首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
A suite of spinel lherzolite and wehrlite xenoliths from a Devonian kimberlite dyke near Kandalaksha, Kola Peninsula, Russia, has been studied to determine the nature of the lithospheric mantle beneath the northern Baltic Shield. Olivine modal estimates and Fo content in the spinel lherzolite xenoliths reveal that the lithosphere beneath the Archaean–Proterozoic crust has some similarities to Phanerozoic lithospheric mantle elsewhere. Modal metasomatism is indicated by the presence of Ti-rich and Ti-poor phlogopite, pargasite, apatite and picroilmenite in the xenoliths. Wehrlite xenoliths are considered to represent localised high-pressure cumulates from mafic–ultramafic melts trapped within the mantle as veins or lenses. Equilibration temperatures range from 775 to 969 °C for the spinel lherzolite xenoliths and from 817 to 904 °C for the wehrlites.

Laser ablation ICP-MS data for incompatible trace elements in primary clinopyroxenes and metasomatic amphiboles from the spinel lherzolites show moderate levels of LREE enrichment. Replacement clinopyroxenes in the wehrlites are less enriched in LREE but richer in TiO2. Fractional melt modelling for Y and Yb concentrations in clinopyroxenes from the spinel lherzolites indicates 7–8% partial melting of a primitive source. Such a volume of partial melt could be related to the 2.4–2.5 Ga intrusion of basaltic magmas (now metamorphosed to garnet granulites) in the lower crust of the northern Baltic Shield. The lithosphere beneath the Kola Peninsula has undergone several episodes of metasomatism. Both the spinel lherzolites and wehrlites were subjected to an incomplete carbonatitic metasomatic event, probably related to an early carbonatitic phase associated with the 360–380 Ma Devonian alkaline magmatism. This resulted in crystallisation of secondary clinopyroxene rims at the expense of primary orthopyroxenes, with development of secondary forsteritic olivine and apatite. Two separate metasomatic events resulted in the crystallisation of the Ti–Fe-rich amphibole, phlogopite and ilmenite in the wehrlites and the low Ti–Fe amphibole and phlogopite in the spinel lherzolites. Alternatively, a single metasomatic event with a chemically evolving melt may have produced the significant compositional differences seen in the amphibole and phlogopite between the spinel lherzolites and wehrlites. The calculated REE pattern of a melt in equilibrium with clinopyroxenes from a cpx-rich pocket is identical to that of the kimberlite host, indicating a close petrological relationship.  相似文献   


2.
Mantle peridotites entrained as xenoliths in the lavas of Ngao Bilta in the eastern branch of the continental Cameroon Line were examined to constrain mantle processes and the origin and nature of melts that have modified the upper mantle beneath the Cameroon Line.The xenoliths consist mainly of lherzolite with subordinate harzburgite and dunite.They commonly contain olivine,orthopyroxene,clinopyroxene and spinel although the dunite is spinel-free.Amphibole is an essential constituent in the lherzolites.Mineral chemistry differs between the three types of peridotite:olivines have usual mantle-like Mg#of around 90 in lherzolites,but follow a trend of decreasing Mg#(to 82)and NiO(to 0.06 wt.%)that is continuous in the dunites.Lherzolites also contain orthopyroxenes and/or clinopyroxenes with low-Mg#,indicating a reaction that removes Opx and introduces Cpx,olivine,amphibole and spinel.This is attributed to reaction with a silica-undersaturated silicate melt such as nephelinite or basanite,which originated as a low-degree melt from a depleted source as indicated by low Al2O3 and Na2O in Cpx and high Na2O/K2O in amphibole.Thermobarometric estimates place the xenoliths at pressures of 11–15 kbar(35–50 km)and temperatures of 863–957C,along a dynamic rift geotherm and shallower than the region where carbonate melts may occur.The melt/rock reactions exhibited by the Ngao Bilta xenoliths are consistent with their peripheral position in the eastern branch of the Cameroon Volcanic Line in an area of thinned crust and lithosphere beneath the Adamawa Uplift.  相似文献   

