C. Thus, the dissolution of bSiO2 produces dissolved silicon with a δ30Si value that is 0.55‰ more negative than its parent bSiO2, an effect that must be accounted for when interpreting oceanic δ30Si distributions. The δ30Si values of both the dissolved and particulate silicon pools increased linearly as dissolution progressed, implying a measurable (±0.1‰) change in the relative δ30Si of opal samples whenever the difference in preservation efficiency between them is >20%. This effect could account for 10–30% of the difference in diatom δ30Si values observed between glacial and interglacial conditions. It is unlikely, however, that the inferred maximum possible change in δb30SiO2 of +0.55‰ would be manifested in situ, as a high mean percentage of dissolution would include complete loss of the more soluble members of the diatom assemblage.  相似文献   

11.
Lime mortar and plaster were sampled from Roman, medieval and early modern buildings in Styria. The historical lime mortar and plaster consist of calcite formed in the matrix during setting and various aggregates. The stable C and O isotopic composition of the calcite matrix was analyzed to get knowledge about the environmental conditions during calcite formation. The δ13Cmatrix and δ18Omatrix values range from −31 to 0‰ and −26 to −3‰(VPDB), respectively. Obviously, such a range of isotope values does not represent the local natural limestone assumed to be used for producing the mortar and plaster. In an ideal case, the calcite matrix in lime mortar and plaster is isotopically lighter in the exterior vs. the interior mortar layer according to the relationship δ18Omatrix = 0.61 · δ13Cmatrix − 3.3 (VPDB). Calcite precipitation by uptake of gaseous CO2 into alkaline Ca(OH)2 solutions shows a similar relationship, δ18Ocalcite = 0.67 · δ13Ccalcite − 6.4 (VPDB). Both relationships indicate that the 13C/12C and 18O/16O values of the calcite reflect the setting behaviour of the lime mortar and plaster. Initially, CO2 from the atmosphere is fixed as calcite, which is accompanied by kinetic isotope fractionation mostly due to the hydroxylation of CO2 (δ13Cmatrix ≈  −25‰ and δ18Omatrix ≈ −20‰). As calcite formation continued the remaining gaseous CO2 is subsequently enriched in 13C and 18O causing later formed calcite to be isotopically heavier along the setting path in the matrix. Deviations from such an ideal isotopic behaviour may be due to the evolution of H2O, e.g. evaporation, the source of CO2, e.g. from biogenic origin, relicts of the natural limestone, and secondary effects, such as recrystallization of calcite. The results of the field and experimental study suggest that isotope values can be used as overall proxies to decipher the origin of carbonate and the formation conditions of calcite in the matrix of ancient and recent lime mortar and plaster. Moreover, these proxies can be used to select calcite matrix from historical lime mortar and plaster for 14C dating.  相似文献   

12.
The Cobre–Babilonia vein system formed during a single major hydrothermal stage and is part of the Taxco district in Guerrero, southern Mexico. Homogenization and ice melting temperatures range from 160 to 290 °C and from − 11.6 to − 0.5 °C, respectively. We determined an approximate thermal gradient of 17 to 20 °C per 100 m using fluid inclusions. A thermal peak marked by the 290 °C isotherm is interpreted as a major feeder channel to the veins. The highest content of Zn + Pb in ore coincides with the 220 and 240 °C isotherms. Salinities of mineralizing fluids range from 0.8 to 15.6 wt.% NaCl equiv, and are distributed in two populations that can be related with barren or ore-bearing vein sections, with 0.8 to 6 wt.% NaCl equiv and 7 to 15.6 wt.% NaCl equiv, respectively. δ13C and δ18O water values from calcite from the Cobre–Babilonia vein system and the Esperanza Vieja and Guadalupe mantos range − 5.4‰ to − 10.4‰ and 9.9‰ to 13.4‰, respectively. δ34S values range from 0‰ to 3.2‰ and − 0.7‰ to − 4.3‰ in sphalerite, − 4‰ to 0.9‰ in pyrite, and − 1.4‰ to − 5.5‰ in galena. Both fluid inclusion and stable isotope data are compatible with magmatic and meteoric sources for mineralizing fluids. Also, sulfur isotope compositions suggest both magmatic and sedimentary sources for sulfur.  相似文献   

