首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
大地构造图是一个地区的基础性地质图件。随着地质科学的发展,对湖南省大地构造的认识也就不断更新。湖南省地质研究所基础地质室在刘钟伟高工的主持下,经过2年的努力探索,于去年底完成了“湖南省1:50万大地构造(地体)图及成矿区带划分”的研究任务,以构造地层地体分析理论和原则为指导思想,结合深部构造研究,对湖南省大地构造格架和矿产分布规律取得了新的认识,全省大地构造格架划分为5个地体,即湘西北雪峰期大陆型原地地体(Ⅰ);湘东北雪峰期岛弧型异地地体(Ⅱ);湘中早古生代活动陆缘(弧)异地地体(Ⅲ);湘东早古生代活动陆缘(弧)异地地体(Ⅳ);湘南早古生代活动陆缘异地地  相似文献   

2.
月球花岗岩--比较行星学意义   总被引:1,自引:1,他引:0  
与大陆地壳广泛出露的花岗岩不同,在月球表面仅发现了少量细小的花岗岩碎屑,此外有长英质组分以熔体包裹体形式出现于月球玄武岩的矿物中。月球花岗岩碎屑的主要矿物为石英、钾长石和钙质斜长石,具花斑状结构;含少量铁橄榄石、单斜辉石、钛铁矿、锆石、磷灰石、白磷钙矿等矿物,缺少含水矿物。月球花岗岩富K2O,富Ba,相容元素(Cr、Sc、Co、V)含量比其它月岩低,具有平坦或Ⅴ型的REE型式,负Eu异常明显。它们的化学特征可以用硅酸盐液态不混熔来解释。月球花岗岩的结晶年龄在4.4~3.9Ga间,具有至少8个年龄峰,可能代表了与花岗岩形成相关的8次独立的岩浆事件。由于月球花岗岩成因和分布对于认识月球演化和岩浆作用历史至关重要,在新一轮的深空探测中,应更加重视对月球花岗岩的研究。  相似文献   

3.
月球KREEP岩石形成于壳幔的分界层中,天然放射性元素Th是指示KREEP岩分布的主要元素之一。在月球正面,Th元素含量高的区域主要分布在西部的月海区,包括雨海和风暴洋及其附近地区,而在月球背面Th含量高的地区为雨海对峙区以及南极爱特肯地区。高地的Th含量相对较低。现代月球表面Th的分布特征与3.85Ga年前的雨海事件有重要的关系,且在月球正面还发现了椭圆形的高Th含量区域,是月球上特殊的地球化学省,与月球初期的化学成分分布的不均一性有关。  相似文献   

4.
月球东海盆地的矿物光谱特征及遥感探测   总被引:2,自引:0,他引:2  
东海盆地是月球上最年轻的大型撞击盆地之一,其地形地貌和矿物与岩石类型分布将有助于我们深入理解月球撞击盆地形成过程和地质演化历史。LOLA高程数据揭示东海盆地为保存完好的多环撞击盆地。基于月球矿物绘图仪(M3)反射率数据,在东海盆地发现了尖晶石、辉石、结晶斜长石、橄榄石等矿物,采用修正高斯模型(MGM)进行混合矿物光谱分解获取了矿物端员,利用光谱角分类方法(SAM)作出了Maunder撞击坑的主要矿物分布图。发现的纯结晶斜长石矿物与最近其他月球探测(如Kaguya)相吻合,为月球岩浆洋模型提供了新约束条件。在Lowell撞击坑中央峰发现尖晶石分布,并利用多光谱成像仪(MI)数据进行了验证;利用MGM方法,在Maunder建造上发现结晶斜长石与尖晶石的混合矿物,我们通过分析认为东海盆地的尖晶石在外卢克山脉上可能有更广泛的分布。  相似文献   