3.
The petrological and geochemical study of harzburgitic and dunitic xenoliths from the melilititic district of In Teria (Algerian Sahara) shows that the lighospheric mantle of this region has been affected by a multi-stage metasomatism. The first metasomatic event is related to the injection of alkali silicated (basaltic or kimberlitic) melt and was responsible for the crystallization of phlogopite at depths ranging between 80 and 100 km and the crystallization of amphibole at about 60 km. During this first event, carbonate probably precipitated in the garnet stability field. In a second stage, the spinal peridotites suffered strong mineral changes resulting in an extensive formation of high-Cr endiopside and leading to conversion of harzburgite and dunite into lherzolite and wehrlite. These changes are associated with an enrichment in the most incompatible trace elements including light REE (rare-earth elements), Ta, Th and variable values of ratios such as Th/La and Ta/La. This second event is atributed to the injection (under conditions of decarbonatation and release of CO2) of a carbonatitic melt resulting from incipient melting of the garnet peridotites, which were previously carbonated. This interpretation is corroborated by the calculation of a diffusion-percolation model which reproduces well the observed distribution of incompatible trace elements in the spinel peridotites. Given the proposed sequence of events, it appears that most of the specificities of the In Teria xenoliths can be explained by the successive geochemical modifications induced within the lithospheric mantle during reheating.  相似文献   

4.
Experiments have been done which simulate the modal metasomatism of spinel lherzolite by partial melts of the subducted slab. The experiments were designed so that the metasomatizing melts were generated during the experiments by partial melting of a slab analog (basaltic composition amphibolite). The melts are thought to be representative of hybridizing melts in that they are derived by high-pressure partial melting under conditions appropriate to a hot slab geotherm. During the experiments, the melts infiltrate into and metasomatize a model depleted peridotite. Chemical modifications to minerals in the peridotite are of the same nature and extent as those found in naturally metasomatized spinel lherzolites. Modal metasomatism produced pargasitic amphiboles in runs at 1.5 GPa and in all but the highest temperature run at 2.0 GPa. The amphiboles are indistinguishable from amphiboles found in amphibole-bearing peridotites from supra-subduction zone environments. Systematic variations in amphibole composition suggest that the melt infiltration process in the experiments involved continuous modification of the composition of the infiltrating melt as observed around inferred quenched melt (i.c., amphibolite or amphibolite/clinopyroxenite) veins in xenoliths and massif peridotites. The compositions of the initial and final mineral phases in the experiments and those of the metasomatizing melts are used to derive amphibole formation reactions at 1.5 and 2.0 GPa that are similar in form to those inferred in studies of natural amphibole-bearing peridotites. The metasomatism reactions show that the extent of amphibole formation in peridotite at 1.5 and 2.0 GPa will, in general, be limited by clinopyroxene and spinel abundance.  相似文献   

5.
Crystal fragments of pyrope from diatremes of ultramafic microbreccia in the Navajo Province of the Colorado Plateau contain inclusions of olivine, pyroxene, spinel, chlorite, amphibole, chlorapatite, and dolomite. The included suite supports earlier hypotheses that hydrous phases and carbonates were primary parts of some garnet peridotite assemblages in the Plateau lithosphere. Garnets with spinel and orthopyroxene inclusions likely all were sampled at pressures less than 36 kb and perhaps as low as 15–20 kb; no evidence was found for inclusions from greater depths. Temperature estimates are 800°–900° C for garnet-clinopyroxene equilibration, but only 500°–700° C for garnetolivine equilibration. Inherent differences between geothermometry methods account for only part of the discrepancy. Pronounced Fe-Mg zoning in garnet at olivine contacts and the lack of such zoning at clinopyroxene contacts are evidence that the difference in part relates to relative reequilibration rates with cooling. The garnet-olivine temperature estimates may be the best approximations to mantle temperatures before eruption. Our data are compatible both with the hypothesis that the garnet peridotite was emplaced in the mantle by large-scale, horizontal transport in the lithosphere and with the hypothesis that rocks were sampled from Precambrian lithosphere cooled to temperatures like those along a low heat flow geotherm. Discordances between the geothermometers here and in other lherzolite localities may be keys to evaluating tectonic histories of lherzolite masses.  相似文献   

6.
Mantle xenoliths from Hainan and Qilin, South China have been studied to constrain the nature of the upper mantle and mantle processes beneath a continental margin. The extremely low Ti (160–245 ppm) contents in clinopyroxenes from some spinel lherzolites, indicative of high degrees of partial melting are inconsistent with the relatively high clinopyroxene modes (7.4–13%) in these samples. This inconsistency could be due to polybaric melting that started in the garnet stability field, then, after the breakdown of garnet to pyroxene and spinel, continued in the spinel stability field. Polybaric melting, due to adiabatic decompression of upwelling mantle, would leave a residual mantle in which the degree of depletion decreases with depth. The predicted stratified lithospheric mantle is evidenced by the negative correlation between the forsterite content in olivine and the equilibration temperature, proportional to the depth in the lithosphere from which the xenolith was derived. The lower part of the lithospheric mantle beneath South China consists predominantly of fertile and moderately depleted peridotites, which are either devoid of LREE enrichment, or show the trace element signature of incipient metasomatism, and plot within the Phanerozoic mantle domain. In contrast, the upper part of the mantle contains harzburgite and cpx-poor lherzolite, which are strongly affected by metasomatism of melt/fluid of highly variable composition. The anomalously high orthopyroxene mode (up to 47%) makes some of these refractory samples compositionally similar to the Proterozoic/Archean mantle. Their low equilibrium temperature (800–900 °C) points to the presence of old lithospheric relicts in the uppermost mantle beneath South China. Such lithosphere architecture may have resulted from partial replacement of Archean–Proterozoic lithosphere by asthenosphere that rose adiabatically subsequent to lithospheric thinning during the Cenozoic.  相似文献   

