首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
We investigated the dissolved oxygen metabolism of the Curonian Lagoon (Baltic Sea) to assess the relative contributions of pelagic and benthic processes to the development of transient hypoxic conditions in shallow water habitats. Metabolism measurements along with the remote sensing-derived estimates of spatial variability in chlorophyll a were used to evaluate the risk of hypoxia at the whole lagoon level. Our data demonstrate that cyanobacterial blooms strongly inhibit light penetration, resulting in net heterotrophic conditions in which pelagic oxygen demand exceeds benthic oxygen demand by an order of magnitude. The combination of bloom conditions and reduced vertical mixing during calm periods resulted in oxygen depletion of bottom waters and greater sediment nutrient release. The peak of reactive P regeneration (nearly 30 μmol m?2 h?1) coincided with oxygen depletion in the water column, and resulted in a marked drop of the inorganic N:P ratio (from >40 to <5, as molar). Our results suggest a strong link between cyanobacterial blooms, pelagic respiration, hypoxia, and P regeneration, which acts as a feedback in sustaining algal blooms through internal nutrient cycling. Meteorological data and satellite-derived maps of chlorophyll a were used to show that nearly 70 % of the lagoon surface (approximately 1,000 km2) is prone to transient hypoxia development when blooms coincide with low wind speed conditions.  相似文献   

2.
Eutrophication is considered the most important water quality problem in freshwaters and coastal waters worldwide promoting frequent occurrence of blooms of potentially toxic cyanobacteria. Removal of cyanobacteria from the water column using a combination of coagulant and ballast is a promising technique for mitigation and an alternative to the use of algaecides. In laboratory, we tested experimentally the efficiency of two coagulants, polyaluminium chloride (PAC) and chitosan (made of shrimp shells), alone and combined with two ballasts: red soil (RS) and the own lagoon sediment, to remove natural populations of cyanobacteria, from an urban brackish coastal lagoon. PAC was a very effective coagulant when applied at low doses (≤8 mg Al L?1) and settled the cyanobacteria, while at high doses (≥16 mg Al L?1) large flocks aggregated in the top of test tubes. In contrast, chitosan was not able to form flocks, even in high doses (>16 mg L?1) and did not efficiently settle down cyanobacteria when combined with ballast. The RS itself removed 33–47 % of the cyanobacteria. This removal was strongly enhanced when combined with PAC in a dose-dependent matter; 8 mg Al L?1 was considered the best dose to be applied. The lagoon sediment alone did not promote any settling of cyanobacteria but removal was high when combined with PAC. Combined coagulant and ballast seems a very efficient, cheap, fast and safe curative measure to lessen the harmful cyanobacteria bloom nuisance in periods when particularly needed, such as around the 2016 Olympics in Jacarepaguá Lagoon.  相似文献   

3.
This study addresses the distribution of total phosphorus (TP) and its inorganic (IP) and organic (OP) fractions, grain-size and organic matter of surface and recent sediments, coupled to the behavior of total and dissolved inorganic phosphorus (TP and DIP) of the water column, of the semi-pristine Guaratuba Bay estuary, SE Brazil. Surface sediment samples were taken at 43 sites spread along the estuarine gradient and recent sediments from 3 short (35 cm long) cores from the upper, central and lower portions of the estuary, respectively. Highest TP and IP concentrations of surface sediments were detected within the upper sector and the transition zone between the upper and central sectors, all characterized by fine sediments, low salinities and water depths. In contrast, the lower sector and its narrow and deep tidal channel, subject to more intense tidal forcing, exhibited a higher fraction of sandy sediments with lower TP, IP and OP contents. In spite of the spatial variability in sediment grain size, IP corresponded to the major fraction of TP in all estuarine sectors and both TP and IP correlated significantly with the fine sedimentary (silt + clay) grain-size fraction. The fine surface sediments acted as a trap for IP at the fresh water–low salinity interface, which also corresponded to the region of a DIP sink in surface waters. In general, the short sediment cores showed that TP and IP contents increased from 15 cm depths to the top layer. Published sedimentation rates from additional cores taken at the sites of the short cores of this study, implied that depositional alterations of TP and IP increased during the early 1970s, which corresponded to the onset of anthropogenic disturbances from crop plantations in the lowland plains of the river end-member and urbanization at the estuary’s mouth and along the adjacent coast.  相似文献   

