首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Final Gondwana amalgamation was marked by the closure of the Neoproterozoic Clymene ocean between the Amazonia craton and central Gondwana. The events which occurred in the last stage of this closure were recorded in the upper Alto Paraguai Group in the foreland of the Paraguay orogen. Outcrop-based facies analysis of the siliciclastic rocks of upper Alto Paraguai Group, composed of the Sepotuba and Diamantino Formations, was carried out in the Diamantino region, within the eastern part of the Barra dos Bugres basin, Mato Grosso state, central-western Brazil. The Sepotuba Formation is composed of sandy shales with planar to wave lamination interbedded with fine-grained sandstone with climbing ripple cross-lamination, planar lamination, swaley cross-stratification and tangential to sigmoidal cross-bedding with mud drapes, related to marine offshore deposits. The lower Diamantino Formation is composed of a monotonous, laterally continuous for hundreds of metres, interbedded siltstone and fine-grained sandstone succession with regular parallel lamination, climbing ripple cross-lamination and ripple-bedding interpreted as distal turbidites. The upper part of this formation consists of fine to medium-grained sandstones with sigmoidal cross-bedding, planar lamination, climbing ripple cross-lamination, symmetrical to asymmetrical and linguoid ripple marks arranged in lobate sand bodies. These facies are interbedded with thick siltstone in coarsening upward large-scale cycles related to a delta system. The Sepotuba Formation characterises the last transgressive deposits of the Paraguay basin representing the final stage of a marine incursion of the Clymene ocean. The progression of orogenesis in the hinterland resulted in the confinement of the Sepotuba sea as a foredeep sub-basin against the edge of the Amazon craton. Turbidites were generated during the deepening of the basin. The successive filling of the basin was associated with progradation of deltaic lobes from the southeast, in a wide lake or a restricted sea that formed after 541 ± 7 Ma. Southeastern to east dominant Neoproterozoic source regions were confirmed by zircon grains that yielded ages around 600 to 540 Ma, that are interpreted to be from granites in the Paraguay orogen. This overall regressive succession recorded in the Alto Paraguai Group represents the filling up of a foredeep basin after the final amalgamation of western Gondwana in the earliest Phanerozoic.  相似文献   

2.
The Paraguay Belt in central South America is part of a larger chain of orogenic belts, including the Araguaia Belt to the northeast and potentially the Pampean Belt to the south, which are believed to mark the suture zone of the Clymene Ocean — interpreted amongst the youngest of the Gondwana amalgamation orogens. The post-orogenic São Vicente Granite crops out in the northern Paraguay Belt and cuts the basal unit of the deformed and metamorphosed Cuiabá Group. The age of this granite therefore provides a long sort after minimum age for orogenesis within the belt. Dating crystallisation of this important intrusion is challenging due to the presence of considerable common-Pb. However, based on LA-ICPMS dating of more than 100 zircons from three separate samples we interpret a robust crystallisation age for the São Vicente batholith at 518 ± 4 Ma. This age constrains the termination of deformation within the Paraguay Belt and the final accretion of the supercontinent Gondwana.  相似文献   

3.
Muscovite 40Ar-39Ar dating of muscovite-quartz schist, eclogite and retrograde eclogite indicates an Indosinian orogenesis occurred at 220–240 Ma in the Lhasa terrane, which is caused by the closure of Paleo-Tethyan ocean basin and the following collision of the northern Lhasa terrane and southern Gondwana land. This Indosinian orogenesis is further confirmed by the regional sedimentary characteristics, magmatic activity and ophiolite mélange. This evidence suggests that the Indosinian orogenic belt in the Lhasa terrane is widely distributed from the Coqen county in the west, and then extends eastward through the Ningzhong and Sumdo area, finally turning around the eastern Himalayan syntaxis into the Bomi county. Based on the evolutionary process, the geological development of Lhasa terrane from early Paleozoic to early Mesozoic can be divided into seven stages. All of the seven stages make up a whole Wilson circle and reveal a perfect evolutionary process of the Paleo-Tethys ocean between the northern Lhasa terrane and southern Gondwana land. The Indosinian orogenisis is a significant event for the evolution of the Lhasa terrane as well as the Tibetan Plateau.  相似文献   