13.
The 1.27 Ga old Ivigtut (Ivittuut) intrusion in South Greenland is world-famous for its hydrothermal cryolite deposit [Na3AlF6] situated within a strongly metasomatised A-type granite stock. This detailed fluid inclusion study characterises the fluid present during the formation of the cryolite deposit and thermodynamic modelling allows to constrain its formation conditions.Microthermometry revealed three different types of inclusions: (1) pure CO2, (2) aqueous-carbonic and (3) saline-aqueous inclusions. Melting temperatures range between − 23 and − 15 °C for type 2 and from − 15 to − 10 °C for type 3 inclusions. Most inclusions homogenise between 110 and 150 °C into the liquid.Stable isotope compositions of CO2 and H2O were measured from crushed inclusions in quartz, cryolite, fluorite and siderite. The δ13C values of about − 5‰ PDB are typical of mantle-derived magmas. The differences between δ18O of CO2 (+ 21 to + 42‰ VSMOW) and δ18O of H2O (− 1 to − 21.7‰ VSMOW) suggest low-temperature isotope exchange. δD (H2O) ranges from − 19 to − 144‰ VSMOW. The isotopic composition of inclusion water closely follows the meteoric water line and is comparable to Canadian Shield brines. Ion chromatography revealed the fluid's predominance in Na, Cl and F. Cl/Br ratios range between 56 and 110 and may imply intensive fluid–rock interaction with the host granite.Isochores deduced from microthermometry in conjunction with estimates for the solidification of the Ivigtut granite suggest a formation pressure of approximately 1–1.5 kbar for the fluid inclusions. Formation temperatures of different types of fluid inclusions vary between 100 and 400 °C. Thermodynamic modelling of phase assemblages and the extraordinary high concentration in F (and Na) may indicate that the cryolite body and its associated fluid inclusions could have formed during the continuous transition from a volatile-rich melt to a solute-rich fluid.  相似文献   

14.
Variations in the carbon isotopic composition (δ13C) of pristane, phytane, n-heptadecane (n-C17), C29 ααα 20R sterane, and aryl isoprenoids provide evidence for a diverse community of algal and bacterial organisms in organic matter of the Upper Ordovician Maquoketa Group of the Illinois Basin. Carbon isotopic compositions of pristane and phytane from the Maquoketa are positively covariant (r = 0.964), suggesting that these compounds were derived from a common source inferred to be primary producers (algae) from the oxygenated photic zone. A variation of 3‰ in δ13C values (−31 to −34‰) for pristane and phytane indicates that primary producers utilized variable sources of inorganic carbon. Average isotopic compositions of n-C17 (−32‰) and C29 ααα 20R sterane (−31‰) are enriched in 13C relative to pristane and phytane (−33‰) suggesting that these compounds were derived from a subordinate group of primary producers, most likely eukaryotic algae. In addition, a substantial enrichment of 13C in aryl isoprenoids (−14 to −18‰) and the identification of tetramethylbenzene in pyrolytic products of Maquoketa kerogen indicate a contribution from photosynthetic green sulfur bacteria to the organic matter. The presence of anaerobic, photosynthetic green sulfur bacteria in organic matter of the Maquoketa indicates that anoxic conditions extended into the photic zone.The δ13C of n-alkanes and the identification of an unusual suite of straight-chain n-alkylarenes in the m/z 133 fragmentograms of Ordovician rocks rich in Gloeocapsomorpha prisca (G. prisca) indicate that G. prisca did not contribute to the organic matter of the Maquoketa Group.  相似文献   

15.
A case study of three springs in Switzerland is used to demonstrate the value of geochemical time-series data as a powerful tool to study the dynamics of groundwater systems. Values of repeatedly measured parameters revealed intermixings of two water types: (a) a 29°C water, circulating to a depth of 1100 m and containing approximately 700 mg/l Ca, 2000 mg/l SO4, 700 mg/l HCO3, 20 mg/l of Na and Cl, 6 mg/l Fe, at least 47 mg/l SiO2, and with an isotopic composition of δD = − 73.0‰ and δ18 O = −10.9‰, and (b) a 12°C or colder water, shallow, and of a post-1953 age, containing 420 mg/l TDI or less, very low in Na and Cl (4 mg/l or less), isotopic values of δD = −71.0‰ and δ18 O = −10.5‰ and tritium as in recent (post-bomb) precipitation.  相似文献   

16.
Biodegraded oils are widely distributed in the Liaohe basin, China. In order to develop effective oil-source correlation tools specifically for the biodegraded oils, carbon isotopic compositions of individual n-alkanes from crude oils and their asphaltene pyrolysates have been determined using the gas chromatography–isotope ratio mass spectrometry technique. No significant fractionation in the stable carbon isotopic ratios of n-alkanes in the pyrolysates of oil asphaltenes was found for anhydrous pyrolysis carried out at temperatures below 340°C. This suggests that the stable carbon isotopic distribution of n-alkanes (particularly in the C16–C29 range) in the asphaltene pyrolysates can be used as a correlation tool for severely biodegraded oils from the Liaohe Basin. Comparison of the n-alkane isotopic compositions of the oils with those of asphaltene pyrolysates shows that this is a viable method for the differentiation of organic facies variation and post-generation alterations.  相似文献   