4.
A combination of mixing plots, one-dimensional salt balance modelling, nutrient loading budgets, and benthic flux measurements were used to assess nutrient cycling pathways in the enriched sub-tropical Brunswick estuary during different freshwater flows. A simple model accounting for freshwater residence times and nutrient availability was found to be a good predictor of phytoplankton biomass along the estuary, and suggested that biomass accumulation may become nutrient-limited during low flows and that recycling within the water column is important during blooms. Dissolved inorganic nitrogen (DIN) cycling budgets were constructed for the estuary during different freshwater flows accounting for all major inputs (catchment, sewage, and urban) to the estuary. Internal cycling due to phytoplankton uptake (based on measured biomass) and sediment-water fluxes (based on measured rates in each estuarine reach) was considered. Four different nutrient cycling states were identified during the study. In high flow, freshwater residence times are less than 1 d, internal cycling processes are bypassed and virtually all dissolved, and most particulate, nutrients are delivered to the continental shelf. During the growth phase of a phytoplankton bloom enhanced recycling occurs as residence times increase sufficiently to allow biomass accumulation. Remineralization of phytoplankton detritus during this phase can supply up to 50% of phytoplankton DIN demands. In post-bloom conditions, DIN uptake by phytoplankton decreases in the autumn wet season when biomass doubling times begin to exceed residence times. OM supply to the sediments diminishes and the benthos becomes nutrient-limited, resulting in DIN uptake by the sediments. As flows decrease further in the dry season, there is tight recycling and phytoplankton blooms, and uptake by the sediments can account for the entire DIN loading to the estuary resulting in complete removal of DIN from the water column. The ocean is a potentially important source of DIN to the estuary at this time. The results of the DIN cycling budgets compared favorably with mixing plots of DIN at each time. The results suggest that a combination of different approaches may be useful in developing a more comprehensive understanding of nutrient cycling behavior and the effects of nutrient enrichment in estuaries.  相似文献   

5.
This paper deals with the spatial and seasonal recycling of organic matter in sediments of two temperate small estuaries (Elorn and Aulne, France). The spatio-temporal distribution of oxygen, nutrient and metal concentrations as well as the organic carbon and nitrogen contents in surficial sediments were determined and diffusive oxygen fluxes were calculated. In order to assess the source of organic carbon (OC) in the two estuaries, the isotopic composition of carbon (δ 13C) was also measured. The temporal variation of organic matter recycling was studied during four seasons in order to understand the driving forces of sediment mineralization and storage in these temperate estuaries. Low spatial variability of vertical profiles of oxygen, nutrient, and metal concentrations and diffusive oxygen fluxes were monitored at the station scale (within meters of the exact location) and cross-section scale. We observed diffusive oxygen fluxes around 15 mmol m?2 day?1 in the Elorn estuary and 10 mmol m?2 day?1 in the Aulne estuary. The outer (marine) stations of the two estuaries displayed similar diffusive O2 fluxes. Suboxic and anoxic mineralization was large in the sediments from the two estuaries as shown by the rapid removal of very high bottom water concentrations of NO x ? (>200 μM) and the large NH4 + increase at depth at all stations. OC contents and C/N ratios were high in upstream sediments (11–15 % d.w. and 4–6, respectively) and decreased downstream to values around 2 % d.w. and C/N ≤ 10. δ 13C values show that the organic matter has different origins in the two watersheds as exemplified by lower δ 13C values in the Aulne watershed. A high increase of δ 13C and C/N values was visible in the two estuaries from upstream to downstream indicating a progressive mixing of terrestrial with marine organic matter. The Elorn estuary is influenced by human activities in its watershed (urban area, animal farming) which suggest the input of labile organic matter, whereas the Aulne estuary displays larger river primary production which can be either mineralized in the water column or transferred to the lower estuary, thus leaving a lower mineralization in Aulne than Elorn estuary. This study highlights that (1) meter scale heterogeneity of benthic biogeochemical properties can be low in small and linear macrotidal estuaries, (2) two estuaries that are geographically close can show different pattern of organic matter origin and recycling related to human activities on watersheds, (3) small estuaries can have an important role in recycling and retention of organic matter.  相似文献   