4.
The Ad Dawadimi Terrane is an Ediacaran basin of the Arabian Nubian Shield (ANS), Saudi Arabia. This basin terrane is situated in the far eastern part of the ANS and represents the youngest accretion event of the exposed ANS. Therefore, the timing of events within the basin is key to understanding both the closure of the Mozambique Ocean and the amalgamation of Gondwana along the northern East African Orogen. Here we present U/Pb detrital zircon data for the Abt Formation, the principle basin sediments of the Ad Dawadimi Terrane, along with 40Ar/39Ar ages on muscovite and whole rock Sm/Nd data. These data indicate that deep-water deposition in the Abt Basin did not end until after ca. 620 Ma and that deformation and greenschist-facies metamorphism of the Abt Formation occurred at 620 ± 3 (2σ) Ma along an active margin. This is the youngest terrane amalgamation event reported so far in the Arabian–Nubian Shield, but we suggest even younger sutures lie further east beneath the Phanerozoic cover of eastern Saudi Arabia. Our results suggest that the Ediacaran basins of the eastern ANS were not part of the Huqf basin in Oman, which was instead part of a passive margin of Neoproterozoic India, separated from the active margin of Africa by the Mozambique Ocean that probably did not close until the late Ediacaran or early Cambrian.  相似文献   

5.
The Planalto da Serra ultramafic-alkaline rocks are represented by several plugs, lava-flows and N60–80E trending dykes which are mainly represented by glimmerites, harzburgites and carbonatites. These rocks intrude the Cryogenian basal unit of the Northern Paraguay Belt in the Rio dos Cavalos rift (southeastern part of the Amazonian Craton). 40Ar/39Ar dating on the phlogopite from glimmeritic dykes and plugs yielded an age of ca. 600 Ma, which is consistent with Rb/Sr and Sm/Nd determinations on the other rock-types. These age determinations make it difficult to establish a geochronological and genetic relationship between the Planalto da Serra rocks and the Cretaceous bodies of the “Azimuth 125° Lineament”, and it suggests there is a relationship between its emplacement and the beginning of the extensional tectonics responsible for the separation of the Amazonian and Laurentia Cratons. This age also indicates that the onset of the deformation of the Cuiaba Group may be older than 600 Ma.  相似文献   

6.
Discontinuous outcrops of diamictites and siltstones are found above post-Marinoan carbonates from the Araras Formation and represent the record of a second glaciation in the northern Paraguay belt, Brazil. This new stratigraphic unit, named the Serra Azul Formation, varies in thickness between 250 and 300 m; it lies on top of dolomites of the Araras Group and is overlain by sandstones of the Raizama Formation. Massive diamictite, approximately 70 m thick, composes the basal unit (Unit A), followed by 200 m thick laminated siltstones (Unit B), which contain sparse intercalations of very fine-grained sandstone lenses. This new diamictite level is probably related to the Gaskiers Glaciation, with an age of approximately 580 Ma, and represents the youngest Neoproterozoic glacial event recorded in South America.  相似文献   

7.
松多地区的区域构造变形与糜棱质白云母石英片岩和绿片岩的白云母单矿物40Ar-39Ar年代学测试表明拉萨地体内的松多地区于220~240 Ma经历过印支期碰撞造山事件.这次造山事件为晚二叠世松多榴辉岩带代表的古特提斯洋盆消失闭合之后北拉萨地体与南冈瓦那大陆碰撞的结果.该区榴辉岩与退变榴辉岩白云母和角闪石的40Ar-39A...  相似文献   

