首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
牧压梯度下高寒杂草类草甸土壤持水能力及影响因素分析   总被引:2,自引:0,他引:2  
以祁连山南麓坡地夏季牧场高寒杂草类草甸为研究对象,进行了封育对照(CK,禁牧)、轻度放牧(LG)、中度放牧(MG)和重度放牧(HG)下土壤持水能力及影响因素的分析. 结果表明:牧压梯度下0~10 cm层土壤最大持水量和毛管持水量均在LG最大,土壤自然贮水量LG略小于HG;而在10~20 cm和20~40 cm持水量均在HG最大,说明放牧对表层土壤的持水能力影响比深层更明显. 0~10 cm层土壤容重随牧压强度增加而增大,较深层次土壤容重基本一致,表明放牧对较深层土壤容重造成的影响远小于表层. 牧压梯度下植被地上地下生物量、枯落物、地表半腐殖质随放牧强度增大而减少;0~10 cm土壤有机质含量在MG最大,CK最小,10~20 cm和20~40 cm层土壤的有机质含量CK最大,说明不同土层有机质含量对牧压梯度的响应有所不同. 土壤持水量与多种因素有关,主要受到地下生物量、有机质和容重等因素的影响,表明随放牧强度增大,践踏使土壤表面硬度增加,土壤空隙度减少,同时家畜过度采食使地面植被覆盖降低而增加土壤水分的蒸发. 这些综合作用下引起放牧地土壤持水能力降低.  相似文献   

2.
在青海海北高寒矮嵩草草甸设置封育禁牧(CK)、轻牧(LG)、中牧(MG)和重牧(HG)放牧梯度试验样地, 进行了土壤速效氮变化特征及影响因素的分析. 结果表明: 植物生长期的5-9月, 土壤NH4+-N、NO3--N和速效氮(NH4+-N和NO3--N之和)含量季节变化明显, 基本表现为植物生长初期高, 末期低. CK、LG、MG和HG条件下, 5-9月0~40 cm土壤NH4+-N平均含量分别为17.62 mg·kg-1、17.84 mg·kg-1、18.63 mg·kg-1和16.67 mg·kg-1, NO3--N平均含量为8.91 mg·kg-1、8.23 mg·kg-1、7.99 mg·kg-1和7.94 mg·kg-1, 速效氮平均含量为26.53 mg·kg-1、26.07 mg·kg-1、26.62 mg·kg-1和24.61 mg·kg-1, 基本表现出随放牧强度增大而降低. 土壤速效氮月际变化与地上绿体生物量具有一定的负相关关系, 表明地上生物量越大, 消耗土壤速效氮越趋明显; 与枯落物有一定的正相关关系, 与地下生物量关系不甚明显, 与湿沉降呈现负的相关性. 土壤NH4+-N含量与土壤有机碳有负相关关系, 而NO3--N含量与有机碳相关性差, 表明土壤有机碳越高, 土壤NH4+-N消耗越明显.  相似文献   

3.
祁连山海北高寒湿地植物群落结构及生态特征   总被引:10,自引:3,他引:7  
海北高寒湿地系沼泽型和湖泊型湿地相并存.海北高寒湿地植物种类组成较少,从湿地中央到边缘植物优势种组成不同,群落结构变化明显.中部以帕米尔苔草为主要植物建群种的沼泽草甸,边缘地带以藏嵩草为主要建群种的沼泽化草甸,从中央到边缘地带主要有25种植物组成,隶属10科20属.高寒湿地植物有较高的地上生物量(349.373 g·m-2)和地下生物量(仅1~40 cm层次最高可达10769.301 g·m-2),而且地下部分远高于地上部分,地下生物量从表层到深层基本均匀下降,与矮嵩草草甸和金露梅灌丛草甸区的地下生物量分布截然不同.因湿地帕米尔苔草、藏嵩草、黑褐苔草、华扁穗草等为主的植物粗纤维高,牲畜利用率下降,不论地上还是地下对土壤有机物的补给均较高,多年的积累使其海北高寒湿地有深达2~3 m的泥炭层,使湿地形成一个非常重要的碳库.在气候变暖的条件下,这些未分解或半分解的土壤有机物质(或残体)将加速分解,对大气有更多的CO2、CH4等温室气体的排放.  相似文献   