7.
Spinel peridotite xenoliths from the Atsagin-Dush volcanic centre, SE Mongolia range from fertile lherzolites to clinopyroxene(cpx)-bearing harzburgites. The cpx-poor peridotites typically contain interstitial fine-grained material and silicate glass and abundant fluid inclusions in minerals, some have large vesicular melt pockets that apparently formed after primary clinopyroxene and spinel. No volatile-bearing minerals (amphibole, phlogopite, apatite, carbonate) have been found in any of the xenoliths. Fifteen peridotite xenoliths have been analysed for major and trace elements; whole-rock Sr isotope compositions and O isotope composition of all minerals were determined for 13 xenoliths. Trace element composition and Sr-Nd isotope compositions were also determined in 11 clinopyroxene and melt pocket separates. Regular variations of major and moderately incompatible trace elements (e.g. heavy-rare-earth elements) in the peridotite series are consistent with its formation as a result of variable degrees of melt extraction from a fertile lherzolite protolith. The Nd isotope compositions of LREE (light-rare-earth elements)-depleted clinopyroxenes indicate an old (≥ 1 billion years) depletion event. Clinopyroxene-rich lherzolites are commonly depleted in LREE and other incompatible trace elements whereas cpx-poor peridotites show metasomatic enrichment that can be related to the abundance of fine-grained interstitial material, glass and fluid inclusions in minerals. The absence of hydrous minerals, ubiquitous CO2-rich microinclusions in the enriched samples and negative anomalies of Nb, Hf, Zr, and Ti in primitive mantle-normalized trace element patterns of whole rocks and clinopyroxenes indicate that carbonate melts may have been responsible for the metasomatic enrichment. Low Cu and S contents and high δ34S values in whole-rock peridotites could be explained by interaction with oxidized fluids that may have been derived from subducted oceanic crust. The Sr-Nd isotope compositions of LREE-depleted clinopyroxenes plot either in the MORB (mid-ocean-ridge basalt) field or to the right of the mantle array, the latter may be due to enrichment in radiogenic Sr. The LREE-enriched clinopyroxenes and melt pockets plot in the ocean island-basalt field and have Sr-Nd isotope signatures consistent with derivation from a mixture of the DMM (depleted MORB mantle) and EM (enriched mantle) II sources. Received: 18 January 1996 / Accepted: 23 August 1996  相似文献   

8.
Mantle xenoliths and xenocrysts were retrieved from three of the 88–86 Ma Buffalo Hills kimberlites (K6, K11, K14) for a reconnaissance study of the subcontinental lithospheric mantle (SCLM) beneath the Buffalo Head Terrane (Alberta, Canada). The xenoliths include spinel lherzolites, one garnet spinel lherzolite, garnet harzburgites, one sheared garnet lherzolite and pyroxenites. Pyroxenitic and wehrlitic garnet xenocrysts are derived primarily from the shallow mantle and lherzolitic garnet xenocrysts from the deep mantle. Harzburgite with Ca-saturated garnets is concentrated in a layer between 135–165 km depth. Garnet xenocrysts define a model conductive paleogeotherm corresponding to a heat flow of 38–39 mW/m2. The sheared garnet lherzolite lies on an inflection of this geotherm and may constrain the depth of the lithosphere–asthenosphere boundary (LAB) beneath this region to ca 180 km depth.