8.
Structural and thermochronological studies of the Kampa Dome provide constraints on timing and mechanisms of gneiss dome formation in southern Tibet. The core of Kampa Dome contains the Kampa Granite, a Cambrian orthogneiss that was deformed under high temperature (sub-solidus) conditions during Himalayan orogenesis. The Kampa Granite is intruded by syn-tectonic leucogranite dikes and sills of probable Oligocene to Miocene age. Overlying Paleozoic to Mesozoic metasedimentary rocks decrease in peak metamorphic grade from kyanite + staurolite grade at the base of the sequence to unmetamorphosed at the top. The Kampa Shear Zone traverses the Kampa Granite — metasediment contact and contains evidence for high-temperature to low-temperature ductile deformation and brittle faulting. The shear zone is interpreted to represent an exhumed portion of the South Tibetan Detachment System. Biotite and muscovite 40Ar/39Ar thermochronology from the metasedimentary sequence yields disturbed spectra with 14.22 ± 0.18 to 15.54 ± 0.39 Ma cooling ages and concordant spectra with 14.64 ± 0.15 to 14.68 ± 0.07 Ma cooling ages. Petrographic investigations suggest disturbed samples are associated with excess argon, intracrystalline deformation, mineral and fluid inclusions and/or chloritization that led to variations in argon systematics. We conclude that the entire metasedimentary sequence cooled rapidly through mica closure temperatures at  14.6 Ma. The Kampa Granite yields the youngest biotite 40Ar/39Ar ages of  13.7 Ma immediately below the granite–metasediment contact. We suggest that this age variation reflects either varying mica closure temperatures, re-heating of the Kampa Granite biotites above closure temperatures between 14.6 Ma and 13.7 Ma, or juxtaposition of rocks with different thermal histories. Our data do not corroborate the “inverse” mica cooling gradient observed in adjacent North Himalayan gneiss domes. Instead, we infer that mica cooling occurred in response to exhumation and conduction related to top-to-north normal faulting in the overlying sequence, top-to-south thrusting at depth, and coeval surface denudation.  相似文献   

9.
This study presents new 40Ar/39Ar ages on the volcanic and intrusive rocks from the Papandayan metallic district in West Java, Indonesia. The vein system in the Arinem area, one of the prospective areas in the district, has been considered as an epithermal gold–silver–base metal deposit, however, no published age results are available for the host volcanic rocks in the district. The ages of these rocks are critical in terms of their association with mineralization and are important to understand the evolution of volcanism in the region, which has implications for mineral exploration in the district. 40Ar/39Ar plateau ages of two typical basalt and one andesite samples of the Jampang Formation volcanic rocks yielded ages of 11.65 ± 0.52 Ma, 18.15 ± 0.46 Ma and 7.69 ± 0.05 Ma, respectively. 40Ar/39Ar ages of three intrusive rock samples from Gunung Halang diorite, Gunung Lingga diorite, and Gunung Buligir fine‐grained quartz diorite yielded ages of 12.98 ± 0.20 Ma, 10.81 ± 0.15 Ma, and 7.37 ± 0.05 Ma, respectively. The age of the youngest fine‐grained diorite (Gunung Wayang dike) is 3.95 ± 0.03 Ma. An 40Ar/39Ar age obtained from adularia in the Arinem mineralized vein (18.30 ± 0.20 Ma) is older than the age of altered basalt sample of this study (11.65 ± 0.52 Ma) and the K–Ar illite ages of the Arinem vein (9.4 ± 0.3 Ma and 8.8 ± 0.3 Ma) which resulted from a previous study. The age results suggest that the Papandayan district may have experienced multiple hydrothermal and mineralization events. This study, therefore, provides crucial age data to support future mineral exploration in the district.  相似文献   

10.
40Ar/39Ar geochronology of muscovite and biotite grains genetically related to gold and Be–Ta–Li pegmatites from the Seridó Belt (Borborema province, NE Brazil) yield well-defined, reliable plateau ages. This information, combined with data about paragenetic and field relationships, reveals Cambro-Ordovician mineralization ages (520 and 500–506 Ma) for the orogenic gold deposits in the Seridó Belt. Biotite ages of 525±2 Ma, which represent the mean weighted results of the incremental heating analysis of six biotite single crystals, record the time of pegmatite emplacement and reactivation of Brasiliano/Pan-African strike-slip shear zones. These results, along with previous structural evolution studies, suggest that shear zones formed during the Brasiliano/Pan-African event were reactivated in the Upper Cambrian–Lower Ordovician. Mineralization occurs late in the history of the orogen.  相似文献   