6.
Three sediment stations in Himmerfjärden estuary (Baltic Sea, Sweden) were sampled in May 2009 and June 2010 to test how low salinity (5–7 ‰), high primary productivity partially induced by nutrient input from an upstream waste water treatment plant, and high overall sedimentation rates impact the sedimentary cycling of methane and sulfur. Rates of sediment accumulation determined using 210Pbexcess and 137Cs were very high (0.65–0.95 cm?year?1), as were the corresponding rates of organic matter accumulation (8.9–9.5 mol C?m?2?year?1) at all three sites. Dissolved sulfate penetrated <20 cm below the sediment surface. Although measured rates of bicarbonate methanogenesis integrated over 1 m depth were low (0.96–1.09 mol?m?2?year?1), methane concentrations increased to >2 mmol?L?1 below the sulfate–methane transition. A steep gradient of methane through the entire sulfate zone led to upward (diffusive and bio-irrigative) fluxes of 0.32 to 0.78 mol?m?2?year?1 methane to the sediment–water interface. Areal rates of sulfate reduction (1.46–1.92 mol?m?2?year?1) integrated over the upper 0–14 cm of sediment appeared to be limited by the restricted diffusive supply of sulfate, low bio-irrigation (α?=?2.8–3.1 year?1), and limited residence time of the sedimentary organic carbon in the sulfate zone. A large fraction of reduced sulfur as pyrite and organic-bound sulfur was buried and thus escaped reoxidation in the surface sediment. The presence of ferrous iron in the pore water (with concentrations up to 110 μM) suggests that iron reduction plays an important role in surface sediments, as well as in sediment layers deep below the sulfate–methane transition. We conclude that high rates of sediment accumulation and shallow sulfate penetration are the master variables for biogeochemistry of methane and sulfur cycling; in particular, they may significantly allow for release of methane into the water column in the Himmerfjärden estuary.  相似文献   

7.
From 1989 to 2007, a severe decline in Zostera noltii meadows was reported in the Arcachon Bay, with an accelerated regression after 2005. We investigated the inter-annual variability of the biogeochemistry of the sediment in an area affected by seagrass decline. In late summer and in winter of the years 2006, 2010, and 2011, sediment cores were collected at low tide on vegetated and adjacent non-vegetated sediments located in the eastern part of the Arcachon Bay. The geochemical analyses of sediment solid-phase organic carbon, reactive P and Fe, and the pore water concentrations of Fe2+, DIP, and NH4 + are presented. The changes in the chemistry of sediment and pore water between 2006 and 2010 are interpreted as a consequence of the decrease in the Z. noltii biomass between 2006 and 2010. The absence of significant seasonal variations in biomass throughout the growth period (March–September) in 2011 is most likely related to the regression of Z. noltii meadow that strongly affects the study area. In contrast to the healthy meadow in 2006, the declining meadow favored the dissolution of sedimentary particulate phosphorus in winter. In late summer, the low biomass of seagrass resulted in a net release of ammonium in the pore water of the upper 20 cm of sediment. This study clearly shows that seagrass decay may enhance nutrient release in sediments, resulting in a significant supply of phosphorus to the water column of a magnitude comparable to annual inputs to the lagoon from the rivers and the tidal pump.  相似文献   

8.
Oxygen profiles were measured in the sediments of the Gulf of Aqaba (Red Sea), an oligotrophic marine system affected by episodic seasonal flash floods and intense aeolian dry deposition. Sediment cores were retrieved from shallow (15–45 m), intermediate (250–561 m) and deep (700 m) water sites of south–north and east–west transects. Dissolved oxygen concentrations were measured simultaneously by using microelectrodes and microoptodes immediately after sampling and after transportation. Oxygen penetration depths were found to increase from 2 to 5 mm at the shallow water sites with sandy permeable sediments to 10–21 mm at the deeper sites with cohesive muddy sediments. This increase corresponds to decrease in oxygen diffusive fluxes at the sediment–water interface and oxygen consumption rates with depth. Oxygen consumption rates exhibit local maxima at the oxic–anoxic sediment boundary, which may be attributed to oxygen reduction coupled to oxidation of dissolved Fe(II) and Mn(II) at deep and intermediate water sites and of hydrogen sulfide at shallow water sites. Microelectrodes and microoptodes measurements of cohesive sediments from deep and intermediate water sites yielded similar results. By comparison, the microoptodes displayed more robust measurements than microelectrodes in sandy near-shore sediments. This was attributed to their flexible fiber structure that is less likely to break or to abruptly displace sand particles. After transportation of sediment cores from Eilat to Beer Sheva followed by ≤?24-h storage, no changes in oxygen fluxes and consumption rates were detected.  相似文献   