5.
本文介绍了苏门答腊岛上两个成矿带(即铜-金矿成矿带和锡矿成矿带)的矿产分布,岩浆岩的岩石类型和地球化学特征。根据本研究课题在巴东地区岩石化学资料,本文总结了铜-金矿成矿带含矿母岩的地球化学特征,探讨其岩浆岩成因和源区。同时,将其锡矿成矿带岩浆岩的岩石类型和地球化学-大地构造环境与其相邻地体进行对比。研究结果表明:西苏门答腊地体的铜-金矿成矿带的含矿母岩为SI-型埃达克质花岗岩,形成于活动大陆边缘(ACM)火山弧构造环境,其岩浆物质主要来源于俯冲洋壳板片局部熔融叠加上弱的地幔楔熔融-混染作用(MASH)。而东苏门答腊地体‘锡岛’和"暹缅马苏"地体的锡矿带含矿母岩为过铝质(S-型)花岗岩类,其形成构造环境为碰撞带的弧后盆地和陆内裂谷,物质源区来自地壳重熔和岩浆分异。地球化学资料表明,该两地体具有共同的深部岩浆源区。  相似文献   

6.
<正>地-月系统具有一些非常独特的性质。与其它的类地行星相比,地-月系统具有非常高的角动量;月球与地球的质量比也远高于类似的卫星和大行星质量比,达到1∶81.3;月球的整体密度(3.34 g/cm3)却比地球或其他内行星低得多,这是由于月球所含的金属铁含量较低(5%)所致。月球的化学组成也很独特,像K、Pb、Bi这样的挥发性元素严重缺失,而像Ca、Al、Ti及U这样的难溶元素则很富  相似文献   

7.
月球表面多种金属元素的分布特征初探   总被引:3,自引:1,他引:2  
美国的"克莱门汀"(Clementine)和"月球探测者"(Lunar Prospector)号月球探测器,分别于1994和1998年完成了对月球形貌、水冰以及月球重力和磁场等物理参数的高精度、高分辨率探测。月球探测者号还利用伽马射线仪探测了月表层中铁、钛、铀、钍和钾等元素含量分布,这为进一步研究月球的空间与表面环境,月球的地形、地貌、地层与地质构造,月表土壤与岩石的分布、成分与成因,月球物理场特征,月球的内部结构、演化与成因提供了大量的科学数据和证据。根据"克莱门汀"和"月球探测者"号测得的数据,对月球表面金属钛、铁、镁、铀、钍、钾的分布进行分析,初步研究了这些金属元素分布与月球地貌的关系,计算各金属元素之间空间分布的相关系数,分析蕴藏这些金属资源地区的岩性及各种元素可能的来源。由此推测30亿年前月球内部逐渐固化,大量小行星对月表岩石频繁的撞击导致金属元素分布不均衡,使金属元素在月球高原地带普遍含量低于月海,同时也形成了现在我们看到的遍布月表的环形山。  相似文献   

8.
正欧阳自远(1935—)院士1956年毕业于北京地质学院勘探系,长期从事天体化学与比较行星学研究,是我国天体化学学科的开创者。欧阳自远院士提出了我国月球探测的发展战略和规划,从而牵引出我国"探月工程"的国家立项,担任中国月球探测工程首席科学家。在欧阳自远院士的亲切关怀和直接指导下,在国家自然科学基金、中国科学院地球化学研究所领域前沿课题以及中国地质大学(北京)探月工程科研团队的大力支持下,以月球起源和演化过程的整体性和规律性认识为指导,以我国"嫦娥一号"、"嫦娥二号"、"嫦娥三号"任务科学探测数据和其他已  相似文献   

9.
杨宏伟  赵文津  吴珍汉 《地质学报》2016,90(9):2206-2218
一直以来月球上都没有发现像地球上一样的全球板块构造现象,被认为是属于单板块构造的行星体并且是不活动的。随着月球地形探测精度的提高,人们逐渐发现了一些地质现象表明月球并不像之前想象的一样是不活动的。高精度的月形数据显示出了月球上除了存在众所周知的(撞击作用产生的)复杂的撞击构造外,仍然存在许多可能由内生作用产生的构造特征:如裂谷、山脊、火山群等。本文利用最新高精度月球激光高度数据(LOLA数据)建立了全月60m(相当于7秒网格)高精度月形图。由于数据量超大(TB级别),作者编写了基于并行架构的集群计算处理代码,其计算效率提高了近300倍。基于这些图件,作者在全球范围内找出许多重要的构造现象,并根据其构造及地质特征进行分类研究。研究结果表明并不像之前认识一样,月球上的确存在许多地质构造体是由月球的内生地质作用所产生,并建立对于月球结构和构造的新认识。此外,通过对比发现,像地球上全球尺度的线性山脉只是板块构造运动的结果;另一方面,在无板块构造的行星上,就像月球一样,会产生大面积的高地(月陆)和低地(月海地区),这种地质现象很有可能是行星地壳岩浆演化的直接结果。在文章最后,作者还将制作出的60m分辨率的全月月形系列图件附后并公开,以方便其他科研人员进一步开展相关研究;并以此敬献中国地质科学院60周年庆典。  相似文献   