11.
Potassium-Ar and Rb-Sr dating of minerals was fundamental in early efforts to date magmatic and metamorphic processes and paved the way for geochronology to become an important discipline within the earth sciences. Although K-Ar and, in particular, 40Ar/39Ar dating of micas is still widely applied, Rb-Sr dating of micas has declined in use, even though numerous studies demonstrated that tri-octahedral mica yields geologically realistic, and more reliable and reproducible Rb-Sr ages than the K-Ar or 40Ar/39Ar system. Moreover, a reduction of uncertainties typically reported for Rb-Sr ages (ca. 1%) can now be achieved by application of multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) rubidium isotope dilution measurements (<0.3%). Replicate Rb-Sr biotite ages from the Oslo rift, Norway, yield an external reproducibility of ±0.3% (n=4) and an analytical error of ±0.8 Ma for individual ages that vary between 276.9 and 275.5 Ma. Conventional thermal ionisation mass spectrometry (TIMS) Rb analysis on the same mineral separates yields ages between 276.1 and 271.7 Ma, three times the spread compared to Rb MC-ICPMS data. Biotite and phlogopite from the central Nagssugtoqidian orogen, West Greenland, yield 40Ar/39Ar plateau ages (ca. 1700 Ma) with a spread of ±150 Ma, while Rb-Sr ages on either biotite or phlogopite separates have a much narrower range of ±10 Ma. This comparison of Rb-Sr and 40Ar/39Ar ages demonstrates the robustness of the Rb-Sr system in tri-octahedral micas and cautions against the sole use of 40Ar/39Ar tri-octahedral mica ages to date geological events. Analytical errors of 16 Ma for these Rb-Sr mica ages determined by TIMS are reduced to <±5 Ma when the Rb concentration is determined by MC-ICPMS. All the TIMS and MC-ICPMS data from the Nagssugtoqidian orogen agree within assigned analytical uncertainties. However, high precision Rb-Sr dating by MC-ICPMS can resolve geological information obscured by TIMS age determinations. TIMS data for seven phlogopite samples form an isochron age of 1645±6 Ma, and thus, no differentiation in age between the different samples can be made. In contrast, MC-ICPMS Rb measurements on the same samples reveal two distinct populations with ages of 1633±3 or 1652±5 Ma.Combining the mica Rb-Sr geochronological data with the well-constrained thermal history of this ancient orogen, we estimate the closure temperature of the Rb-Sr system in 1-2 mm slowly cooled phlogopite crystals, occurring in a matrix of calcite and plagioclase to be ∼435 °C, and at least 50 °C above that of biotite.  相似文献   