9.
Florida Bay is Florida’s (USA) largest estuary and has experienced harmful picocyanobacteria blooms for nearly two decades. While nutrient loading is the most commonly cited cause of algal blooms in Florida Bay, the role of zooplankton grazing pressure in bloom occurrence has not been considered. For this study, the spatial and temporal dynamics of cyanobacteria blooms, the microbial food web, microzooplankton and mesozooplankton grazing rates of picoplankton, and the effects of nutrients on plankton groups in Florida Bay were quantified. During the study, cyanobacteria blooms (>3 × 105 cells mL−1) persisted in the eastern and central regions of Florida Bay for more than a year. Locations with elevated abundance of cyanobacteria hosted microzooplankton grazing rates on cyanobacteria that were significantly lower (p < 0.001) and less frequently detectable compared to sites without blooms. Consistent with this observation, cyanobacteria abundances were significantly correlated with ciliates and heterotrophic nanoflagellates at low cyanobacteria densities (p < 0.001) but were not correlated during bloom events. The experimental enrichment of mesozooplankton abundance during blooms yielded a significant decrease in the net growth rate of picoplankton but had the opposite effect when blooms were absent, suggesting that the cascading effect of mesozooplankton grazing on the microbial food web was also altered during blooms. While inorganic nutrient enrichment significantly increased the net growth rates of eukaryotic phytoplankton and heterotrophic bacteria, such nutrient loading had no effect on the net growth rates of cyanobacteria. Hence, this study demonstrates that low rates of zooplankton grazing and low rates of inorganic nutrient loading contribute to the persistence of cyanobacteria blooms in Florida Bay.  相似文献   

10.
Mangrove Lagoon, located on the island of St. Croix, US Virgin Islands (USVI), is one of few actively bioluminescent lagoons in a location experiencing significant anthropogenic impacts. The bioluminescence is due to an abundance of the dinoflagellate Pyrodinium bahamense in the water column. We recovered surface sediments and sediment cores from Mangrove Lagoon to analyze the spatial distribution and temporal variability of P. bahamense cysts in this system. Surface sediment P. bahamense cyst concentrations ranged from 0 to 466 cysts g?1 dry sediment, with higher abundances associated with elevated surface water nutrient concentrations and a mixed terrestrial–marine organic matter source regime. In combination with available bioassay data, we hypothesize that phytoplankton utilize nutrients rapidly and subsequent decay of organic matter makes nutrients available for dinoflagellates at the sediment–water interface in the eastern and northern quadrants of the lagoon. However, the nutrients are rapidly exhausted during counterclockwise lagoon circulation resulting in the decline of primary productivity and dinoflagellate abundance in the western quadrants. Downcore profiles suggest that P. bahamense blooms have been occurring for decades, declining in recent years. No cysts were present in sediments predating dredging activities of the 1960s that created Mangrove Lagoon. Recent reductions in cyst abundance may be the result of limited primary productivity caused by restricted water exchange with Salt River Bay due to shallowing of a sill at the mouth of the lagoon. This research highlights the need for more comprehensive geochemical and fossil analyses to better understand long-term ecological variability and inform conservation efforts of these unique habitats.  相似文献   