A loss of >20% partial melt is recorded by spinel lherzolites and up to 60% by the garnet harzburgites, which may be related to lithosphere formation. The mantle was subsequently modified during at least two metasomatic events. An older metasomatic event is evident in incompatible-element enrichments in homogeneous equilibrated garnet and clinopyroxene. Silicate melt metasomatism predominated in the deep lithosphere and led to enrichments in the HFSE with minor enrichments in LREE. Metasomatism by small-volume volatile-rich melts, such as carbonatite, appears to have been more important in the shallow lithosphere and led to enrichments in LREE with minor enrichments in HFSE. An intermediate metasomatic style, possibly a signature of volatile-rich silicate melts, is also recognised. These metasomatic styles may be related through modification of a single melt during progressive interaction with the mantle. This metasomatism is suggested to have occurred during Paleoproterozoic rifting of the Buffalo Head Terrane from the neighbouring Rae Province and may be responsible for the evolution of some samples toward unradiogenic Nd and Hf isotopic compositions.

Disturbed Re–Os isotope systematics, evident in implausible model ages, were obtained in situ for sulfides in several spinel lherzolites and suggest that many sulfides are secondary (metasomatic) or mixtures of primary and secondary sulfides. Sulfide in one peridotite has unradiogenic 187Os/188Os and gives a model age of 1.89±0.38 Ga. This age coincides with the inferred emplacement of mafic sheets in the crust and suggests that the melts parental to the intrusions interacted with the lithospheric mantle.

A younger metasomatic event is indicated by the occurrence of sulfide-rich melt patches, unequilibrated mineral compositions and overgrowths on spinel that are Ti-, Cr- and Fe-rich but Zn-poor. Subsequent cooling is recorded by fine exsolution lamellae in the pyroxenes and by arrested mineral reactions.

If the lithosphere beneath the Buffalo Head Terrane was formed in the Archaean, any unambiguous signatures of this ancient origin may have been obliterated during these multiple events.  相似文献   


9.
A detailed petrographic, major and trace element and isotope (Re–Os) study is presented on 18 xenoliths from Northern Lesotho kimberlites. The samples represent typical coarse, low-temperature garnet and spinel peridotites and span a PT range from 60 to 150 km depth. With the exception of one sample (that belongs to the ilmenite–rutile–phlogopite–sulphide suite (IRPS) suite first described by [B. Harte, P.A. Winterburn, J.J. Gurney, Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho. In: Menzies, M. (Ed.), Mantle metsasomatism. Academic Press, London 1987, 145–220.]), all samples considered here have high Mg# and show strong depletion in CaO and Al2O3. They have bulk rock Re depletion ages (TRD) >2.5 Ga and are therefore interpreted as residua from large volume melting in the Archaean. A characteristic of Kaapvaal xenoliths, however, is their high SiO2 concentrations, and hence, modal orthopyroxene contents that are inconsistent with a simple residual origin of these samples. Moreover, trace element signatures show strong overall incompatible element enrichment and REE disequilibrium between garnet and clinopyroxene. Textural and subtle major element disequilibria were also observed. We therefore conclude that garnet and clinopyroxene are not co-genetic and suggest that (most) clinopyroxene in the Archaean Kaapvaal peridotite xenoliths is of metasomatic origin and crystallized relatively recently, possibly from a melt precursory to the kimberlite.

Possible explanations for the origin of garnet are exsolution from a high-temperature, Al- and Ca-rich orthopyroxene (indicating primary melt extraction at shallow levels) or a majorite phase (primary melting at >6 GPa). Mass balance calculations, however, show that not all garnet observed in the samples today is of a simple exsolution origin. The extreme LREE enrichment (sigmoidal REE pattern in all garnet cores) is also inconsistent with exsolution from a residual orthopyroxene. Therefore, extensive metasomatism and probably re-crystallization of the lithosphere after melt-depletion and garnet exsolution is required to obtain the present textural and compositional features of the xenoliths. The metasomatic agent that modified or perhaps even precipitated garnet was a highly fractionated melt or fluid that might have been derived from the asthenosphere or from recycled oceanic crust. Since, to date, partitioning of trace elements between orthopyroxene and garnet/clinopyroxene is poorly constrained, it was impossible to assess if orthopyroxene is in chemical equilibrium with garnet or clinopyroxene. Therefore, further trace element and isotopic studies are required to constrain the timing of garnet introduction/modification and its possible link with the SiO2 enrichment of the Kaapvaal lithosphere.  相似文献   


10.
Garnet peridotite xenoliths from the Sloan kimberlite (Colorado) are variably depleted in their major magmaphile (Ca, Al) element compositions with whole rock Re-depletion model ages generally consistent with this depletion occurring in the mid-Proterozoic. Unlike many lithospheric peridotites, the Sloan samples are also depleted in incompatible trace elements, as shown by the composition of separated garnet and clinopyroxene. Most of the Sloan peridotites have intermineral Sm–Nd and Lu–Hf isotope systematics consistent with this depletion occurring in the mid-Proterozoic, though the precise age of this event is poorly defined. Thus, when sampled by the Devonian Sloan kimberlite, the compositional characteristics of the lithospheric mantle in this area primarily reflected the initial melt extraction event that presumably is associated with crust formation in the Proterozoic—a relatively simple history that may also explain the cold geotherm measured for the Sloan xenoliths.