12.
40Ar/39Ar age data from the boundary between the Delamerian and Lachlan Fold Belts identify the Moornambool Metamorphic Complex as a Cambrian metamorphic belt in the western Stawell Zone of the Palaeozoic Tasmanide System of southeastern Australia. A reworked orogenic zone exists between the Lachlan and Delamerian Fold Belts that contains the eastern section of the Cambrian Delamerian Fold Belt and the western limit of orogenesis associated with the formation of an Ordovician to Silurian accretionary wedge (Lachlan Fold Belt). Delamerian thrusting is craton-verging and occurred at the same time as the final consolidation of Gondwana. 40Ar/39Ar age data indicate rapid cooling of the Moornambool Metamorphic Complex at about 500 Ma at a rate of 20 – 30°C per million years, temporally associated with calc-alkaline volcanism followed by clastic sedimentation. Extension in the overriding plate of a subduction zone is interpreted to have exhumed the metamorphic rocks within the Moornambool Metamorphic Complex. The Delamerian system varies from a high geothermal gradient with syntectonic plutonism in the west to lower geothermal gradients in the east (no syntectonic plutonism). This metamorphic zonation is consistent with a west-dipping subduction zone. Contrary to some previous models involving a reversal in subduction polarity, the Ross and Delamerian systems of Antarctica and Australia are inferred to reflect deformation processes associated with a Cambrian subduction zone that dipped towards the Gondwana supercontinent. Western Lachlan Fold Belt orogenesis occurred about 40 million years after the Delamerian Orogeny and deformed older, colder, and denser oceanic crust, with metamorphism indicative of a low geothermal gradient. This orogenesis closed a marginal ocean basin by west-directed underthrusting of oceanic crust that produced an accretionary wedge with west-dipping faults that verge away from the major craton. The western Lachlan Fold Belt was not associated with arc-related volcanism and plutonism occurred 40 – 60 million years after initial deformation. The revised orogenic boundaries have implications for the location of world-class 440 Ma orogenic gold deposits. The structural complexity of the 440 Ma Stawell gold deposit reflects its location in a reworked part of the Cambrian Delamerian Fold Belt, while the structurally simpler 440 Ma Bendigo deposit is hosted by younger Ordovician turbidites solely deformed by Lachlan orogenesis.  相似文献   

13.
北秦岭宽坪岩群变质沉积岩年代学及地质意义   总被引:2,自引:1,他引:1       下载免费PDF全文
宽坪岩群位于北秦岭造山带,主要由广东坪岩组斜长角闪岩、四岔口岩组云母石英片岩及谢湾岩组的大理岩组成。通过LA-MC-ICPMS锆石U-Pb测年研究,宽坪岩群谢湾岩组碎屑锆石年龄为400~3502 Ma,其中最年轻一组的206Pb/238U年龄在380~418 Ma,结合黑云母40Ar/39Ar(370.9±2.0)Ma的变质年龄,表明谢湾岩组形成在晚泥盆世。四岔口岩组碎屑锆石年龄介于512~3598 Ma,最年轻的一组锆石206Pb/238U年龄在512~549 Ma,其黑云母40Ar/39Ar变质年龄为(370.4±1.8)Ma,表明该组形成于512 Ma(早寒武世)之后,晚泥盆世之前,主体很可能形成于早古生代。宽坪岩群是由不同时代的地层和岩片构成,应该进一步解体。宽坪岩群物源来自华北陆块、秦岭造山带和扬子陆块。其变形变质时代为晚泥盆世,代表了北秦岭造山带碰撞造山的结束时代。  相似文献   

14.
C and Sr isotope compositions of carbonate rocks from the intracontinental São Francisco basin can track ocean connections and restriction. The lower three formations of the Bambuí Group can be grouped into three chemostratigraphic intervals (CI), recording different evolution stages of the basin. Lowermost CI-1 comprises the basal cap carbonates of the Sete Lagoas Formation displaying an initial C negative excursion, followed by a coeval C and Sr positive excursions (δ13C values from − 5 to 0‰ and 87Sr/86Sr ratios from 0.7074 to 0.7082) in 10 m of stratigraphic record. It marks a change from a restricted shallow basin influenced by freshwater to a basin connected to external seawaters due to marine transgression. CI-2 comprises carbonates of the middle portion of the Sete Lagoas Formation with δ13C values around 0‰ and 87Sr/86Sr ratios around 0.7082 that matches those observed worldwide for the Late Ediacaran. It records the onset of a Gondwana sea pathway connecting several epicontinental basins, allowing migration of index-fossil Cloudina sp. Uppermost CI-3 starts after a major positive excursion in the δ13C values reaching + 16‰ and a steepened decrease of 87Sr/86Sr ratios to 0.7075 which are lower than those expected for the Ediacaran-Cambrian boundary. This interval comprises the upper Sete Lagoas, Serra de Santa Helena and Lagoa do Jacaré formations and records the end of the connection of the São Francisco basin to the Gondwana sea pathway setting a restricted epeiric sea. Restriction was probably caused by Late Ediacaran uplifting of orogenic belts surrounding the basin. Other West Gondwana Cloudina bearing units also display the same mismatch in the Sr isotope ratios, suggesting that the establishment of intracontinental basins inside large continental masses may challenge the use of isotope chemostratigraphy for interbasinal correlations.  相似文献   