11.
A study was conducted between April 2004 and September 2005 to estimate groundwater and nutrient discharge to the Neuse River estuary in North Carolina. The largest groundwater fluxes were observed to occur generally within 20 m of the shoreline. Groundwater flux estimates based on seepage meter measurements ranged from 2.86?×?108 to 4.33?×?108 m3 annually and are comparable to estimates made using radon, a simple water-budget method, and estimates derived by using Darcy’s Law and previously published general aquifer characteristics of the area. The lower groundwater flux estimate (equal to about 9 m3 s?1), which assumed the narrowest groundwater discharge zone (20 m) of three zone widths selected for an area west of New Bern, North Carolina, most closely agrees with groundwater flux estimates made using radon (3–9 m3 s?1) and Darcy’s Law (about 9 m3 s?1). A groundwater flux of 9 m3 s?1 is about 40% of the surface-water flow to the Neuse River estuary between Streets Ferry and the mouth of the estuary and about 7% of the surface-water inflow from areas upstream. Estimates of annual nitrogen (333 tonnes) and phosphorus (66 tonnes) fluxes from groundwater to the estuary, based on this analysis, are less than 6% of the nitrogen and phosphorus inputs derived from all sources (excluding oceanic inputs), and approximately 8% of the nitrogen and 17% of the phosphorus annual inputs from surface-water inflow to the Neuse River estuary assuming a mean annual precipitation of 1.27 m. We provide quantitative evidence, derived from three methods, that the contribution of water and nutrients from groundwater discharge to the Neuse River estuary is relatively minor, particularly compared with upstream sources of water and nutrients and with bottom sediment sources of nutrients. Locally high groundwater discharges do occur, however, and could help explain the occurrence of localized phytoplankton blooms, submerged aquatic vegetation, or fish kills.  相似文献   

12.
We utilized an extensive data set (1977–2013) from a water quality monitoring program to investigate the recovery of a Danish estuary following large reductions in total phosphorus (TP) and total nitrogen (TN) loading. Monthly rates of net transport and biogeochemical transformation of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) were computed in two basins of the estuary using a box model approach, and oxygen-based rates of net ecosystem production (NEP) were determined. Since 1990, nutrient loading was reduced by 58 % for nitrogen and 80 % for phosphorus, causing significant decreases in DIN (60 %) and DIP (85 %) concentrations. Reductions in nutrient loadings and concentrations reduced annual chlorophyll levels by 50 % in the inner estuary and improved Secchi depth by approximately 1 m during the same period, particularly in the summer period. In the outer, deeper region of the estuary trends in water quality was less evident. Improvements in the inner estuary were strongly coupled to declines in DIN. Thresholds of DIN and DIP concentrations limiting phytoplankton growth indicated that both regions of the estuary were nitrogen limited. NEP rates indicated the development of more net autotrophic conditions over time that were likely associated with higher benthic primary production stimulated by improved light conditions. Box model computations revealed a modest reduction in summer net production of DIP over time, despite the persistence of elevated fluxes for several years after external loads were reduced. Since the mid-1990s, nutrient loading and transformation were stable while nutrient concentrations continued to decline and water quality improved in the inner estuary. The oligotrophication trajectory involved an initial fast transformation and modest retention of nutrients followed by a gradual decline in the rate of improvement towards a new stable condition.  相似文献   

13.
Porewater (i.e., groundwater) samples were collected from multi-level piezometers across the freshwater-saltwater seepage face within the Indian River Lagoon subterranean estuary along Florida’s (USA) Atlantic coast for analysis of the rare earth elements (REE). Surface water samples for REE analysis were also collected from the water column of the Indian River Lagoon as well as two local rivers (Eau Gallie River, Crane Creek) that flow into the lagoon within the study area. Concentrations of REEs in porewaters from the subterranean estuary are 10-100 times higher than typical seawater values (e.g., Nd ranges from 217 to 2409 pmol kg−1), with submarine groundwater discharge (SGD) at the freshwater-saltwater seepage face exhibiting the highest REE concentrations. The elevated REE concentrations for SGD at the seepage face are too high to be the result of simple, binary mixing between a seawater end-member and local terrestrial SGD. Instead, the high REE concentrations indicate that geochemical reactions occurring within the subterranean estuary contribute substantially to the REE cycle. A simple mass balance model is used to investigate the cycling of REEs in the Indian River Lagoon and its underlying subterranean estuary. Mass balance modeling reveals that the Indian River Lagoon is approximately at steady-state with respect to the REE fluxes into and out of the lagoon. However, the subterranean estuary is not at steady-state with respect to the REE fluxes. Specifically, the model suggests that the SGD Nd flux, for example, exported from the subterranean estuary to the overlying lagoon waters exceeds the combined input to the subterranean estuary from terrestrial SGD and recirculating marine SGD by, on average, ∼100 mmol day−1. The mass balance model also reveals that the subterranean estuary is a net source of light REEs (LREE) and middle REEs (MREE) to the overlying lagoon waters, but acts as a sink for the heavy REEs (HREE). Geochemical modeling and statistical analysis further suggests that this fractionation occurs, in part, due to the coupling between REE cycling and iron redox cycling within the Indian River Lagoon subterranean estuary. The net SGD flux of Nd to the Indian River Lagoon is ∼7-fold larger than the local effective river flux to these coastal waters. This previously unrecognized source of Nd to the coastal ocean could conceivably be important to the global oceanic Nd budget, and help to resolve the oceanic “Nd paradox” by accounting for a substantial fraction of the hypothesized missing Nd flux to the ocean.  相似文献   