10.
月球表面的元素和物质成分分布是理解月球成岩与地质演化历史的重要线索。嫦娥一号干涉成像光谱仪(IIM)是我国首台月球探测成像光谱仪器,其获得的大量月球高光谱数据已成为我国未来探测月球成分与地质演化研究的宝贵基础数据。本文利用探月工程地面应用系统发布的IIM B版本2C级数据,开发出一套数据再定标流程,获得了较为可靠的月表相对反射率数据。我们在新校正数据的基础上开展月球表面FeO、TiO_2的反演建模,获得了全月FeO和TiO_2分布图,这些图件是进行月球地质填图的基础。校正数据反演的FeO和TiO_2分布与前人对Clementine UVVIS数据的反演结果相近,表明干涉成像光谱仪数据具有较大的应用潜力。高地的低铁岩石成分(一般小于8%)佐证了月球月壳形成的过程中的岩浆洋分异假说,而月海玄武岩的TiO_2成分变化范围较大(0~13%)则表明月海玄武岩来源于不同的月幔源区。根据嫦娥一号干涉成像光谱仪全月FeO分布图,可将月球表面物质类型总体划分为高地斜长岩和月海玄武岩,而根据TiO_2分布可以进一步将月海玄武岩划分为5种不同钛含量的玄武岩岩石类型。FeO和TiO_2在全月范围内的分布表明Apollo和Luna返回的月球样品不能够代表全月范围内的矿物成分多样性,月球岩浆演化历史比前人认为的要复杂。未来月球样品返回任务(如嫦娥五号)如能赴这些特殊地区进行取样,将很有可能返回重要的月球科学研究发现和成果。  相似文献   

11.
This paper reviews recent progress on the geotectonic evolution of exotic Paleozoic terranes in Southwest Japan, namely the Paleo-Ryoke and Kurosegawa terranes. The Paleo-Ryoke Terrane is composed mainly of Permian granitic rocks with hornfels, mid-Cretaceous high-grade metamorphic rocks associated with granitic rocks, and Upper Cretaceous sedimentary cover. They form nappe structures on the Sambagawa metamorphic rocks. The Permian granitic rocks are correlative with granitic clasts in Permian conglomerates in the South Kitakami Terrane, whereas the mid-Cretaceous rocks are correlative with those in the Abukuma Terrane. This correlation suggests that the elements of Northeast Japan to the northeast of the Tanakura Tectonic Line were connected in between the paired metamorphic belt along the Median Tectonic Line, Southwest Japan. The Kurosegawa Terrane is composed of various Paleozoic rocks with serpentinite and occurs as disrupted bodies bounded by faults in the middle part of the Jurassic Chichibu Terrane accretionary complex. It is correlated with the South Kitakami Terrane in Northeast Japan. The constituents of both terranes are considered to have been originally distributed more closely and overlay the Jurassic accretionary terrane as nappes. The current sporadic occurrence of these terranes can possibly be attributed to the difference in erosion level and later stage depression or transtension along strike-slip faults. The constituents of both exotic terranes, especially the Ordovician granite in the Kurosegawa-South Kitakami Terrane and the Permian granite in the Paleo-Ryoke Terrane provide a significant key to reconstructing these exotic terranes by correlating them with Paleozoic granitoids in the eastern Asia continent.  相似文献   

