首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sun  Yifei  Sumelka  Wojciech  Gao  Yufeng  Nimbalkar  Sanjay 《Acta Geotechnica》2021,16(10):3115-3132

The stress–dilatancy relation is of critical importance for constitutive modelling of geomaterial. A novel fractional-order stress–dilatancy equation had been developed for granular soil, where a nonlinear stress–dilatancy response was always predicted. However, it was experimentally observed that after a certain extent of shearing, an almost linear response between the stress ratio and the dilatancy ratio, rather than the nonlinear response, usually existed. To capture such stress–dilatancy behaviour, a new fractional stress–dilatancy model is developed in this study, where an apparent linear response of the stress–dilatancy behaviour of soil after sufficient shearing is obtained via analytical solution. As the fractional order varies, the derived stress–dilatancy curve and the associated phase transformation state stress ratio keep changing. But, unlike existing researches, no other specific parameters, except the parameter related to fractional order, concerning such shift are required. Then, the developed stress–dilatancy model is applied to constitutive modelling of granular soil and soil–structure interface, for further validation. A series of test results of different granular soils and soil–structure interfaces under different loading conditions are simulated and compared, where a good model performance is observed.

  相似文献   

2.
This paper is dedicated to the non-linear numerical modelling of the soil–structure interface. Thus, in a first part, after the presentation of the constitutive model, the soil–structure interface interaction is treated in terms of direct shear test simulations. A strategy for the interface model parameters’ identification is also presented. This strategy is linked to the similitude of soil–structure interface behavior and the soil behavior, regarding the interface surface roughness. In a second part, the performance of the numerical simulations are verified numerically against published results for soil–structure experimental shear tests. Finally, as an application, interface stress paths are studied in axially loaded pile–soil systems and load transfer mechanisms are identified.  相似文献   

3.
This paper presents a series of cyclic 2D direct shear tests on sand–rough material interfaces under constant normal load (CNL) and constant normal stiffness (CNS) conditions. The aim of these tests is to describe the behavior of the soil–pile contact subjected to a large number of cycles due to environmental or anthropic loadings. These cycles (typically 104 or less due to an early rupture) are small (10, 20 and 40 kPa in terms of shear stress). A new interpretation of the direct shear tests is proposed. The sample of soil is schematically composed of a sheared interface and of a buffer under oedometric load. The problem of sand leakage between the shear box and the rough plate, classical phenomenon in this type of test, is focused. The effect of initial density, position of “center of cycles” in stress plane (mean cyclic variables) and cyclic amplitude is investigated. The cycles are defined by the initial mean cyclic normal stress, the level of initial mean cyclic stress ratio and the normalized cyclic amplitude. Under CNL condition, either dilation or contraction is exhibited, in agreement with the characteristic state developed by Luong (International symposium on soils under cyclic and transient loading, Swansea, 7–11 January, pp 315–324, 1980). The influence of a prescribed normal stiffness is especially considered. It can be highlighted that CNS cyclic paths are always contractive. This contraction results in a drop of mean cyclic normal stress often called degradation of friction.  相似文献   

4.
5.
Tun Tun  Win  Sato  Tomotaka  Saito  Hirotaka  Kohgo  Yuji 《Acta Geotechnica》2020,15(7):1799-1813
Acta Geotechnica - Most studies investigating the effect of cyclic loading on soil properties have been conducted for saturated soils. Embankments such as fill dams, roads and railways are usually...  相似文献   

6.
For numerical studies of geotechnical structures under earthquake loading, aiming to examine a possible failure due to liquefaction, using a sophisticated constitutive model for the soil is indispensable. Such a model must adequately describe the material response to a cyclic loading under constant volume (undrained) conditions, amongst others the relaxation of effective stress (pore pressure accumulation) or the effective stress loops repeatedly passed through after a sufficiently large number of cycles (cyclic mobility, stress attractors). The soil behaviour under undrained cyclic loading is manifold, depending on the initial conditions (e.g. density, fabric, effective mean pressure, stress ratio) and the load characteristics (e.g. amplitude of the cycles, application of stress or strain cycles). In order to develop, calibrate and verify a constitutive model with focus to undrained cyclic loading, the data from high-quality laboratory tests comprising a variety of initial conditions and load characteristics are necessary. The purpose of these two companion papers was to provide such database collected for a fine sand. The database consists of numerous undrained cyclic triaxial tests with stress or strain cycles applied to samples consolidated isotropically or anisotropically. Monotonic triaxial tests with drained or undrained conditions have also been performed. Furthermore, drained triaxial, oedometric or isotropic compression tests with several un- and reloading cycles are presented. Part I concentrates on the triaxial tests with monotonic loading or stress cycles. All test data presented herein will be available from the homepage of the first author. As an example of the examination of an existing constitutive model, the experimental data are compared to element test simulations using hypoplasticity with intergranular strain.  相似文献   