14.
In order to better understand phosphorus (P) cycling and origins in the sediment of the Lake Illawarra, two sediment cores were extracted in November, 2010 and a modified sequential extraction scheme (SEDEX) was used to profile the exchangeable P (Pex), reactive Fe/Al-bound P (Preac), reductive Fe/Al-bound P (Predu), authigenic apatite P (Pauth), detrital P (Pdet), organic P (Porg) and residual P (Presi). The total sedimentary P (TP) ranged from 93 to 437 μg g?1, and was dominated by inorganic P. The average percentage of each fraction of P in the sediment followed the sequence: Preac (28.6 %) > Presi (23.5 %) > Pauth (19.1 %) > Predu (17.0 %) > Porg (4.9 %) > Pex (4.7 %) > Pdet (2.2 %). The profiles of TP and Porg showed two peak values with depth, which were matched to land use history in the Lake Illawarra catchment. The sediment depth profiles indicated that Fe oxyhydroxides play a predominant role in the P cycle in the sediments of the lagoon. This is supported by significant positive correlation between Preac and reactive Fe and a negative correlation between Pauth and Fe. Pauth and Preac concentrations were also well negatively correlated, possibly a result of competitive equilibrium between Fe and Ca for P. The estimated P burial efficiency was up to 82 % for this lagoon, which is likely related to the high sediment accumulation rate and the high value of R Fe-P. In addition, the bioavailable P, which consists of Pex, Preac, and Porg, represented a significant proportion of the sedimentary P pool, accounting, on average, for 38 % of the TP. This result indicates that the sediment is a potential internal source of P for this lake ecosystem.  相似文献   

15.
Research concerning the fate and biogeochemical cycling of mercury (Hg) within coastal ecosystems has suggested that microbially mediated diagenetic processes control Hg mobilization and that ligands with strong affinity for Hg, such as dissolved inorganic sulfide (S(-II)) and dissolved organic matter (DOM), control Hg partitioning between the dissolved and particulate phases. We have studied total Hg cycling in the sediments of the Penobscot River estuary using a combination of equilibrium porewater samplers and kinetic modeling. The Penobscot estuary has been subject to Hg contamination from multiple industries including a recently closed chlor-alkali production facility. The Hg concentration within the estuary surface sediments ranges from 1.25 to 27.5 nmol Hg g−1 sediment and displays an association with sediment organic matter and a concentration maximum within 3 cm of the sediment-water interface (SWI). Porewater profiles for the Penobscot estuary are divisible into three kinetically discrete intervals with respect to Hg dynamics. Beginning at depth in the sediment and moving upward toward the SWI we have defined: (1) a zone of net Hg solubilization at depth, with a zero-order net Hg production rate , (2) a zone of net Hg consumption within the zone dominated by FeS(s) precipitation with , and (3) a zone of net diffusive transfer within the vicinity of the SWI. Zone 1 is characterized by dissolved S(-II) concentrations ranging from 400 to 500 μM. Equilibrium modeling in this zone suggests that inorganic S(-II) plays the dominant role in both mobilization of sediment-bound Hg and complexation of dissolved Hg. In zone 2, FeS(s) precipitation occurs concomitant with Hg consumption. Net transfer within zone 3 is consistent with the potential for ligand-mediated Hg efflux across the SWI. S(-II)-mediated Hg mobilization at depth in Penobscot estuary sediments suggests a broadening of the depth interval over which biogeochemical Hg cycling must be examined. Our results also show that, while estuary sediments act as a net sink for particulate Hg inputs, they may also function for a considerable time interval as a source of dissolved Hg.  相似文献   