15.
The Araras Group is an extensive carbonate platform developed at the southeastern margin of the Amazon Craton during the Neoproterozoic. The Nobres Formation corresponds to the upper unit of the Neoproterozoic Araras Group. It is exposed in road cuts and quarries in the Northern Paraguay Belt, and is characterized by meter-scale shallowing upward cycles. Forty-four fourth-to fifth-order parasequence cycles are enclosed into three third order sequences/megacycles, unconformably overlain by siliciclastic deposits of the Alto Paraguay Group. The cycles are generally of peritidal type, limited by exposure surfaces composed of asymmetrical tidal flat/sabkha lithofacies in the basal Nobres Formation. They consist of fine dolostone, intraclastic dolostones with megaripples, stromatolites biostrome, sandy dolostone with enterolithic structures and silicified evaporite molds. Upsection, the cycles progressively become symmetrical, comprising arid tidal flat deposits with abundant stromatolite biostrome, fine-grained sandstone and rare evaporitic molds. The stacking patterns for hundreds of meters indicate continuous and recurrent generation of accommodation space, probably triggered by subsidence concomitant with relative sea-level changes. Palynomorphs found in the upper part of Nobres Formation comprehend spheroidal forms, such as Leiospharidia, rare filamentous and acanthomorphous acritarchs, mostly Tanarium correlated to the Ediacaran Complex Acantomorph Palynoflora of ∼580–570 Ma. Previous data of carbon isotopes and paleogeographic reconstructions, and also the presence of evaporites and storm-influenced deposits in the Araras Group, suggest a wet to tropical setting for Amazonia during the Mid-Ediacaran, which is incompatible with previous claims for Gaskiers-related glacial sedimentation in the region. During the final stages of evolution of the Araras carbonate platform, a progressive input of terrigenous has occurred in the peritidal setting likely due tectonic activity in the vicinity of the basin and the rapid uplift of source areas to the west and to the east of the basin preceding the progradation of the siliciclastic fluvial-coastal environments related to the Alto Paraguay sedimentation. This event resulted in erosion of shallow carbonate basins and, potentially, the demise and disintegration of the Neoproterozoic carbonate platforms in southern Amazon Craton.  相似文献   

16.
New 40Ar/39Ar geochronology places time constraints on several stages of the evolution of the Penninic realm in the Eastern Alps. A 186±2 Ma age for seafloor hydrothermal metamorphic biotite from the Reckner Ophiolite Complex of the Pennine–Austroalpine transition suggests that Penninic ocean spreading occurred in the Eastern Alps as early as the Toarcian (late Early Jurassic). A 57±3 Ma amphibole from the Penninic subduction–accretion Rechnitz Complex dates high-pressure metamorphism and records a snapshot in the evolution of the Penninic accretionary wedge. High-pressure amphibole, phengite, and phengite+paragonite mixtures from the Penninic Eclogite Zone of the Tauern Window document exhumation through ≤15 kbar and >500 °C at 42 Ma to 10 kbar and 400 °C at 39 Ma. The Tauern Eclogite Zone pressure–temperature path shows isothermal decompression at mantle depths and rapid cooling in the crust, suggesting rapid exhumation. Assuming exhumation rates slower or equal to high-pressure–ultrahigh-pressure terrains in the Western Alps, Tauern Eclogite Zone peak pressures were reached not long before our high-pressure amphibole age, probably at ≤45 Ma, in accordance with dates from the Western Alps. A late-stage thermal overprint, common to the entire Penninic thrust system, occurred within the Tauern Eclogite Zone rocks at 35 Ma. The high-pressure peak and switch from burial to exhumation of the Tauern Eclogite Zone is likely to date slab breakoff in the Alpine orogen. This is in contrast to the long-lasting and foreland-propagating Franciscan-style subduction–accretion processes that are recorded in the Rechnitz Complex.  相似文献   

