首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王学滨  刘杰  王雷  潘一山 《岩土力学》2004,25(7):1127-1130
提出了利用不同尺寸试件的轴向应力-应变曲线得到轴向应力-侧向应变曲线的一种方法,并研究了结构尺寸对轴向应力-侧向应变曲线的影响。根据尺寸不同试件的轴向应力-轴向应变曲线的实验结果,并基于梯度塑性理论的解析解,在应变软化阶段,确定出了各种试件的剪切带条数。由此求出了不同宽度试样的轴向应力-侧向应变曲线。剪切带条数与试件宽度之比是决定轴向应力-侧向应变曲线特征的关键指标。若该比率为常量,则上述曲线不具有尺寸效应。当宽试件及窄试件在局部化启动后,在试件内部都出现一条剪切带时,随着试件宽度的增加,该曲线越陡,甚至出现回跳。上述方法也可用于分析轴向应力-环向应变曲线的尺寸效应问题。尺寸效应的原因是局部化,但局部化并非总引起尺寸效应。  相似文献   

2.
单轴压缩岩样轴向回跳及侧向回跳理论研究   总被引:1,自引:0,他引:1  
王学滨 《岩土力学》2006,27(3):414-417
研究了单轴压缩条件下轴向回跳及侧向回跳之间的关系。在应变软化阶段,试样的弹性轴向应变及弹性侧向轴向应变由虎克定律确定;试样的轴向塑性应变及侧向塑性轴向应变由梯度塑性理论确定,它们与应力水平、剪切带倾角及宽度、软化模量及试样的尺寸有关。根据轴向应力-应变曲线及侧向应力-应变曲线软化段斜率的正负,得到了轴向回跳及侧向回跳的条件。轴向回跳的原因是轴向弹性应变的恢复快于轴向塑性应变的增加。侧向回跳的原因是侧向弹性应变的恢复快于侧向塑性应变的增加。当剪切带倾角的正切小于泊松比与试样宽高比之积时,若侧向变形发生回跳,则轴向变形就发生回跳;反之,若轴向变形发生回跳,则侧向变形就发生回跳。对于常规岩样,若侧向发生回跳,则轴向必定是回跳的。在应变软化阶段,根据轴向应变及侧向应变是否发生回跳,轴向应变与侧向应变曲线被划分为4种类型:即轴向回跳及侧向回跳情形、轴向回跳及侧向回跳情形、轴向不回跳及侧向回跳情形及轴向回跳及侧向不回跳情形,并得到了各种类型的条件。  相似文献   

3.
王学滨 《岩土力学》2008,29(2):353-358
利用编制的计算平面应变压缩岩样轴向、侧向、体积应变及泊松比的FISH函数,采用FLAC模拟了加载速度对剪切带图案及岩样全部变形特征的影响。在峰前及峰后,本构模型分别取为线弹性及莫尔-库仑剪破坏与拉破坏复合的应变软化模型。加载速度较低及适中时,岩样发生单剪切破坏,剪切带倾角及宽度不受加载速度影响,应力-轴向应变曲线及应力与侧向应变曲线软化段的斜率不依赖于加载速度;高加载速度使岩样发生X型剪切破坏,两种曲线软化段较平缓;在相同的轴向应变时,高加载速度使剪切带长度降低。随着加载速度的增加,岩样失稳破坏的前兆越来越明显,当加载速度较高时,前兆反而不明显,这是由于应力存在较大的波动,导致不正确地估计了应力峰值所对应的轴向应变。在应变软化阶段,高加载速度使侧向应变与轴向应变曲线、泊松比与轴向应变曲线及体积应变与轴向应变曲线变平缓,也使体积应变与轴向应变曲线的峰值及对应的轴向应变增加。  相似文献   

4.
王学滨 《岩土力学》2006,27(Z1):559-563
利用FLAC内嵌语言编制的计算平面应变压缩岩样轴向、侧向、体积应变及泊松比的FISH函数,计算了弹性模量不同时单缺陷岩样的全部变形特征,研究了弹性模量对岩样的破坏过程及前兆的影响。在峰前及峰后,岩石的本构模型分别取为线弹性模型及莫尔-库仑剪破坏与拉破坏复合的应变软化模型。当弹性模量不是较高时,岩样自始至终仅出现一条倾斜的剪切带。当弹模较高时,最终剪切应变仅强烈集中于贯通岩样的剪切带内部。剪切带倾角在Arthur与Coulomb倾角之间,且随弹模的增加而降低,经典理论对此不能解释。随着弹模的增加,峰值应力增加,峰前的应力-轴向应变曲线变得陡峭,峰后的应力-轴向应变曲线的斜率几乎不变。随着弹模的增加,峰值强度所对应的轴向应变及侧向应变的大小均降低;应力-侧向应变曲线软化段变得陡峭。随着弹模的降低,侧向应变-轴向应变曲线、泊松比-轴向应变曲线及体积应变-轴向应变曲线在峰前发生转折(偏离线性状态)的程度越来越大;非弹性轴向应变增加;材料缺陷附近的最大剪切应变增量增加。岩样破坏的前兆随着弹性模量的降低而逐渐增强。  相似文献   