12.
The Punta del Este Terrane (eastern Uruguay) lies in a complex Neoproterozoic (Brasiliano/Pan-African) orogenic zone considered to contain a suture between South American terranes to the west of Major Gercino?CSierra Ballena Suture Zone and eastern African affinities terranes. Zircon cores from Punta del Este Terrane basement orthogneisses have U?CPb ages of ca. 1,000?Ma, which indicate an lineage with the Namaqua Belt in Southwestern Africa. U?CPb zircon ages also provide the following information on the Punta del Este terrane: the orthogneisses containing the ca. 1,000?Ma inheritance formed at ca. 750?Ma; in contrast to the related terranes now in Africa, reworking of the Punta del Este Terrane during Brasiliano/Pan-African orogenesis was very intense, reaching granulite facies at ca. 640?Ma. The termination of the Brasiliano/Pan-African orogeny is marked by formation of acid volcanic and volcanoclastic rocks at ca. 570?Ma (Sierra de Aguirre Formation), formation of late sedimentary basins (San Carlos Formation) and then intrusion at ca. 535?Ma of post-tectonic granitoids (Santa Teresa and José Ignacio batholiths). The Punta del Este Terrane and unrelated western terranes represented by the Dom Feliciano Belt and the Río de La Plata Craton were in their present positions by ca. 535?Ma.  相似文献   

13.
New and compiled detrital zircon U–Pb ages from the southern Neoproterozoic–Cambrian Ribeira Belt, SE Brazil, demonstrate Laurentian affinity of the Embu Terrane which is statistically distinct from the adjoining Apiaí and São Roque terranes with cratonic affinity (e.g., São Francisco Craton). Zircon provenance results indicate that the type-area of the Embu Terrane is dominated by detrital zircon age modes at ca. 1200 Ma, 1400 Ma, and 1800 Ma, with maximum depositional age of ca. 1000 Ma. In contrast, the Apiaí and São Roque terranes are dominated by Paleoproterozoic detrital zircon ages (ca. 2200–2000 Ma age dominant component), with maximum depositional ages of ca. 1400 Ma and 1750 Ma, respectively. Multidimensional scaling (MDS) analysis of non-parametric similarity measurements on zircon age populations indicates for the first time that the Embu Terrane encompass two statistically distinct detrital zircon age spectra, which is also reflected in the metamorphic zircon age record. The statistical characterization of the Embu Terrane through populational metrics allow a quantitative comparison with surrounding tectonic domains and rock samples classified such as Embu-type. Our results clearly highlight the distinction between the statistically differentiated Embu Terrane from the Apiaí and São Roque terranes, supporting an allochthonous interpretation. In addition, we demonstrate that rocks samples previously classified as Embu-type are significantly dissimilar to the definition of Embu Terrane, failing to support alternative tectonic models (e.g., intracontinental evolution). Detrital zircon age spectra reveal that the Apiaí and São Roque terranes have similar zircon provenance to domains sourced from the São Francisco Craton, whereas detrital zircon populations from the Embu Terrane have greater affinity with SW Laurentia basins (and their inferred sediment sources), consistent with previous findings. Therefore, we interpret the Embu Terrane as a Rodinia descendant developed along the active margin of the SW Laurentia that collided with the Ribeira Belt during early Neoproterozoic (810–760 Ma).  相似文献   

14.
The point at issue: The Kurosegawa Terrane is composed of continental fragments transecting Mesozoic terranes of accretionary complex in Southwest Japan (Fig. 1). It is an attenuated tectonic sliver and considered to be allochthonous with respect to the main part of Southwest Japan. The problem of which continental block in the East Asian continental margin is the source of the Kurosegawa Terrane has puzzled Japanese geologists for many years. Firstly, we try to approach this issue based on the analysis of fusulinacean assemblage in accreted terranes composed of subduction complex in the Pacific Rim. Secondly, by applying the result of this analysis we try to locate the source of the continental fragments of the Kurosegawa Terrane. Thirdly, we try to prove its validity with a new paleomagnetic study.  相似文献   