17.
We propose a deformation dating method that combines XRD quantification and Ar chronology of submicroscopic illite to determine the absolute ages of folds that contain clay-bearing layers. Two folds in the frontal segment of the Mexican Fold-Thrust Belt (MFTB), which was deformed from Late Cretaceous to Eocene, are used to illustrate the method and its future potential.Variations in mineral composition, illite-polytype, crystallite-size (CS) and Ar total gas ages were analyzed in the limbs and hinge of two mesoscopic folds. This analysis examines potential effects of strain variation on illitization and the Ar isotopic system along folded layers, versus possible regional thermal overprints. The Ar total-gas ages for 9 samples in Fold 1 vary between 48.4 and 43.9 Ma. The % of 2M1 (detrital) illite vs. Ar total-gas ages tightly constrains the age of folding at 43.5 ± 0.3 Ma. Nine ages from three samples in Fold 2 range from 76.2 to 62.7 Ma, which results in a folding age of 63.9 ± 2.2 Ma. Both ages are in excellent agreement with more broadly constrained stratigraphic timing. The method offers a novel approach to radiometric dating of clay-bearing folds formed at very low-grade metamorphic conditions, and has the potential to constrain dates and rates of regional and local deformation along and across foreland orogenic belts.  相似文献   

18.
《Gondwana Research》2014,25(3):945-965
The birth of modern life on Earth can be linked to the adequate supply of nutrients into the oceans. In this paper, we evaluate the relative supply of nutrients into the ocean. These nutrients entered the ocean through myriad passageways, but primarily through accelerated erosion due to uplift. In the ‘second ecosystem’, uplift is associated with plume-generation during the breakup of the Rodinia supercontinent. Although the evidence is somewhat cryptic, it appears that the second ecosystem included the demospongia back into the Cryogenian (~ 750 Ma). During the Ediacaran–Cambrian interval, convergent margin magmatism, arc volcanism and the closure of ocean basins provided a second pulse of nutrient delivery into the marine environment. A major radiation of life forms begins around 580 Ma and is represented by the diverse and somewhat enigmatic Ediacaran fauna followed by the Cambrian Explosion of modern phyla during the 540–520 Ma interval. Tectonically, the Ediacaran–Cambrian time interval is dominated by the formation of ultra-high pressure (UHP), high pressure (HP) and ultra-high temperature (UHT) orogenic belts during Gondwana orogenesis. Erosion of this extensive mountainous region delivered vast nutrients into the ocean and enhanced the explosiveness of the Cambrian radiation. The timing of final collisional orogeny and construction of the mountain belts in many of the Gondwana-forming orogens, particularly some of those in the central and eastern belts, post-date the first appearance of modern life forms. We therefore postulate that a more effective nutrient supply for the Cambrian radiation was facilitated by plume-driven uplift of TTG crust, subsequent rifting, and subduction-related nutrient systems prior to the assembly of Gondwana. In the outlined scenario, we propose that the birth of the ‘second ecosystem’ on our planet is plume-driven.  相似文献   