5.
煤岩两体模型变形破坏数值模拟   总被引:3,自引:0,他引:3  
王学滨 《岩土力学》2006,27(7):1066-1070
采用拉格朗日元法,在弹性岩石与弹性-应变软化煤体所构成的平面应变两体模型的上、下端面上不存在水平方向摩擦力条件下,模拟了模型的破坏过程、岩石高度对模型及煤体全程应力-应变曲线、煤体变形速率、煤体破坏模式及剪切应变增量分布的影响。结果表明,当模型的全程应力-应变曲线达到峰值时煤体内部的剪切带图案已经十分明显,在模型的应变硬化阶段,煤体中的应变局部化可视为模型失稳破坏的前兆,随岩石高度的增加,模型应力-应变曲线的软化段变得陡峭,这与单轴压缩条件下的解析解在定性上是一致的;煤体应力-应变曲线的软化段变得平缓,煤体消耗能量的能力增强;弹性阶段煤体的变形速率降低;煤体内部的剪切应变增量增加。煤体应力-应变曲线的软化段的斜率、弹性阶段煤体的变形速率、煤体内部的剪切应变增量及塑性耗散能都受岩石高度的影响,说明了岩石几何尺寸对煤体的影响(煤岩相互作用)是不容忽视的。  相似文献   

6.
泊松比对岩样破坏模式及全部变形特征的影响   总被引:1,自引:0,他引:1  
利用编写的计算岩样全部变形特征的FISH函数, 采用FLAC模拟了泊松比不同时单缺陷岩石试样的破坏及全部变形特征。在峰前及峰后, 本构模型分别取为线弹性模型及莫尔库仑剪破坏与拉破坏复合的应变软化模型。高泊松比使岩样发生由单一剪切破坏向复杂破坏转变、破坏区域的面积增加、剪切带倾角降低, Coulomb、Roscoe及Arthur理论对此无法解释。不同泊松比时计算得到的峰前应力-轴向应变曲线、应力-侧向应变曲线、侧向应变-轴向应变曲线、体积应变-轴向应变曲线的线性阶段与平面应变压缩条件下的线弹性解吻合。若泊松比超过1/3, 通过计算得到的平面应变压缩泊松比可大于0.5, 这被数值模拟确认。泊松比的增加使峰后的侧向应变-轴向应变曲线、体积应变-轴向应变曲线、计算得到的泊松比-轴向应变曲线变得不陡峭, 使峰后的应力-侧向应变曲线变得陡峭, 使破坏的前兆变得不明显。   相似文献   

7.
强度参数对初始随机缺陷岩样全部变形的影响   总被引:1,自引:1,他引:0  
在单轴平面应变压缩条件下, 采用FLAC模拟了初始内聚力及内摩擦角对具有随机材料缺陷岩样轴向、侧向、体积变形及由侧向应变及轴向应变计算得到的泊松比的演变的影响。采用编写的FISH函数于试样内部规定随机缺陷并计算其全部变形特征。密实的岩石服从莫尔库仑剪破坏与拉破坏复合的破坏准则, 破坏之后呈现应变软化—理想塑性行为。随着强度参数(初始内聚力及内摩擦角)的增加, 应力峰值及对应的侧向应变的值提高, 体积应变的峰值增加, 应力峰值所对应的计算得到的泊松比稍有增加。由于被剪切带所分割的毗邻块体之间的相对滑动, 纵然扩容角为零, 试样在峰后的变形阶段, 仍然可以观察到体积膨胀现象, 这与作者的理论分析结果一致。当强度参数降低时, 侧向应变—轴向应变曲线、体积应变—轴向应变曲线及计算得到的泊松比—轴向应变曲线的峰前非线性部分变得短暂。剪切带倾角的数值解的上限低于Coulomb理论, 下限在Roscoe理论附近波动, Arthur理论的预测结果与本文剪切带倾角的数值解更接近.   相似文献   