4.
根据柳江流域草丛群落类型、高度及其分布面积选择平均高度>1.5m、0.5~1m和<0.5m的高、中、低3种高度的代表性草丛,通过收获法研究了其群落生物量,并对其碳储量进行了初步估算。研究结果表明:(1)五节芒(Miscanthusflorid-ulus)、毛秆野古草(Arundinellahirta)和假俭草(Eremochloaophiuroides)草丛群落的生物量分别为8609.68g/m2、1022.61g/m2和821.63g/m2,生物量与高度呈正相关,但随群落高度增加,地上生物量增加迅速,地下生物量增长平缓;(2)随群落高度增加,生物量迅速向地上部分聚集,低矮的假俭草群落地下生物量与地上生物量的比值为1.91,高度中等的毛秆野古草群落为1.32,但高度大的五节芒群落仅为0.21,地下/地上生物量比值与群落高度呈负相关,其中毛秆野古草与五节芒群落的地下生物量和地上生物量可以用幂函数很好的拟合(R2>0.79,P<0.01),因此二者可以依据地上生物量便捷的估算其地下生物量,但假俭草地下和地上生物量的关系模型不理想;(3)地下生物量以幂函数关系随深度递减(R2>0.95,P<0.01),主要集中分布在0~20cm土层,可达根系生物量的80%以上,40cm以下土层中根系很少;(4)柳江流域岩溶区草丛植被的碳储量达9.51TgC。   相似文献   

5.
中国草地植被地上和地下生物量的关系分析   总被引:3,自引:0,他引:3  
草地生物量大部分集中在地下,地下生物量对于估算草地生态系统碳储量及其碳固持效应都至关重要。由于草地地下生物量数据缺乏,利用地下与地上的根冠比(R/S)或者地下与地上生物量的关系对草地地下生物量进行估算,是目前最常用的方法。本文在综述草地生物量研究进展的同时,利用2004~2010年已发表文献的草地生物量数据对中国不同类型草地的根冠比进行了探索,同时分析了不同类型草地的地上与地下生物量的相关关系(高寒草甸、高寒草原、山地草甸、温性草甸草原、温性草原和温性荒漠草原)。分析结果表明:不同类型草地的根冠比存在显著差异(F=3.524,p0.01);进一步分析发现,山地草甸的根冠比显著低于其他类型草地(p0.01),R/S较大的草地类型为温性草甸草原和温性荒漠草原,均值分别为7.0和6.8。对地上与地下生物量相关关系的分析表明,3种类型草地的地上与地下生物量存在幂函数相关关系,即高寒草原(R~2=0.67)温性荒漠草原(R~2=0.36)高寒草甸(R~2=0.13),其他3种类型草地几乎不存在地上与地下生物量的相关关系。这为以后估算地下生物量提供依据,即地下生物量估算应该综合考虑根冠比和地下与地上生物量关系。  相似文献   

6.
贵州中部喀斯特灌丛群落生物量研究   总被引:22,自引:1,他引:21  
屠玉麟  杨军 《中国岩溶》1995,14(3):199-208
本文采用收获法对贵州中部喀斯特灌丛群落的生物量进行测定。喀斯特灌丛群落的总生物量在24.5593t/ha至45.6746t/ha之间,其中地上部分约14.2367t/ha,地下部分约13.3177t/ha。不同群落类型其生物量存在一定差异。生物量在群落的垂直空间上,集中分布于近地表空间;在器官分布上则主要集中于根和茎枝。文章还对生物量与环境因子的相关性进行了分析。   相似文献   

7.
梭罗草在青藏铁路取土场植被恢复中的应用研究   总被引:9,自引:3,他引:6  
根据青藏铁路工程建设中的生态环境保护以及植被恢复建设的迫切需要,在青藏铁路沱沱河试验段高寒草原区取土场开展植被恢复的试验工作,主要研究和分析了梭罗草(Kengyilia thoroldiana(Oliv.)J.L.Yang,Yen et Baum)在青藏铁路取土场植被恢复中的应用,为青藏铁路工程建设中的取土场植被恢复提供科学依据.结果表明:青藏铁路建设过程中形成的取土场属次生裸地,其有机质含量为3.31 g·kg-1,pH为8.84.梭罗草为高原干旱地区乡土多年生草本植物,具有耐寒旱、抗风沙以及耐盐碱等特性.在取土场植物的出苗率接近50%,越冬率可达75%以上.恢复第2年植物群落盖度为41%,群落地上生物量和地下生物量分别达到(128.16±41.85)g·m-2和(266.50±95.69)g·m-2.可见,无论是种子萌发和植物越冬,还是植物个体生长发育以及人工植物群落特征,梭罗草表现出对青藏铁路沿线高寒干旱地区气候和土壤环境具有较好的适应性.只要采用高原乡土植物种类和采取相应的植被恢复技术措施,青藏铁路多年冻土区取土场次生裸地的植被快速恢复是可行的.  相似文献   