16.
Net ecosystem metabolism (NEM) was measured in the Piauí River estuary, NE Brazil. A mass balance of C, N, and P was used to infer its sources and sinks. Dissolved inorganic carbon (DIC) concentrations and fluxes were measured over a year along this mangrove dominated estuary. DIC concentrations were high in all estuarine sections, particularly at the fluvial end member at the beginning of the rainy season. Carbon dioxide concentrations in the entire estuary were supersaturated throughout the year and highest in the upper estuarine compartment and freshwater, particularly at the rainy season, due to washout effects of carbonaceous soils and different organic anthropogenic effluents. The estuary served as a source of DIC to the atmosphere with an estimated flux of 13 mol CO2 m?2 year?1. Input from the river was 46 mol CO2 m?2 year?1. The metabolism of the system was heterotrophic, but short periods of autotrophy occurred in the lower more marine portions of the estuary. The pelagic system was more or less balanced between auto- and heterotrophy, whereas the benthic and intertidal mangrove region was heterotrophic. Estimated annual NEM yielded a total DIC production in the order of 18 mol CO2 m?2 year?1. The anthropogenic inputs of particulate C, N, and P, dissolved inorganic P (DIP), and DIC were significant. The fluvial loading of particulate organic carbon and dissolved inorganic nitrogen (DIN) was largely retained in two flow regulation and hydroelectric reservoirs, promoting a reduction of C:N and C:P particulate ratios in the estuary. The net nonconservative fluxes obtained by a mass balance approach revealed that the estuary acts as a source of DIP, DIN, and DIC, the latter one being almost equivalent to the losses to the atmosphere. Mangrove forests and tidal mudflats were responsible for most of NEM rates and are the main sites of organic decomposition to sustain net heterotrophy. The main sources for this organic matter are the fluvial and anthropogenic inputs. The mangrove areas are the highest estuarine sources of DIP, DIC, and DIN.  相似文献   

17.
A two-dimensional, vertically integrated, nonlinear numerical model was applied to investigate the tide-driven bed load transport of sediments and morphodynamics in the shallow coastal lagoon of Yavaros, located in the southeastern part of the Gulf of California, Mexico. Satellite imagery exposes strong sediment dynamics in this coastal region. The dynamics in the lagoon were forced by 13 tidal constituents at the open boundary. Tides are of a mixed character and they are predominantly semidiurnal. The calculations showed areas of intense tidal currents and considerable water exchange with the Gulf of California. Numerical experiments revealed an ebb-dominant tidal distortion and a net export of sediment from the lagoon to the Gulf of California. A simulation of 20 years showed that the lagoon exported about 1,600 m3 of sediment; however, the daily oscillating exchange of sediment reached values of around 8 m3. The daily averaged flux of export–import sediments oscillates principally with semiannual, monthly and fortnightly periods. By applying a threshold velocity, a variable friction coefficient and the calculated amplitude of tidal velocities, it was possible to determine that morphological changes occur in zones of sharp topographic gradients and to explain the effect of friction on the export–import process of sediments. A 10-year simulation revealed that accumulation of sediment (~20 cm) occurred in small areas, whereas erosion occurred in larger areas but with less intensity (~8 cm). Besides the importance for the morphodynamics, these kinds of erosion–accretion processes may be relevant for the marine ecology.  相似文献   

18.
Information on the chemical composition of phosphorus (P) fractions in sediments is fundamental to understanding P bioavailability and eutrophication in lake ecosystems. Phosphorus fractions and its bioavailability in sediments cores of Lake Hongfeng, southwest China, were investigated using a chemical sequential extraction scheme. Relationships between P fractions, P bioavailability and particle sizes were discussed. P fractions concentrations were ranked in the order: Residual-P > NaOH–rP > NaOH–NRP > HCl–P > BD–P > NH4Cl–P, and all of them decreased with increasing sediment depth. Statistical analysis showed that concentrations of bioavailable P (BAP) which includes the NH4Cl–P, BD–P, NaOH–rP and NaOH–NRP fractions ranged from 404.68 to 1,591.99 mg/kg and accounted for 26.8–71.8 % of the concentrations of total phosphorus (TP) in the top 5 cm sediments, whereas in the whole sediment cores, their concentrations ranged from 239.70 to 1,591.99 mg/kg and accounted for 26.8–76.0 % of TP. The results suggested that the sediments were a large potential source of P for algae blooms in Lake Hongfeng. Phosphorus fractions and their potential bioavailability were influenced by the sediment particle sizes, especially the bioavailability of the NH4Cl–P fraction, which was strongly affected by the presence of fine particle sizes in the sediments.  相似文献   