8.
王学滨 《岩土力学》2006,27(8):1241-1247
在平面应变压缩条件下,采用拉格朗日元法研究了材料缺陷对岩样应变局部化及宏观力学行为的影响。在数值计算中,采用了莫尔-库仑与拉破坏复合的破坏准则,峰后岩石的本构关系为线性应变软化。对于理想岩样(不含任何缺陷),从剪切应变率的等值线图及变形网格图发现,变形场相对试样垂直对称轴对称。在试样的边界上设置材料缺陷后,变形场的对称性被打破。材料缺陷附近是局部化现象启动的主要位置。与不含材料缺陷试样相比,含缺陷试样的局部化提前启动。当缺陷位于试样左边界中部附近时,试样内部出现多条剪切带,发生韧性剪切破坏,峰后应力-轴向应变曲线和应力-侧向应变曲线均倾向于韧性,岩样的稳定性增强;当缺陷位于试样上、下端面附近时,仅出现一条贯穿试样左右边界的剪切带,发生脆性剪切破坏,峰后两种曲线倾向于脆性,易发生失稳破坏。从数值结果中还观测到了剪切带的跳跃或迁移现象及剪切带的相互竞争、此消彼涨的现象。当岩样中不包含任何缺陷时,试样应力-变形曲线的峰值强度最高。随着缺陷的上移,峰值强度下降,直到峰值强度基本保持不变。缺陷越接近于岩样的下端,对岩样应力-变形曲线的峰值强度的影响越小。  相似文献   

9.
加载速度对断层-围岩系统变形及快速回跳的影响   总被引:2,自引:1,他引:1  
王学滨 《岩土力学》2006,27(2):242-246
在平面应变状态下,采用拉格朗日元法模拟了加载速度对断层-围岩系统形成时的应力水平、塑性区尺寸及剪切带图案、系统的最大承载能力以及快速回跳发生时的应力水平的影响。在数值计算中,采用了莫尔-库仑与拉破坏复合的破坏准则。峰后岩石的本构关系为线性应变软化。通常断层带-围岩系统形成之后系统的承载能力达到最大,之后系统的承载能力开始下降处于应变软化状态。当位于试样加载端上的单元的压缩应力-压缩位移曲线的峰后刚度足够大时,系统就会发生弹性回跳现象,即失稳破坏。随着加载速度的增加,断层带-围岩系统形成时的应力水平、断层带-围岩系统的最大承载能力、快速回跳发生时的应力水平及上述三者所对应的加载端部位移都增加,屈服单元数目增多,塑性区域不再保持平直,这都将大大增加系统的变形阻力。当加载速度较大时,较高的剪切应变率集中在断层带位置及断层带之外的弹性体的某些区域都是可能的。  相似文献   

10.
单轴拉伸条件下岩石本构理论研究   总被引:2,自引:0,他引:2  
利用损伤力学理论研究了细观非均匀性岩石拉伸应力应变关系,包括:线弹性阶段、非线性强化阶段、应力降阶段、应变软化阶段。所用的模型分析了岩石的细观各向异性对全过程应力应变关系的影响,分析了产生应力跌落和应变软化的主要原因是损伤和变形局部化,将损伤和变形局部化引入本构模型是和以往模型的重要区别。通过与实验成果对比分析验证了模型的正确性和有效性。  相似文献   

11.
单一岩石变形特性及本构关系的研究   总被引:3,自引:2,他引:1  
姜永东  鲜学福  粟健 《岩土力学》2005,26(6):941-945
利用MTS815岩石材料试验机试验,得到了在不同围压下砂岩的应力-应变全过程曲线及曲线上的压密、弹性、应变硬化(塑性)和应变软化(破裂)的4个阶段。分析了各阶段岩石的变形特性和围压对岩石强度的影响。根据岩石的变形特性提出以Duncan模型为基础的、能够描述岩石压密、弹塑性和破裂段的单一岩石本构模型,用改进的模型分析了岩石变形破坏机理。实验表明,提出的改进本构关系能更好地描述岩石的变形和破裂。  相似文献   