8.
皇甫川流域百里香草原和人工沙棘灌木林的水分利用特征   总被引:7,自引:0,他引:7  
使用LI-6400光合系统测定仪、LI-3000A叶面积仪等,对皇甫川流域百里香草原和中国沙棘灌木林的优势植物进行了光合速率、蒸腾速率测定,同时还测定了植物水分、土壤水分及群落地上生物量。根据所测数据计算得到了这两个群落优势植物光合和蒸腾的日变化特点、光合水分利用效率,分析了两个群落优势植物叶片含水量、自然饱和亏及水势等植物生理水特征。通过群落优势植物种群的蒸腾失水和土壤水分的分析,探讨了由于土地利用方式的不同,产生的这两个群落生态水的一些明显差异。  相似文献   

9.
东天山喀尔里克山北坡-淖毛湖植物群落物种多样性研究   总被引:2,自引:0,他引:2  
以东天山喀尔里克山北坡-淖毛湖为研究区,探讨了该区山地-荒漠生态系统的植物种类组成、植被类型及群落物种多样性特征.结果表明:该区共有高等植物33科93属133种,植物生活型组成以草本植物居多.群落物种多样性测度指数的主成分分析结果显示,物种丰富度指数(R)、Pielou均匀度指数(Jsi)、Shannon-Wiener多样性指数(H)和Simpson优势度指数(C)能很好地描述群落结构和组成特征.其中,多样性指数、均匀度指数和丰富度指数的变化趋势基本一致,优势度指数则和前三者呈负消长的关系.随着海拔升高,群落物种多样性指数、丰富度指数和均匀度指数变化均呈现单峰分布格局,即植物群落的物种多样性在山前荒漠生态系统和高海拔山地生态系统中较低,而在中海拔地区达到最大.  相似文献   

10.
文章从表土总有机碳同位素和现代植被间的关系入手,研究C4/C3植物与气候要素的关系,以期能更好的理解影响C4、C3植物生物量的主要因素.研究区域位于黄土高原塬面,我们计算了共67个采样点的C4植物的生物量,估算出草本植物中C4植物的比例.结果表明,黄土高原塬面上最主要的C4植物是白羊草(Bothriochloaischaemum),C3植物主要由草类植物和灌木组成,如长芒草(Stipa bungeana)、胡枝子(Lespedeza davurica)和禾叶嵩草(Kobresia graminifolia)等,它们主要分布在研究区域的阴坡和山谷.表土的总有机碳同位素组成是反映C3和C4相对生物量贡献的可靠指标.在黄土高原地区,夏季降水量的增加会引起C4植物比例上升,同时C4植物生物量的变化也反映了降水的变化.本文的研究有助于理解亚洲季风气候下黄土高原地区C4/C3植物的变化机制.  相似文献   

11.
Responses ofSpartina alterniflora marsh to combinations of feral horse grazing, clipping, simulated trampling, and a late winter burn were studied on Cumberland Island National Seashore, Georgia. Replicated 200-m2 plots were established and sampled bimonthly from July 1983 to November 1984. Clipping and trampling each reduced peak aboveground biomass by 20% in 1983 and 50% (clipping) and 55% (trampling) in 1984. A March burn reduced peak aboveground biomass by 35% in 1984. Trampling and burning earch reduced net aboveground primary production (NAPP) by 35%, but clipping did not reduce NAPP. Standing stocks of live rhizomes were correlated with aboveground biomass and were reduced with experimental treatments. Abundance of the periwinkle snail (Littorina irrorata) was also reduced. Horse grazing had a substantial impact on standing stocks and NAPP ofSpartina, but grazing was not uniform throughout the marsh. Moderately grazed plots had NAPP reduced by 25% compared to ungrazed plots. Heavily grazed plots had extremely low NAPP, and abovegroundSpartina never exceeded 40 g m?2 dry mass compared to 360 g m?2 within exclosures.  相似文献   