15.
福建省古生代至中生代大地构造演化的格架   总被引:10,自引:0,他引:10  
边效曾  褚志贤 《福建地质》1993,12(4):280-291
松溪—长汀断裂带和福州—永定断裂带是控制福建古生代及以后大地构造演化的两条北东东向的断裂带。地质地球化学资料表明,前者是加里东期的地体碰撞带,沿线分布了构造混杂岩、变质超基性岩体、具有角闪岩相和中压矿物的变质岩以及同碰撞型花岗岩体,以后又发育为A型俯冲带;后者是发育于加里东构造层之上的海西期张裂带,在形成海西期的福州—永定海峡的同时,产生了石炭纪海底双模式火山岩及层控铁矿,印支期的碰撞活动使海峡封闭并发育A型俯冲作用。由此,北东东向的松溪—长汀断裂带和福州—永定断裂带可以将福建划分为三个古生代的构造地层地体:闽北地体、闽中地体和闽东南地体。通过对福建省古生代地体构造分析、古地磁测量及古地理重建,展现在我们眼前是:华南(其中包括福建)在古生代中期从冈瓦纳大陆分离出来后,横渡特提斯海,在古生代末至中生代初到达劳亚大陆,与中朝板块碰撞引起了福建地体间强烈的造山运动。  相似文献   

16.
New U–Pb detrital zircon ages from Triassic metasandstones of the Torlesse Terrane in New Zealand are compared with 40Ar/39Ar muscovite data and together, reveal four main source components: (i) major, Triassic–Permian (210–270 Myr old) and (ii) minor, Permian–Carboniferous (280–350 Myr old) granitoids (recorded in zircon and muscovite data); (iii) minor, early middle Palaeozoic, metamorphic rocks, recorded mainly by muscovite, 420–460 Myr old, and (iv) minor, Late Precambrian–Cambrian igneous and metamorphic complexes, 480–570 Myr old, recorded by zircon only. There are also Proterozoic zircon ages with no clear grouping (580–1270 Myr). The relative absence of late Palaeozoic (350–420 Myr old) components excludes granitoid terranes in the southern Lachlan Fold Belt (Australia) and its continuation into North Victoria Land (East Antarctica) and Marie Byrd Land (West Antarctica) as a potential source for the Torlesse. The age data are compatible with derivation from granitoid terranes of the northern New England Orogen (and hinterland) in NE Australia. This confirms that the Torlesse Terrane of New Zealand is a suspect terrane, that probably originated at the NE Australian, Permian–Triassic, Gondwanaland margin and then (200–120 Ma) moved 2500 km southwards to its present New Zealand position by the Late Cretaceous (90 Ma). This sense of movement is analogous to that suggested for Palaeozoic Mesozoic terranes at the North American Pacific margin.  相似文献   

17.
The Southern Prince Charles Mountains (SPCM) are mostly occupied by the Archaean Ruker Terrane. The Lambert Terrane crops out in the northeastern part of the SPCM. New geochemical and zircon U–Pb SHRIMP ages for felsic orthogneisses and granitoids from both terranes are presented. Orthogneisses from the Ruker and Lambert terranes differ significantly in their major and trace-element compositions. Those from the Ruker Terrane comprise two distinct groups: rare Y-depleted and abundant Y-undepleted. U–Pb isotopic data provide evidence for tonalite−trondhjemite emplacement at 3392 ± 9 and 3377 ± 9 Ma, pre-tectonic granite emplacement at 3182 ± 9 Ma, metamorphism(?) at c. 3145 Ma, and thermal events at c. 1300(?) and 626 ± 51 Ma. The Lambert Terrane orthogneisses probably originated in a continental magmatic arc. Zircon dating shows a very different geological history: pre-tectonic granitoid emplacement at 2423 ± 18 Ma, metamorphism at 2065 ± 23 Ma, and syn-tectonic granitoid emplacement at 528 ± 6 Ma, syn-tectonic pegmatite emplacement at 495 ± 18 Ma. The Lambert Terrane can be correlated with neither the Meso- to Neoproterozoic Beaver Terrane in the Northern PCM, which differs in isotopic composition, nor with the Archaean Ruker Terrane, which differs in both granitoid chemical composition and the timing of major geological events. It represents a Palaeoproterozoic orogen which experienced strong tectonic re-activation in Pan-African times. The Lambert Terrane has some geochronological features in common with the Mawson Block, which comprises south Australia and some areas in East Antarctica.  相似文献   