7.
For numerical studies of geotechnical structures under earthquake loading, aiming to examine a possible failure due to liquefaction, using a sophisticated constitutive model for the soil is indispensable. Such model must adequately describe the material response to a cyclic loading under constant volume (undrained) conditions, amongst others the relaxation of effective stress (pore pressure accumulation) or the effective stress loops repeatedly passed through after a sufficiently large number of cycles (cyclic mobility, stress attractors). The soil behaviour under undrained cyclic loading is manifold, depending on the initial conditions (e.g. density, fabric, effective mean pressure, stress ratio) and the load characteristics (e.g. amplitude of the cycles, application of stress or strain cycles). In order to develop, calibrate and verify a constitutive model with focus to undrained cyclic loading, the data from high-quality laboratory tests comprising a variety of initial conditions and load characteristics are necessary. It is the purpose of these two companion papers to provide such database collected for a fine sand. Part II concentrates on the undrained triaxial tests with strain cycles, where a large range of strain amplitudes has been studied. Furthermore, oedometric and isotropic compression tests as well as drained triaxial tests with un- and reloading cycles are discussed. A combined monotonic and cyclic loading has been also studied in undrained triaxial tests. All test data presented herein will be available from the homepage of the first author. As an example of the examination of an existing constitutive model, the experimental data are compared to element test simulations using hypoplasticity with intergranular strain.  相似文献   

8.
9.
徐松年 《地质论评》1984,30(6):586-594
玄武岩柱状节理面旋回条纹是玄武岩复杂的原生破裂变形的岩石记录。它是随着冷却玄武岩体中周期性应力的积聚与解除,在逐渐增长着的裂隙的前进期形成的一种原生构造。美国学者Ryan和Sammis(1978)曾根据保留  相似文献   

10.
This paper presents a kinematic hardening model for describing some important features of natural stiff clays under cyclic loading conditions, such as closed hysteretic loops, smooth transition from the elastic behavior to the elastoplastic one and changes of the compression slope with loading/unloading loops. The model includes two yield surfaces, an inner surface and a bounding surface. A non-associated flow rule and a kinematic hardening law are proposed for the inner surface. The adopted hardening law enables the plastic modulus to vary smoothly when the kinematic yield surface approaches the bounding surface and ensures at the same time the non-intersection of the two yield surfaces. Furthermore, the first loading, unloading, and reloading stages are treated differently by applying distinct hardening parameters. The main feature of the model is that its constitutive equations can be simply formulated based on the consistency condition for the inner yield surface based on the proposed kinematic hardening law; thereby, this model can be easily implemented in a finite element code using a classic stress integration scheme as for the modified Cam Clay model. The simulation results on the Boom Clay, natural stiff clay, have revealed the relevance of the model: a good agreement has been obtained between simulations and the experimental results from the tests with different stress paths under cyclic loading conditions. In particular, the model can satisfactorily describe the complex case of oedometric conditions where the deviator stress is positive upon loading (compression) but can become negative upon unloading (extension).  相似文献   

11.
This paper analyses the meeting between the international petroleum industry and two local communities. The building of an oil terminal in a local community is both a major event, and a generator of processes on the local level. Three different angles is used to enlighten these processes; categorised as as place, people and mind. The place analysis consentrates on the effects on population and workforce development, the people analysis look at the institutional and planning processes, and the mind analysis the effects on the feeling of local identification. The paper demonstrates that local factors are of crucial importance even for the international petroleum industry.  相似文献   