12.
王学滨 《岩土力学》2005,26(Z2):189-195
由于从实验及理论角度研究岩样单轴拉伸条件下的破坏全过程及尺寸效应难度都很大。因此采用拉格朗日元法来研究这些问题。在峰值强度之前后,岩石材料的本构模型分别取为线弹性及拉破坏线性应变软化模型。为了使拉伸塑性区不出现在试样的端部,在试样的两侧面中部预制了2个凹槽。数值模拟结果表明,全程拉应力-拉应变曲线分为峰前和峰后阶段。在接近峰值的峰前阶段,由于两凹槽附近具有明显的拉应力集中现象,拉伸塑性区最先出现在两凹槽附近。随着轴向拉应变的增加,发生拉伸破坏的单元的数目增加,新发生拉伸破坏的单元越来越接近试样的中心,直到两块拉伸塑性区在应变软化阶段贯通。两凹槽连线上各单元拉应力的分布呈现3个阶段,“澡盆型”(“U型”)阶段,“双峰型”(“M型”)阶段及“单峰型”(“Π型”)阶段。“澡盆型”阶段对应于全程拉应力-拉应变曲线的弹性阶段。“双峰型”阶段及“单峰型”阶段对应于全程拉应力-拉应变曲线的非弹性阶段(包括峰值强度之前的一小段,即应变硬化阶段及峰后的应变软化阶段)。增加试样高度及降低试样宽度,拉应力-拉应变曲线的软化段变得越来越陡峭,因而试样越容易发生失稳破坏。由于试样宽度较大时,试样内部的单元并非处于单向拉应力状态,因此,增加试样宽度,全程拉应力-拉应变曲线的峰值强度增加。当试样宽度较小时,从出现塑性区,到塑性区贯通所需要的时间步较小,或应变范围较窄。这说明试样的脆性较强,前兆不明显。前兆不明显的脆性破坏对应常见的是洞室岩爆、冲击地压及地震等灾害。  相似文献   

13.
卢高明  李元辉 《岩土力学》2016,37(7):1847-1856
为研究三向应力状态下周期荷载对工程岩体长期稳定性的影响,对黄砂岩试样进行了不同围压的常规三轴压缩试验和周期轴向荷载疲劳试验,得到了黄砂岩疲劳破坏的轴向、环向及体积变形特性。试验结果表明:常规三轴轴向周期荷载作用下,黄砂岩疲劳破坏的轴向、环向以及体积变形受到静态应力-应变曲线变形量的控制;疲劳破坏轴向、环向的峰值变形和不可逆变形均符合三阶段倒S型曲线发展演化规律;围压对轴向变形发展规律有一定强化作用,对环向变形发展规律却有所抑制;在疲劳破坏变形过程中,峰值应变ε_(max)具有和不可逆应变ε~p相似的发展规律,弹性应变ε~e在3个阶段基本保持不变,不可逆应变增量Dep的变化规律能够反映3个阶段应变速率的发展演化规律;变形比强度更适合作为岩石疲劳破坏的依据,黄砂岩的疲劳破坏变形特性研究为建立岩石的疲劳破坏力学模型做了基础。  相似文献   

14.
岩石节理剪切变形对岩体工程的安全性和稳定性具有重要影响。为研究常法向应力下岩石节理剪切变形本构关系,采用RDS-200型岩石直剪仪对非规则砂岩节理进行了不同法向应力下的直剪试验。根据岩石节理剪切应力?位移全程曲线形状特征,将其依次划分为峰前压密阶段、线性阶段、屈服阶段和峰后软化阶段;根据剪切应力在峰后软化阶段降低幅度和速率大小,将岩石节理剪切应力?位移曲线划分为3种类型:峰后平台型、峰后缓降型和峰后跌落型。基于岩石节理剪切应力?位移曲线各阶段剪切变形特征,采用分段函数建立了岩石节理剪切变形本构模型。与其他模型相比,新提出的岩石节理剪切变形本构模型对试验数据拟合精度更高,更好地描述了岩石节理剪切应力?位移全程曲线。另外,在通过岩石节理直剪试验由经验公式确定模型参数之后,所提出本构模型可在不同法向应力下实现对不同粗糙度岩石节理剪切应力?位移曲线的预测。研究结果对岩石节理剪切变形的数值模拟和工程估计具有一定的实用价值。  相似文献   

15.
岩体假三轴压缩及变形局部化剪切带数值模拟   总被引:20,自引:10,他引:20  
岩体试件应力-应变全过程曲线,剪切带图案及其演化规律不仅在理论上,而且在工程实践中有着重要的意义,利用快速拉格朗日分析法模拟了尺寸效应,加载速率和围压等因素对假三轴试件抗压应力-应变全过程曲线,变形局部化启动,稳定,剪切带图案及演化规律的影响。  相似文献   