The Williams and Homestead kimberlites erupted through the Wyoming Craton in the Eocene, near the end of the Laramide Orogeny, the major tectonomagmatic event responsible for the formation of the Rocky Mountains in the late Cretaceous–early Tertiary. Rhenium-depletion model ages for the Homestead peridotites are mostly Archean, consistent with their origin in the Archean lithospheric mantle of the Wyoming Craton. Both the Williams and Homestead peridotites, however, clearly show the consequences of metasomatism by incompatible-element-rich melts. Intermineral isotope systematics in both the Homestead and Williams peridotites are highly disturbed with the Sr and Nd isotopic compositions of the minerals being dominated by the metasomatic component. Some Homestead samples preserve an incompatible element depleted signature in their radiogenic Hf isotopic compositions. Sm–Nd tie lines for garnet and clinopyroxene separates from most Homestead samples provide Mesozoic or younger “ages” suggesting that the metasomatism occurred during the Laramide. Highly variable Rb–Sr and Lu–Hf mineral “ages” for these same samples suggest that the Homestead peridotites did not achieve intermineral equilibrium during this metasomatism. This indicates that the metasomatic overprint likely was introduced shortly before kimberlite eruption through interaction of the peridotites with the host kimberlite, or petrogenetically similar magmas, in the Wyoming Craton lithosphere.  相似文献   


11.
Interstitial to poikilitic amphibole found in garnet pyroxenite xenoliths has been interpreted, in the past, to represent a critically silica undersaturated, residual intercumulus melt trapped by its cumulate assemblage of anhydrous phases. The textural features of such amphibole in pyroxenite xenoliths from Nunivak Island, Alaska, however, are more compatible with an origin by replacement of the anhydrous phases of the pyroxenite, following a period of cooling and sub-solidus recrystallization in the upper mantle. The reaction of amphibole and olivine to give orthopyroxene, observed in two specimens, requires that the associated fluid phase was not critically silica undersaturated. The amphibole is therefore thought to reflect the interaction of an alkali-bearing, migratory, aqueous fluid and an upper mantle consisting of spinel lherzolite cut by veins of spinel and garnet pyroxenite.  相似文献   

12.
Numerous lenticular bodies of ultramafic rocks occur withinthe upper amphibolite- to granulitefacies metamorphic terraneof the Austrides between the Non and Ultimo valleys (Nonsbergregion), northern Italy. The ultramafic rocks are divided intotwo textural types: (a) coarse-type; and (b) finetype. The coarse-typerocks have the protogranular texture and are predominantly spinellherzolite. Some coarse-type spinel lherzolites have partlytransformed to garnet lherzolite. The fine-types are consideredto be metamorphic derivatives of the former, and the observedmineral assemblages are: (1) olivine + orthopyroxene + clinopyroxene+ garnet + amphibole ? spinel, (2) olivine + orthopyroxene +garnet + amphibole + spinel; (3) olivine + orthopyroxene + amphibole+ spinel; and (4) olivine+ orthopyroxene + amphibole + chlorite.Based on the microprobe analyses of constituent minerals fromten representative peridotite samples, physical conditions ofthe metamorphism, particularly that of the spinel to garnetlherzolite transformation, are estimated. Applications of pyroxenegeothermometry yield temperature estimates of 1100–1300?Cfor the formation of the primary spinel lherzolite, and 700–800?Cfor that of the fine-type peridotites. A pressure range of 16–28kb is obtained for the garnet lherzolite crystallization dependingon the choice of geobarometers. Two alternative P-T paths, i.e.(1) isobaric cooling or (2) pressure-increase and temperaturedecrease are considered and their geodynamic implications discussed.  相似文献   