12.
Phragmites australis (common reed) has been increasing in brackish tidal wetlands of the eastern United States coast over the last century. Whereas several researchers have documented changes in community structure, this research explores the effects of Phragmites expansion on aboveground biomass and soil properties. We used historical aerial photography and a global positioning system (GPS) to identify and age Phragmites patches within a high marsh dominated by shortgrasses (Spartina patens and Distichlis spicata). Plots along transects were established within the vegetation types to represent a gradient of species dominance and a variety of ages of the Phragmites plots. In comparison to neighboring shortgrass communities, Phragmites communities were found to have nearly 10 times the live aboveground biomass. They also had lower soil salinity at the surface, a lower water level, less pronounced microtopographic relief, and higher redox potentials. These soil factors were correlated with the age and biomass of Phragmites communities, were increasingly different with increasing Phragmites dominance along the transects, and were increasingly altered by the ages of Phragmites communities until the factors stabilized in plots of 8 yr to 15 yr of age. We propose that Phragmites expansion plays an important role in altering these soil properties and suggest a variety of mechanisms to explain these alterations.  相似文献   

13.
A procedure was developed using aboveground field biomass measurements of Chesapeake Bay submersed aquatic vegetation (SAV), yearly species identification surveys, annual photographic mapping at 1∶24,000 scale, and geographic information system (GIS) analyses to determine the SAV community type, biomass, and area of each mapped SAV bed in the bay and its tidal tributaries for the period of 1985 through 1996. Using species identifications provided through over 10,000 SAV ground survey observations, the 17 most abundant SAV species found in the bay were clustered into four species associations: ZOSTERA, RUPPIA, POTAMOGETON, and FRESHWATER MIXED. Monthly aboveground biomass values were then assigned to each bed or bed section based upon monthly biomass models developed for each community. High salinity communities (ZOSTERA) were found to dominate total bay SAV aboveground biomass during winter, spring, and summer. Lower salinity communities (RUPPIA, POTAMOGETON, and FRESHWATER MIXED) dominated in the fall. In 1996, total bay SAV standing stock was nearly 22,800 metric tons at annual maximum biomass in July encompassing an area of approximately 25,670 hectares. Minimum biomass in December and January of that year was less than 5,000 metric tons. SAV annual maximum biomass increased baywide from lows of less than 15,000 metric tons in 1985 and 1986 to nearly 25,000 metric tons during the 1991 to 1993 period, while area increased from approximately 20,000 to nearly 30,000 hectares during that same period. Year-to-year comparisons of maximum annual community abundance from 1985 to 1996 indicated that regrowth of SAV in the Chesapeake Bay from 1985–1993 occurred principally in the ZOSTERA community, with 85% of the baywide increase in biomass and 71% of the increase in are a occurring in that community. Maximum biomass of FRESHWATER MIXED SAV beds also increased from a low of 3,200 metric tons in 1985 to a high of 6,650 metric tons in 1993, while maximum biomass of both RUPPIA and POTAMOGETON beds fluctuated between 2,450 and 4,600 metric tons and 60 and 600 metric tons, respectively, during that same period with net declines of 7% and 43%, respectively, between 1985 and 1996. During the July period of annual, baywide, maximum SAV biomass, SAV beds in the Chesapeake Bay typically averaged approximately 0.86 metric tons of aboveground dry mass per hectare of bed area.  相似文献   

14.
We examined the effect of nutrients and grazers on Thalassia testudinum in Jobos Bay, Puerto Rico by fertilizing sediment and manipulating grazer abundances. Bottom-up effects were variable: Added nutrients did not increase seagrass aboveground biomass, but decreased belowground biomass—perhaps as a result of less biomass being allocated to belowground structures in response to greater nutrient supply in porewater. Experimental fencing of 1.5 × 1.5 m plots provided shelter that attracted large aggregations of fish, including seagrass herbivores. Seagrass biomass and shoot density decreased with increasing abundance of herbivorous fish, indicating a significant top-down effect. There were interactions between nutrient supply, provision of shelter, and grazing pressure. Fertilization enhanced seagrass %N; however, %N also increased in unfertilized plots that were fenced, most likely due to uptake of N excreted from the large numbers of fish associated with the fences. Only plots where shelter was provided and fertilizer was applied to sediments exhibited evidence of heavy grazing, reducing both seagrass cover and aboveground biomass. In the unfertilized fenced plots, signs of grazing were fewer despite large abundances of fish and enhanced nutritional quality of seagrass leaves. This suggests the possibility that high nutrient availability in sediments lowered concentrations of chemical defense compounds in the seagrass and that cues other than %N may have been involved in stimulating grazing. This study highlights the complexity of bottom-up and top-down interactions in seagrass systems and the important role of refuge availability in shaping the relative strengths of these controls.  相似文献   