16.
张本蛟  黄斌  傅旭东  肖磊 《岩土力学》2015,36(12):3417-3424
为了研究现场施工工艺下水泥土的强度及变形特性,对水泥搅拌桩钻孔芯样进行了无侧限抗压强度试验与三轴试验,分析了水泥掺量与围压对水泥土芯样强度、变形特性的影响规律。结果表明:随着水泥掺量的提高,水泥土芯样的强度明显增强,变形模量显著增大,但其破坏应变变小,脆性增大;水泥掺量超过18%的水泥土芯样其应力-应变关系表现为软化型,随着围压的提高,其强度增强,破坏应变增大,脆性降低,且应力-应变关系曲线有可能发生转型;不同围压下的水泥土芯样三轴试验先为体缩,后变化为体胀,发生剪胀的应变较破坏应变略小,是由剪切面上颗粒错动引起的,在颗粒错动达到一定程度后抗剪强度才发挥到峰值;水泥土的结构屈服应力比较大,在围压的作用下其胶结结构未发生破损,强度包线满足摩尔-库仑线性强度规律;根据水泥土的强度变形特征,应力-应变全曲线分弹性、塑性、软化3个阶段,可采用Popovics模型对其进行模拟,与试验结果较为吻合。  相似文献   

17.
脆性岩石侧向变形特征及损伤机理研究   总被引:4,自引:1,他引:3  
朱泽奇  盛谦  张占荣 《岩土力学》2008,29(8):2137-2143
进行了三峡花岗岩常规三轴压缩、保持轴向应变和保持轴向应力的卸围压试验,研究了脆性岩石在不同应力路径和不同加载控制方式下的侧向变形特征,可见临界侧向应变均稳定在(?0.004 ? 0.000 5)范围内。进一步进行三峡花岗岩的全过程应力-应变曲线和损伤力学分析,发现脆性岩石在不同应力路径和不同加载控制方式下均以侧向损伤为主,且侧向损伤曲线的形态近似,达到临界破坏状态时损伤值稳定在0.7?0.8左右。最后以侧向损伤变量表征花岗岩脆性破坏过程,建立了基于应变空间的、可以考虑卸荷应力路径的损伤模型和应变型破坏准则。  相似文献   

18.
刘恩龙  沈珠江 《岩土力学》2006,27(8):1277-1282
通过棱柱状结构体在不同排列方式下的平面应变压缩试验,研究了侧向应力卸载状态下结构体的破损过程,探讨了结构性岩土材料在卸侧向应力状态下的变形和破损机理。试验发现,在侧向应力卸载的过程中,棱柱状结构体会发生错动和结构体的破碎,结构体的破损方式主要有劈裂破坏和剪切开裂两种。结构体试样逐渐破损,宏观上出现应变硬化或应变软化现象,最后形成宏观的破损带。试件的总体体积是收缩的,侧向变形则由收缩逐渐转化为膨胀。  相似文献   

19.
围绕侧面位移桩的土壤变形不排水平面应变的研究提示出,土壤应力-应变定律和桩载传递曲线间的关系决定于土壤变形行为。用幂律来描述有应力-应变行为的土壤,整个桩位移流行的单一变形机理和应力-应变规律与载荷传递曲线紧密相连。基于此行为提出一个简单的设计方法。  相似文献   

20.
为探索不同冻融循环次数和围压作用对季节冻土区路基土在不同含水率条件下的应力-应变关系及损伤机理,以辽宁阜新市某公路区间为试验路段,采用环刀法选取试验路段路基土样,通过冻融循环及三轴压缩试验,得到在不同冻融循环次数及围压作用下路基土的应力-应变曲线变化规律;根据损伤力学及统计学原理,将Weibull分布与Lemaitre有效应力原理相结合,建立了季节冻土区路基土损伤本构模型。结果表明:冻融循环作用可导致路基土试件强度降低,且随着试件含水率的增加,应力-应变曲线呈现由应变软化逐渐表现为应变硬化特征,试件最优含水率为应变软化与应变硬化的分界点;随着围压的增大试件强度增加,在冻融循环次数较少且围压较低时,试件的应力-应变曲线出现峰值应力,曲线表现出应变软化特征,在冻融循环次数较多且围压较大时容易出现应变硬化现象;经对比分析,所建立的损伤本构模型与试验应力-应变曲线吻合度较好,且模型所需参数均可通过三轴试验获得,说明该模型能够较好地描述季节冻土区路基土的应力-应变关系,具有实用性。另由试验结果可知,为降低东北地区冻融循环作用对季节冻土区路基强度的影响,提前做好路基的防排水工作对于路基冻融病害防治是非常重要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号