13.
Garnet peridotite xenoliths in the Quaternary Pali-Aike alkali olivine basalts of southernmost South America are samples of the deeper portion of continental lithosphere formed by accretion along the western margin of Gondwanaland during the Phanerozoic. Core compositions of minerals in garnet peridotites indicate temperatures of 970 to 1160°C between 1.9 and 2.4 GPa, constraining a geothermal gradient which suggests a lithospheric thickness of approximately 100 km below this region. Previously, this lithosphere may have been heated and thinned to ≤80 km during the Jurassic break-up of Gondwanaland, when widespread mafic and silicic volcanism occurred in association with extension in southern South America. Subsequent cooling, by up to >175°C, and thickening, by about 20 km, of the lithosphere is reflected in low-temperature (<970°C) spinel peridotites by chemical zonation of pyroxenes involving a rimward decrease in Ca, and in moderate- and high-temperature (>970°C) peridotites by textural evidence for the transformation of spinel to garnet. A recent heating event, which probably occurred in conjunction with modal metasomatism related to the genesis of the Pali-Aike alkali olivine basalts, has again thinned the lithosphere to <100 km. Evidence for this heating is preserved in moderate- and high-temperature (>970°C) peridotites as chemical zonation of pyroxenes involving a rimward increase in Ca, and by kelyphitic rims around garnet. The majority of moderate- and high-temperature (>970°C) xenoliths are petrochemically similar to the asthenospheric source of mid-oceanic ridge basalts: fertile (>20% modal clinopyroxene and garnet), Fe-rich garnet lherzolite with major element composition similar to estimates of primitive mantle, but large-ion-lithophile and light-rare-earth element depletion relative to heavy-rare-earth elements, and with Sr, Nd, Pb, Os, and O isotopic compositions similar to MORB. In contrast, infertile, Mg-rich spinel harzburgite is predominant among low-temperature (<970°C) xenoliths. This implies a significant chemical gradient and increasing density with depth in the mantle section represented by the xenoliths, and the absence of a deep, low density, olivine-rich root below the southernmost South American crust such as has been inferred below Archean cratons. With respect to both temperature/rheology and chemistry/density, the subcontinental mantle lithosphere below southernmost South America is similar to that below oceanic crust. It is interpreted to have formed by tectonic capture, during the Paleozoic, of a segment of what had previously been oceanic lithosphere generated at a late Proterozoic mid-oceanic spreading ridge.  相似文献   

14.
ULTRAMAFIC XENOLITHS FROM A KAMAFUGITE LAVA IN CENOZOIC VOLCANIC FIELD OF WEST QINLING, CHINA AND ITS GEOLOGICAL IMPLICATION  相似文献   

15.
Anhydrous and amphibole-bearing mantle peridotite xenoliths from Kapfenstein (Styrian Basin) have been studied with the aim of understanding both the processes responsible for amphibole formation and the nature of metasomatizing agents which affected this portion of lithosphere. This area of the Pannonian Basin underwent a subduction event which was followed after about 15 Ma, by alkaline intraplate magmatism. Primary clinopyroxene (cpx1) in four-phase lherzolite xenoliths is characterized by LREE-depleted to slightly LREE-enriched patterns. LREE-depleted cpx1 have low Th and U contents and Zr (and Hf) anomalies varying from slightly negative to positive. LREE-enriched cpx have high Th and U contents and remarkable positive anomalies of Zr and Hf. Primary clinopyroxenes in amphibole-bearing lherzolites present a comparable compositional variation from LREE (and Th, U, Zr, Hf)-depleted type to LREE (and Th, U, Zr, Hf)-enriched type. LREE-depleted cpx1, with strong negative Zr and Ti anomalies, are also recognized in the peridotite matrix of a composite sample cut by a large amphibole vein. Textural and geochemical evidence indicates that amphibole disseminated within the matrix grew at the expense of primary spinel and clinopyroxene, mimicking the trace element patterns of the latter. As a consequence, the geochemical features of amphibole vary in relation to those of clinopyroxene, from enriched to depleted. On the other hand, the composition of vein amphibole in the composite xenolith compares well with amphibole megacrysts and microphenocrysts, suggesting that it represents a fractionation product of alkaline melt that passed through the lithosphere. Two kinds of metasomatism, superimposed on a slightly depleted lithospheric mantle, were identified. A slab-derived melt (proto-adakite?) metasomatic agent was responsible for the first enrichment in Th, U, Zr and Hf observed in clinopyroxene, whereas an alkaline within-plate metasomatic agent caused the formation of the Nb (and Ta)- rich disseminated amphibole. The final process was the alkaline magmatism, which was responsible for the formation of the large amphibole vein and megacrysts. It is proposed that the Nb-poor and Nb-rich amphiboles record the transition between the suprasubduction slab melt-related and the intraplate alkaline metasomatism.