19.
Salinity variations in restricted basins like the Baltic Sea can alter their vulnerability to hypoxia (i.e., bottom water oxygen concentrations <2 mg/l) and can affect the burial of phosphorus (P), a key nutrient for marine organisms. We combine porewater and solid-phase geochemistry, micro-analysis of sieved sediments (including XRD and synchrotron-based XAS), and foraminiferal δ18O and δ13C analyses to reconstruct the bottom water salinity, redox conditions, and P burial in the Ångermanälven estuary, Bothnian Sea. Our sediment records were retrieved during the Integrated Ocean Drilling Program (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013. We demonstrate that bottom waters in the Ångermanälven estuary became anoxic upon the intrusion of seawater in the early Holocene, like in the central Bothnian Sea. The subsequent refreshening and reoxygenation, which was caused by gradual isostatic uplift, promoted P burial in the sediment in the form of Mn-rich vivianite. Vivianite authigenesis in the surface sediments of the more isolated part of the estuary ultimately ceased, likely due to continued refreshening and an associated decline in productivity and P supply to the sediment. The observed shifts in environmental conditions also created conditions for post-depositional formation of authigenic vivianite, and possibly apatite formation, at ~8 m composite depth. These salinity-related changes in redox conditions and P burial are highly relevant in light of current climate change. The results specifically highlight that increased freshwater input linked to global warming may enhance coastal P retention, thereby contributing to oligotrophication in both coastal and adjacent open waters.  相似文献   

20.
San Quintin Bay, Mexico, is a hypersaline coastal lagoon where the main external forcing of physical and biogeochemical processes is oceanic. Non-conservative fluxes of inorganic N (ΔDIN) and P (ΔDIP), and aspects of net ecosystem metabolism were studied in this lagoon during August 1995, August 1996, and February 1996, by following the LOICZ budgetary modeling approach. The whole-system water exchange time during summer (≈13 d) was shorter than in winter (≈26 d) as northwesterly winds enhancing mixing with the ocean are more intense during the spring-summer upwelling season. Whole-bay ΔDIP values of +0.2 to +0.3 mmol m?2 d?1 in August, and <+0.01 mmol m?2 d?1 in February indicate that the system is a net source of dissolved inorganic phosphorus (DIP). DIP fluxes from the Bay to the ocean during August are probably balanced by a net import of particulate organic matter between 1,000–1,300 × 103 mol C d?1, equivalent to a net ecosystem production (NEP) between ?24 and ?31 mmol C m?2 d?1. ΔDIN showed opposite trends in August 1995 and August 1996, with a net import of 13×103 mol N d?1 and a net export of 30× 103 mol N d?1, respectively. However, N fixation minus denitrification (“apparent denitrification”) estimates of ≈?4 mmol N m?2 d?1 in both periods indicate that San Quintin Bay is a net sink of nitrogen. Results from a 3-box model indicate that during summer Box C, adjacent to the ocean, contributed 70–80% of the excess DIP produced in the whole-system. This observation and high apparent denitrification values of ≈?7 mmol N m?2 d?1 at the entrance of the Bay, suggest that the net heterotrophic condition of San Quintin Bay in summer is largely determined by imports of labile phytoplanktonic carbon generated in the adjacent ocean during upwelling.A net flux of organic carbon of 30×106 mol C yr?1 was estimated from Box C, adjacent to the ocean, to Box B, locally known as Bahia Falsa, which is the area designated for oyster aquaculture in the lagoon. It is estimated that this net organic carbon supply is almost equivalent to the annual oyster food demand; our estimate is that oyster aquaculture in San Quintin Bay accounts for the vast majority of the net heterotrophy of Bahia Falsa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号