19.
<正>Thus far,our understanding of the emplacement of Xuebaoding granite and the occurrence and evolution of the Songpan-Garze Orogenic Belt has been complicated by differing age spectra results.Therefore,in this study,the ~(40)Ar/~(39)Ar and sensitive high resolution ion micro-probe(SHRIMP) U-Pb dating methods were both used and the results compared,particularly with respect to dating data for Pankou and Pukouling granites from Xuebaoding,to establish ages that are close to the real emplacements.The results of SHRIMP U-Pb dating for zircon showed a high amount of U,but a very low value for Th/U.The high U amount,coupled with characteristics of inclusions in zircons,indicates that Xuebaoding granites are not suitable for U-Pb dating.Therefore,muscovite in the same granite samples was selected for ~(40)Ar/~(39)Ar dating.The ~(40)Ar/~(39)Ar age spectrum obtained on bulk muscovite from Pukouling granite in the Xuebaoding,gave a plateau age of 200.1±1.2 Ma and an inverse isochron age of 200.6±1.2 Ma.The ~(40)Ar/~(39)Ar age spectrum obtained on bulk muscovite from Pankou granite in the Xuebaoding gave another plateau age of 193.4±1.1 Ma and an inverse isochron age of 193.7±1.1 Ma. The ~(40)Ar/~(36)Ar intercept of 277.0±23.4(2σ) was very close to the air ratio,indicating that no apparent excess argon contamination was present.These age dating spectra indicate that both granites were emplaced at 200.6±1.3 Ma and 193.7±1.1 Ma,respectively.Through comparison of both dating methods and their results,we can conclude that it is feasible that the muscovite in the granite bearing high U could be used for ~(40)Ar/~(39)Ar dating without extra Ar.Based on this evidence,as well as the geological characteristics of the Xuebaoding W-Sn-Be deposit and petrology of granites,it can be concluded that the material origin of the Xuebaoding W-Sn-Be deposit might partially originate from the Xuebaoding granite group emplacement at about 200 Ma.Moreover,compared with other granites and deposits distributed in various positions in the Songpan-Garze Orogenic Belt,the Xuebaoding emplacement ages further show that the main rare metal deposits and granites in peripheral regions occurred earlier than those in the inner Songpan-Garze.Therefore,~(40)Ar/~(39)Ar dating of Xuebaoding granite will lay a solid foundation for studying the occurrence and evolution of granite and rare earth element deposits in the Songpan-Garze Orogenic Belt.  相似文献   

20.
The Late Triassic Central Patagonian Batholith is a key element in paleogeographic models of West Gondwana just before to the break-up of the supercontinent. The preexisting classification of units of this batholith was mainly based on isotopic and geochemical data. Here we report the results of field mapping and petrography, backed up by three new 40Ar/39Ar biotite ages, which reveal previously unnoticed relationships of the rocks in the batholith. Based on the new information we present a reorganization of units where the batholith is primarily formed by the Gastre and the Lipetrén superunits. The Gastre Superunit is the oldest magmatic suite and is composed of I-type granites which display evidence of felsic and mafic magma interaction. It is formed by 4 second-order units: 1) equigranular hornblende–biotite granodiorites, 2) porphyritic biotite–hornblende monzogranites, 3) equigranular biotitic monzogranites and 4) hornblende quartz-diorites. Emplacement depth of the Gastre Superunit is bracketed between 6 and 11 km (1.8–3 kbar), and the maximum recorded temperatures of emplacement are comprised between 660 and 800 °C. The recalculated Rb/Sr age is 222 ± 3 Ma and the porphyritic biotite–hornblende monzogranites yielded a 40Ar/39Ar age in biotite of 213 ± 5 Ma. On the other hand, the Lipetrén Superunit is made up by fine-grained biotitic monzo- and syenogranites that postdate magma hybridization processes and intrude all the other units. The recalculated Rb/Sr age for this suite is identical to a 40Ar/39Ar age in biotite extracted from one of its monzogranites (206.4 ± 5.3 and 206 ± 4 Ma, respectively). This and the observed textural features suggest very fast cooling related to a subvolcanic emplacement. An independent unit, the “Horqueta Granodiorite”, which has previously been considered as the record of a Jurassic intrusive stage in the Central Patagonian Batholith, gave a 40Ar/39Ar age in biotite of 214 ± 2 Ma. This and the reexamination of available isotopic data allow propose that this granodiorite unit is part of the Late Paleozoic intrusives in the region. The Late Triassic Central Patagonian Batholith is overlain by 190–185 Ma volcano-sedimentary rocks, suggesting that it was exposed sometime between the latest Triassic and earliest Jurassic times, roughly coeval with a major accretionary episode in the southwestern margin of Gondwana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号