These geochemical features are consistent with a lithospheric portion enriched in slab melt components which was subsequently metasomatized by alkaline melt. Alternatively an asthenospheric uprising could have scavenged a previously slab melt-enriched region of the lithosphere.  相似文献   


16.
Three major types of xenoliths, namely, dunite, spinel lherzolite, and pyroxenite suites, occur. The spinel lherzolite suite [ol: Fo86–92] is more refractory than the pyroxenite suite [Fo71–85], and is composed of olivine, orthopyroxene, Cr-diopside, and spinel. Spinel lherzolites represent metasomatically modified mantle residues that constitute the lithosphere underneath Oahu. Metasomatism has induced significant heterogeneity in terms of [Na]cpx in the spinel lherzolitic lithosphere: compared to other vents, Salt Lake xenoliths are anomalously high in [Na]cpx. The fluids responsible for such a process may have been released after crystallization of the hydrous phases in pyroxenite suite veins intrusive into the spinel lherzolites.The pyroxenite suite rocks range from clinopyroxenites, wehrlites, websterites, to lherzolites and a rare dunite. Garnet generally occurs as a secondary phase forming reaction rims around spinel or exsolved blebs in clinopyroxene. Phlogopite and amphibole are common. The garnet-bearing pyroxenite suite rocks last equilibrated in the mantle at 1000°–1150° C and 16–25 kb (50–75 kms depth). Similar temperature range is recorded by the spinel lherzolite suite and rare plagioclase lherzolites. This P-T path is significantly hotter than a calculated conductive geotherm indicating that the lithosphere was substantially warmed up by passing Hawaiian magmas.Contribution No. 585, Geosciences Program, University of Texas at Dallas  相似文献   

17.
The diamondiferous Letlhakane kimberlites are intruded into the Proterozoic Magondi Belt of Botswana. Given the general correlation of diamondiferous kimberlites with Archaean cratons, the apparent tectonic setting of these kimberlites is somewhat anomalous. Xenoliths in kimberlite diatremes provide a window into the underlying crust and upper mantle and, with the aid of detailed petrological and geochemical study, can help unravel problems of tectonic setting. To provide relevant data on the deep mantle under eastern Botswana we have studied peridotite xenoliths from the Letlhakane kimberlites. The mantle-derived xenolith suite at Letlhakane includes peridotites, pyroxenites, eclogites, megacrysts, MARID and glimmerite xenoliths. Peridotite xenoliths are represented by garnet-bearing harzburgites and lherzolites as well as spinel-bearing lherzolite xenoliths. Most peridotites are coarse, but some are intensely deformed. Both garnet harzburgites and garnet lherzolites are in many cases variably metasomatised and show the introduction of metasomatic phlogopite, clinopyroxene and ilmenite. The petrography and mineral chemistry of these xenoliths are comparable to that of peridotite xenoliths from the Kaapvaal craton. Calculated temperature-depth relations show a well-developed correlation between the textures of xenoliths and P-T conditions, with the highest temperatures and pressures calculated for the deformed xenoliths. This is comparable to xenoliths from the Kaapvaal craton. However, the P-T gap evident between low-T coarse peridotites and high-T deformed peridotites from the Kaapvaal craton is not seen in the Letlhakane xenoliths. The P-T data indicate the presence of lithospheric mantle beneath Letlhakane, which is at least 150 km thick and which had a 40mW/m2 continental geotherm at the time of pipe emplacement. The peridotite xenoliths were in internal Nd isotopic equilibrium at the time of pipe emplacement but a lherzolite xenolith with a relatively low calculated temperature of equilibration shows evidence for remnant isotopic disequilibrium. Both harzburgite and lherzolite xenoliths bear trace element and isotopic signatures of variously enriched mantle (low Sm/Nd, high Rb/Sr), stabilised in subcontinental lithosphere since the Archaean. It is therefore apparent that the Letlhakane kimberlites are underlain by old, cold and very thick lithosphere, probably related to the Zimbabwe craton. The eastern extremity of the Proterozoic Magondi Belt into which the kimberlites intrude is interpreted as a superficial feature not rooted in the mantle. Received: 19 March 1996 / Accepted: 16 October 1996  相似文献   