17.
A methodology has been developed to determine chemical and carbon isotopic compositions of trace amounts of hydrocarbon gas compounds (methane, ethane, propane, iso- and normal-butane) present as dissolved compounds in the porewater of the low permeability Callovo-Oxfordian argillites in eastern Paris Basin, France. Results indicate that the studied hydrocarbons contain significant amounts of ethane, butane and propane, in addition to methane. Carbon isotopic compositions reflect primarily thermogenic origin (thermal cracking of organic matter), and lack of any significant biodegradation. Because temperature did not exceed 50 °C in the studied argillites, investigated hydrocarbons must have originated in hotter/deeper organic-bearing formations, possibly Stephanian coals. Data supports the predominance of high maturity thermogenic gas in the upper part of the Callovo-Oxfordian, and low maturity thermogenic gas mixed with minor bacterially produced methane in the lower part of the formation. A mixing between three end-member gases models quite well the data: one thermogenic gas with a low maturity (42% methane, with a δ13C of − 53‰), a gas with higher maturity (55% methane, with a δ13C of − 47‰) and a bacterial gas (99.45% methane, with a δ13C of − 80‰). This study illustrates that migration of hydrocarbon gases can take place in rocks with very low permeability and porosity, such as compacted mudrocks, given enough time. It further suggests that the studied fluid migration and transfer in aquitards would help characterization and understanding of fluid movements in sedimentary basins, as a complement to studies focused on water aquifers and hydrocarbon reservoirs. Chemical and isotopic composition of dissolved hydrocarbons in porewater can be used as natural tracers of fluid circulation in sedimentary basins, in addition to more conventional tracers.  相似文献   

18.
Black and white dolomite crystals (mm to cm width) of different isotopic composition are associated with Triassic diapirism in central Tunisia, as well as with evaporite minerals and clays. The white dolomites occur mostly in the Jabal Hadifa diapir near the contact with Cretaceous limestones, whereas the smaller black dolomites occur in the Jabal Hamra diapir. The former dolomite has a narrow range of δ18O and δ13C values (− 3.83‰ to − 6.60‰ VPDB for δ18O; − 2.11‰ to − 2.83‰ VPDB for δ13C), whereas the latter dolomite has a wider range and more depleted values (− 4.92‰ to − 9.97‰ for δ18O; − 0.55‰ to − 6.08‰ for δ13C). However, the 87Sr / 86Sr ratios of most of the samples are near Triassic seawater values. Dolomite formation is due to at least two different fluids. The main fluid originated from deeper hydrothermal or basinal sources related to the Triassic saliferous rocks and ascended through faults during the diapiric intrusion. The second, less important fluid source is related to meteoric water originating from Cretaceous rocks.  相似文献   

19.
Twenty two samples of calcretes from seven depth-profiles in the Menindee catchment, Broken Hill region, Australia were analysed for their inorganic and organic carbon contents and inorganic carbon and oxygen isotopes. The organic carbon content is very low (from 0.06 to 0.31 wt.%) while inorganic carbon (carbonate) is up to 3.9 wt.%. Both δ13C and δ18O become more positive closer to the surface. Carbon isotopes vary from − 8.5‰ to −5.5‰ PDB. Oxygen isotopes vary from − 6‰ to − 1.8‰ V-PDB. Depth-related δ13C and δ18O variations correlate over at least 15 km and show no significant variation along the flow path. δ13C values increase by 3‰ and δ18O values increase by 4‰ with decreasing depth in a 1.40 m thick soil profile. The variation is interpreted to indicate an increasingly elevated air temperature, greater water stress and subsequently an aridification of the area through time. The Broken Hill calcrete data confirm that climatic evolution can be deduced from isotopic series and be applied successfully to the Broken Hill region.  相似文献   

20.
The Minqin Basin is a type area for examining stress on groundwater resources in the Gobi Desert, and has been investigated here using a combination of isotopic, noble gas and chemical indicators. The basin is composed of clastic sediments of widely differing grain size and during the past half century over 10 000 boreholes have been drilled with a groundwater decline of around 1 m a−1. Modern diffuse recharge is unlikely to exceed 3 mm a−1, as determined using unsaturated zone profiles and Cl mass balance. A small component of modern (<50 a) groundwater is identified in parts of the basin from 3H–3He data, probably from irrigation returns. A clear distinction is found between modern waters with median δ18O values of 6.5 ± 0.5‰ and most groundwaters in the basin with more depleted isotopic signatures. Radiocarbon values as pmc range from 0.6% to 85% modern, but it is difficult to assign absolute ages to these, although a value of 20% modern C probably represents the late Pleistocene to Holocene transition. The δ13C compositions remain near-constant throughout the basin (median value of −8.1‰ δ13C) and indicate that carbonate reactions are unimportant and also that little reaction takes place. There is a smooth decrease in 14C activity accompanied by a parallel increase in 4He accumulations from S–N across the basin, which define the occurrence of a regional flow system. Noble gas temperatures indicate recharge temperatures of about 5.6 °C for late Pleistocene samples, which is some 2–3 °C cooler than the modern mean annual air temperature and the recharge temperature obtained from several Holocene samples. Groundwaters in the Minqin Basin have salinities generally below 1 g/L and are aerobic, containing low Fe but elevated concentrations of U, Cr and Se (mean values of 27.5, 5.8 and 5.3 μg L−1, respectively). Nitrate is present at baseline concentrations of around 2 mg L−1 but there is little evidence of impact of high NO3 from irrigation returns. Strontium isotope and major ion ratios suggest that silicate reactions predominate in the aquifer. The results have important implications for groundwater management in the Minqin and other water-stressed basins in NW China – a region so far destined for rapid development. The large proportion of the water being used at present is in effect being mined and significant changes are urgently needed in water use strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号