18.
Permian–Triassic fore-arc basin terranes are exposed in New Zealand, but their original positions and tectonic configurations along the eastern Gondwanan margin are not fully understood. To better constrain late Paleozoic and Mesozoic reconstructions, we investigated the provenance of Permian–Triassic marine sandstone units from the Dun Mountain-Maitai Terrane (Maitai Group) and the Kaka Point Structural Belt (Willsher Group). The recognition of abundant volcanic lithic fragments in the sandstone samples, combined with the pattern of detrital zircon ages (unimodal to bimodal 280–240 Ma age distribution), demonstrate that the upper Permian to Middle Triassic volcaniclastic successions were derived from a proximal arc source. The detrital zircon age spectra match magmatic pulses in the adjacent Tuhua Intrusives (Median Batholith), a conclusion similar to that recently proposed for the Brook Street Terrane (Grampian Formation) and Murihiku Terrane (Murihiku Supergroup). Trace-element data from the dated zircon grains provide further evidence for a Median Batholith source and cross-terrane provenance links. The data indicate that 275–230 Ma zircon grains from the Maitai Group, Willsher Group, and Murihiku Supergroup were derived from a common magmatic source, and that the late Permian Longwood Suite (261–252 Ma) in the Median Batholith was a source region for these terranes. Based on the cross-terrane provenance links, we suggest that the Brook Street and Murihiku terranes were deposited in the proximal part of a fore-arc basin, whereas the Dun Mountain-Maitai Terrane represents the distal part of the same basin. Sedimentation in the Maitai Group ceased during the Middle Triassic (∼238 Ma), likely in response to a period of orogenesis at 235–230 Ma (Gondwanide Orogeny) that is widely recognized throughout the southwest Pacific.  相似文献   

19.
The Indosinian Orogeny in Thailand is often viewed as having developed between strongly linear terranes, which today trend approximately N–S. The terranes were subsequently disrupted by later tectonics, particularly NW–SE trending Cenozoic strike-slip faults. The ENE–WSW to NE–SW striking thrusts and folds in the Khao Khwang Platform area of the Saraburi Group on the SW margin of the Indochina Terrane are not easily explained in the context of this traditional view. Reversal of the clockwise rotation shown to have affected the block north of the Mae Ping Fault zone only enhances the E–W orientation of structures in the fold and thrust belt, and moves the belt further east towards Cambodia. One solution for the trend that fits better with regional understanding from hydrocarbon exploration of the Khorat Plateau is that the Indochina Terrane was actually a series of continental blocks, separated by Permian rifting. During the Early Triassic the early stages of collision (South China-Cathaysian Terrane collision with Vietnam Indochina) resulted in the amalgamation of disparate blocks that now form the Indochina Terrane by closure along the rifts. At the same time or following on from the collision there was closure of the back-arc area between Indochina and the Sukhothai zone. The rift basins, were thrusted and inverted during the early stages of the Indosinian orogeny, and only underwent minor reactivated when later Sibumasu collided with Sukhothai Zone-Indochina Terrane margin during the Late Triassic. The scenario described above requires the presence of a (minor) E–W trending suture in NW Cambodia. Evidence for this suture is suggested by the presence of Permo-Triassic calc-alkaline volcanism.  相似文献   

20.
The Kurosegawa Terrane is an anomalous, disrupted, Paleozoic and Mesozoic lithotectonic assemblage characterized by fragments of continent and continental margins. It is located in Southwest Japan where it lies between two Mesozoic subduction complex terranes. The Kurosegawa Terrane is an exotic and far-travelled geologic entity with respect to its present position. Limestones of the Kurosegawa Terrane formed along a continental margin yield fusulinacean fossils Cancellina, Colania and Lepidolina. Accordingly, the Kurosegawa Terrane was once situated within the Colania-Lepidolina territory in the East Tethys-Panthalassa region at a palaeo-equatorial latitude, possibly close to the eastern margin of the South China and/or Indochina-East Malaya continental blocks. These blocks had rifted from Gondwana by late Devonian. They drifted northwards, passing through the Colania-Lepidolina territory in mid-Permian time, and amalgamated with the proto-Asian continent during the late Triassic. Subsequently, during the Cretaceous, parts of the allochthonous continental blocks and their associated tectonic collage were transpressed, dispersed, and displaced from the southeastern periphery of Asia towards the north. As a result, the Kurosegawa Terrane is formed as a disrupted allochthonous terrane, characterized by a serpentinite melange zone, lying between the adjoining Mesozoic subduction complex terranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号