12.
K2NbOF5 · H2O and K2TaF7 were prepared through melting Nb2O5 and Ta2O5 respectively with KHF2 · 2H2O, followed by recrystallizing. The hydrolysis properties of K2NbOF5 and K2TaF7 were determined again by using a rapidly quench vessel. As temperature (from 250 to 550 °C) and pressure (from 500 to 1500 bars) increase, the degree of hydrolysis of both K2NbOF5 and K2TaF7 will increase. Nb- and Ta-fluorine complex compounds are instable in supercritical aqueous fluids. The degree of hydrolysis of both K2NbOF5 and K2TaF7 decreases with increasing concentration of HF, independent of the concentration of NaF. The partition coefficients of Nb and Ta between granitic melt and fluid phase are less than 0.15, i.e., most of Nb and Ta are left in granitic melt. The partition coefficient of Ta is more dependent on the concentration of HF than that of Nb. The significance of hydrolysis in Nb- and Ta- mineralization is also discussed in the present paper.  相似文献   

13.
In the history, the Yellow River nurtured Chinese civilization. It is respected as the "ancestor of the four large rivers in China" and praised as "the mother river of China". At the same time, the Yellow River is regarded as "the misery of China" and considered as the most complex river hard to control in the world. Today, the Yellow River is also one large river greatly influenced by human activities in the world. The safety of the Yellow River, particularly flood control, is always the most important issue for governing and developing the country. Great achievements have been made after many years of efforts for controlling the Yellow River. However, since the nineties of 20 century, some new problems occurred, such as sharp reduction of flux to sea, dry rivercourse, worsen environment, etc. Rapidly shrinking riverbed and two-level perched stream are disadvantageous to flood safety especially. The new concepts and new practices are urgently needed to control the river. Therefore, the Yellow River Conservancy Committee of Ministry of Water Resources had continuously carded out flow and sediment diversion each year from 2002 to 2005. To timely probe into the new issues produced after flow and sediment diversion, and in order to deepen the understanding of rules for the Yellow River's water and sediment and provide reference and experience to the researchers for other large rivers, five hydrologic and hydraulic characteristics of the Yellow River, such as lack of water, much of sediment, different resources of water and sediment, inconsistency between water and sediment and frequency of sink switching and route changing, are described. Flow and sediment diversion of the Yellow River is also reviewed. Under flow and sediment diversion,  相似文献   

14.
Data on the structural and valence distribution of Cr and Fe in chrysoberyl and in alexandrite, its gem variety, are given. It is shown that the Cr3+ line in the natural Ural and Tanzania samples is the strongest in the M1 site and for the synthetic stones, in the M2 site. During the annealing of the alexandrite crystals, Cr3+ passes from the smaller M1 site into the larger M2 site. The M?ssbauer spectroscopy quantitatively determined the distribution of different valence Fe ions. The various proportions of both Fe2+ and Fe3+ ions isomorphically entering the octahedral sites in the BeAl2O4 crystal structure were established.  相似文献   

15.
The following determinations in the Norwegian fjord Framvaren and the Black Sea have been compared: carbon-14, carbon-13, alkalinity, total dissolved inorganic carbon, sulfide, tritium (HTO), trace metals, silica, ammonium and phosphate. The historical development of the two anoxic basins is quite different. The carbon-14 age of the total inorganic dissolved carbonate in the deep water is 2000 years in the Black Sea, but only 1600 in Framvaren. The fresh water supply and composition are different. The rivers entering the Black Sea have a high alkalinity, but the river input and runoff to Framvaren has a very low alkalinity. The alkalinity, carbonate and sulfide concentrations in the anoxic waters below the chemoclines are much higher in Framvaren. This is mainly an effect of the different surface to volume ratios. The difference in carbon-13 (-8 for the Black Sea deep water, -19 in the Framvaren bottom water) is mainly due to the smaller imprint of the decomposition of organic matter on the Black Sea deep water.The concentration of trace metals in the particulate form are about the same in the deep water. About 76% of the molybdate in seawater is lost in the sulfidic water of Framvaren, and about 82–96% of the molybdate carried into the Black Sea by the Bosporus undercurrent is lost in the deep water. The relation between silica, ammonium and phosphate can be understood if part of the ammonium is being removed by denitrification, a process that most likely has been going on for thousands of years.  相似文献   