18.
The Pliocene (7 Ma) Nb-enriched arc basalts of the ValovayamVolcanic Field (VVF) in the northern segment of the Kamchatkaarc, Russia, host abundant mantle xenoliths, including spinelIherzolites. Textural and microstructural evidence for high-temperature,multi-stage, creep-related deformations in spinel Iherzolitessupports a sub-arc mantle derivation. Pyroxene chemistry indicatesthe existence of two compositional suites: (1) a Cr-diopsidesuite with low-Tt, moderate-Al clinopyroxene compositions, and(2) an Al-augite suite with high Al and Tt, and low Cr concentrationsin clinopyroxene. Some spinel lherzolite xenoliths contain metasomaticAl-augite-type clinopyroxene, Al-Tt spinel, and felsic veinssimilar to trondhjemite melt. The Al-augite series xenolithstypically contain high-Na plagioclase, Cr-poor, Al-Fe-Mg andAl-Tt-Fe spinels, with occasional almandine-grossularite garnetand high-Al and -Na pargasitic amphibole. Pyroxene and spinel compositional trends suggest that the Crdiopsideseries xenoliths from the VVF Nb-enriched arc basalts representan island-arc mantle affected by a metasomatic event. Occurrenceof high-Na plagioclase and trondhjemitic veins favors the additionof a metasomatic component with high Na, Al and Si to the northernKamchatka arc mantle. Trondhjemitic veins, representing siliceousslab melts, compositionally exemplify the metasomatic component.Na metasomatism by peridotite-slab melt interaction is an importantmantle hybridization process responsible for arc-related alkalinemagma generation from a veined sub-arc mantle. KEY WORDS: metasomatism; island arc; mantle xenoliths; Kamchatka; mantle  相似文献   

19.
粗粒与剪切结构橄榄岩捕虏体及其单斜辉石微量元素对比   总被引:1,自引:0,他引:1  
地山西栖霞具不同结构的“干”灾晶石相橄榄岩进行了全岩化学、微量元素,矿物成分和单斜辉石微量元素分析和对比。表明在橄榄岩从粗粒结构向剪切结构的转化中,随着变质变形作用的增强存在着复杂的熔/流体的加入富集和熔体的提取亏损作用;交代介质属具强渗透性的SiO2不饱和的硅酸盐碳酸岩熔体。同时发现不同结构橄榄岩中单斜辉石的REE与其全岩的REE程度有如下的关系;粗粒结构橄榄岩石中矿物与岩石的差别量大,但REE的配合分形可以反映全岩的情况;剪切结构橄榄岩中两者的差别较小。其它高度不相容微量元素可能主要赋存粒间组分或/和矿物流体包裹体中。  相似文献   

20.
 Mantle xenoliths hosted by the Historic Volcan de San Antonio, La Palma, Canary Islands, fall into two main group. Group I consists of spinel harzburgites, rare spinel lherzolites and spinel dunites, whereas group II comprises spinel wehrlites, amphibole wehrlites, and amphibole clinopyroxenites. We here present data on group I xenoliths, including veined harzburgites and dunites which provide an excellent basis for detailed studies of metasomatic processes. The spinel harzburgite and lherzolite xenoliths have modal ol−opx−cpx ratios and mineral and whole rock major element chemistry similar to those found in Lanzarote and Hierro, and are interpreted as highly refractory, old oceanic lithospheric mantle. Spinel dunites are interpreted as old oceanic peridotite which has been relatively enriched in olivine and clinopyroxene (and highly incompatible elements) through reactions with basaltic Canarian magmas, with relatively high melt/peridotite ratio. Group I xenoliths from La Palma differ from the Hierro and Lanzarote ones by a frequent presence of minor amounts of phlogopite (and amphibole). Metasomatic processes are also reflected in a marked enrichment of strongly incompatible relative to moderately incompatible trace elements, and in a tendency for Fe−Ti enrichment along grain boundaries in some samples. The veins in the veined xenoliths show a gradual change in phase assemblage and composition of each phase, from Fe−Ti-rich amphibole+augite+Fe−Ti-oxides+apatite+basaltic glass, to Ti-poor phlogopite+Cr-diopside±chromite+ Si−Na−K-rich glass+fluid. Complex reaction zones between veins and peridotite include formation of clinopyroxene±olivine+glass at the expense of orthopyroxene in harzburgite, and clinopyroxene+spinel±amphibole±glass at the expense of olivine in dunite. The dramatic change in glass composition from the broadest to the narrowest veins includes increasing SiO2 from 44 to 67 wt%, decreasing TiO2/Al2O3 ratio from >0.24 to about 0.02, and increasing K2O and Na2O from 1.8 to >7.0 wt% and 3.8 to 6.7 wt%, respectively. The petrographic observations supported by petrographic mixing calculations indicate that the most silicic melts in the veined xenoliths formed as the result of reaction between infiltrating basaltic melt and peridotite wall-rock. The highly silicic, alkaline melt may represent an important metasomatic agent. Pervasive metasomatism by highly silicic melts (and possibly fluids unmixed from these) may account for the enriched trace element patterns and frequent presence of phlogopite in the upper mantle under La Palma. Received: 15 January 1996 / Accepted 30 May 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号