15.
王增如  王成  董晓红  高丙民 《冰川冻土》2016,38(6):1710-1717
生物多样性与生产力的关系是生态学领域争论不休的重要科学问题。调查了青藏高原疏勒河上游高寒草甸典型植物群落物种丰富度、生物量及环境因子,分析了不同植物群落物种丰富度与生物量的关系及其差异性,并探讨了影响两者间关系的关键环境因子。结果表明:1)以莎草科或毛茛科物种为主要建群种的植物群落物种丰富度与生物量不存在显著的相关性(P>0.05),如高山嵩草+苔草群落、线叶嵩草+黑褐苔草群落、唐松草+矮火绒群落、草苔草+昆仑蒿群落;而以禾本科为建群种的植物群落(紫花针茅+紫菀群落、紫花针茅+沙生风毛菊群落)两者间存着显著正相关性(P<0.05).2)CCA排序中,环境因子对植物群落分布格局的累计解释量为83.4%,这说明环境异质性是影响植物群落空间格局的主要原因,其中冻土上限埋深是影响植物群落特征及分布的关键环境因子。冻土上限埋深小于-4m时,丰富度与生物量间存在着显著的正相关;冻土上限埋深大于-4m时,两者间无显著相关性。这有助于深刻认识生物多样性与高寒草甸生态系统功能的关系。  相似文献   

16.
Salt marshes respond to both slowly increasing tidal inundation with sea level rise and abrupt disturbances, such as storm-induced wrack deposition. The effects of inundation pattern and wrack deposition have been studied independently but not in combination. We manipulated inundation of tidal creek water and wrack presence individually and in combination, in two neighboring communities within a Virginia high salt marsh during 1994 and 1995. The effects of these manipulations were assessed by measurements of aboveground plant biomass. Altered inundation by itself produced little response in the various categories of plant biomass measured. Wrack deposition affected all species (i.e., Juncus roemerianus, Spartina patens, and Distichlis spicata) showing a significant reduction in aboveground biomass, as expected. Recovery after wrack deposition was dependent on the species. S. patens and D. spicata recovered from wrack deposition within one growing season, while J. roemerianus did not. Because the effects of wrack deposition greatly exceeded those of experimentally increased inundation, the possible interactions between the two were masked. Increased inundation may have inhibited the colonization of bare areas by some species after the removal of wrack from an area, although statistical significance at α=0.01 was not reached. Our results confirm that wrack deposition can cause the redistribution of species within the high marsh community. Altered inundation may have a greater effect on the re-establishment of the plant community after wrack deposition than it does without wrack deposition.  相似文献   

17.
Increased freshwater and nutrient runoff associated with coastal development is implicated in dramatically altering estuarine communities along eastern US shorelines. We examined effects of three categories of shoreline development on high-marsh environments within Murrells Inlet, South Carolina, USA by measuring sediment nutrients, porewater salinity, plant species diversity, and above- and belowground plant biomass. Effects on new plant growth also were examined in plot clearing and transplantation experiments. Greater nutrient availability in sediments along developed shorelines was reflected in greater aboveground biomass and nitrogen storage in Juncus roemerianus plant tissue. Plant species composition was not significantly different among levels of shoreline development. Zinc concentrations were greater in sediments from developed shorelines and may represent an easily measured indicator of shoreline development. Recently accelerating shoreline development in the southeastern USA may alter plant production, nitrogen storage, and sediment metal content in salt marshes.  相似文献   

18.
Different plant communities have established spontaneously on Sanmen Pb/Zn mine tailing. The site was inspected and four different plant communities were identified according to their species composition. To understand the effects of different communities on mine tailing physico-chemical properties, a community survey was carried out in Sanmen Pb/Zn mine tailing, and the physico-chemical properties and heavy metal (Cu, Pb, Cd and Zn) distribution of mine tailings were determined. Results showed that there were four types of communities (I, II, III and IV) in Sanmen Pb/Zn mine tailing. From community I to IV, the number of plant species and community characteristics (aboveground biomass, underground biomass, coverage and height) consistently increased. Moreover, the nutrient pool and physico-chemical properties of mine tailing consistently reestablished from community I to IV, while the total heavy metal content consistently decreased. The contents of residual fractions, Fe–Mn oxide fractions for Pb, Zn, Cu and Cd and exchangeable fractions for Pb and Zn also consistently decreased. However, the contents of organically bound fraction had no obvious change from community I to IV. Moreover, the contents of Cu organically bound fraction reversely increased. Results demonstrate that communities I, II, III and IV should be a progressive community succession. Moreover, along with the progressive community succession, phytostabilization and phytoextraction of mine tailings are more and more effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号