16.
Epochs of changing atmospheric CO2 and seawater CO2–carbonic acid system chemistry and acidification have occurred during the Phanerozoic at various time scales. On the longer geologic time scale, as sea level rose and fell and continental free board decreased and increased, respectively, the riverine fluxes of Ca, Mg, DIC, and total alkalinity to the coastal ocean varied and helped regulate the C chemistry of seawater, but nevertheless there were major epochs of ocean acidification (OA). On the shorter glacial–interglacial time scale from the Last Glacial Maximum (LGM) to late preindustrial time, riverine fluxes of DIC, total alkalinity, and N and P nutrients increased and along with rising sea level, atmospheric PCO2 and temperature led, among other changes, to a slightly deceasing pH of coastal and open ocean waters, and to increasing net ecosystem calcification and decreasing net heterotrophy in coastal ocean waters. From late preindustrial time to the present and projected into the 21st century, human activities, such as fossil fuel and land-use emissions of CO2 to the atmosphere, increasing application of N and P nutrient subsidies and combustion N to the landscape, and sewage discharges of C, N, P have led, and will continue to lead, to significant modifications of coastal ocean waters. The changes include a rapid decline in pH and carbonate saturation state (modern problem of ocean acidification), a shift toward dissolution of carbonate substrates exceeding production, potentially leading to the “demise” of the coral reefs, reversal of the direction of the sea-to-air flux of CO2 and enhanced biological production and burial of organic C, a small sink of anthropogenic CO2, accompanied by a continuous trend toward increasing autotrophy in coastal waters.  相似文献   

17.
18.
Bromine is a microelement present in waters, both in inorganic and in a wide range of organic compounds, though at lower concentrations. Typically, concentrations of organobromine compounds in waters are several orders of magnitude lower than of bromides. Two issues are addressed in the paper: the influence of bromides on the quality of treated waters and organobromines as contaminants of natural waters. Bromide presence in treated water gives rise to formation of potentially mutagenic disinfection by-products (DBPs). Registered amounts of DBPs in potable waters, exceeding the admissible levels, and the published data on DBPs in waters used for leisure and recreation activities, clearly indicate the health risk. Major sources are identified and registered concentrations of EDB, DBCB, methyl bromide, bromacil and PBDEs in the aquatic environment are summarized. The effects of bromide on DBPs formation and numerous examples of organobromine contamination of the aquatic environment indicate that the presence of bromides and organobromine compounds in the aquatic environment will have to be given more consideration, for several reasons. Firstly, larger amounts of bromide are present in saline and contaminated waters and the proportion of such waters being handled is increasing. Similarly, the processes of water purification, treatment and disinfection are now playing a major role. Secondly, emissions from manufacturing of bromine-containing materials growing, due to, inter alia, intensive development of the electronic industry and the plastic manufacturing sector. Thirdly, bromine compounds are also used as medicine ingredients. There is now a growing awareness of the presence of pharmaceuticals in the aquatic environment. Fourth, low bromide concentrations in hypergene zones may be modified in the future, partly because of the climate changes, which may give rise to difficulties with water treatment systems.Water quality standards having relevance to water used for consumption are based only on the best-known (most widespread) DBPs. However new more restrictive legal regulations relating to the use of bromine compounds have been put in place prohibiting the use of certain bromine-based substances or restricting their amount in finished products. In the light of current legislation, the monitoring of water contamination with potentially toxic, mutagenic and endocrine-disrupting organobromine compounds is still unsatisfactory because newly discovered compounds are not included and certain factors governing the exposure to those substances are still left out.The effects of bromine (bromide and organobromine compounds) on water quality have been investigated by researchers from several fields of expertise. The water management authorities ought to make use of the available research data and identify the problems which need to be addressed directly and those which may emerge in the future.  相似文献   

19.
20.
Thermal expansion has been measured by laboratory and synchrotron X-ray powder diffraction for end-member åkermanite (ak, Ca2MgSi2O7) and gehlenite (ge, Ca2Al2SiO7) in the range 20–1,500 K. In ak in the range 340–390 K, there is a negative linear thermal expansion in [001] direction. This is related to the phase transition from an incommensurate modulated structure (IC) to a normal one (N). The volumetric mean thermal expansion coefficients for ak and ge, obtained with a linear fit of the experimental data in the temperature range 298–1,400 K, are respectively 32.1×10–6 and 28.3×10–6 K–1 . The variation of the c/a ratio with temperature, due to different thermal expansion along the crystallographic axes, can be related to the different behaviour of the tetrahedral layers in the N and IC phases. Analysis of the variation of the superstructure peaks intensity across the phase transition confirms the tricritical behaviour of the IC/N transition in ak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号