首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
依据青藏高原目前所取得冰芯的尘埃分析结果,初步分析了近1000年来青藏高原南北大气尘埃载荷的时空变化特征。研究表明,高原南部达索普冰芯记录的高尘埃含量时期为1270s~1380s和1870s~1990s,而北部马兰冰芯记录的高尘埃含量时期为1130s~1550s和1770s~1940s。近1000年来青藏高原南北冰芯中尘埃含量呈现不同程度的增加总趋势,这可能指示了环境的变干趋势。青藏高原冰芯记录还反映出,高原北部地区大气中的尘埃载荷明显高于南部地区;高原北部地区大气尘埃载荷春季最大,而南部地区非季风季节最大。另外,通过对高原南北冰芯中尘埃含量记录与δ18 O记录之间相关关系分析,揭示出大气尘埃载荷变化与气温变化之间关系在高原北部地区呈显著负相关,而在南部地区却呈显著正相关。这说明青藏高原南北气候环境变化的差异性。  相似文献   

2.
青藏高原水汽输送与冰芯中稳定同位素记录*   总被引:7,自引:7,他引:7       下载免费PDF全文
降水中稳定同位素作为水中的组成成分,与水汽来源的变化存在直接的关系。根据在青藏高原降水中稳定同位素的研究,青藏高原南北降水中δ18 O和过量氘(d)都存在着显著的空间变化,这种空间变化与西南季风夏季向北推进的位置有关。在时间变化上,青藏高原不同地区降水中δ18 O和d的季节变化特征也与水汽来源的季节变化有关,而且这种季节变化主要受控于西南季风水汽与西风带输送水汽之间的相互作用,在中国最北端的阿尔泰山区还受到极地气团的影响。由于不同的大气环流造成的水汽来源的差异,青藏高原冰芯中稳定同位素变化也存在空间差异。北部地区冰芯中稳定同位素的年际变化与当地气象站记录显示良好的对应关系,而南部冰芯中稳定同位素的变化与当地气象站降水量在年际变化上显示反相关关系。  相似文献   

3.
以青藏高原为主体的第三极地区是中、低纬度最大的冰川作用区.冰芯记录可为该地区过去气候环境变化研究提供重要的信息.但在青藏高原地区尤其是高原南部印度季风影响区,其冰芯稳定同位素记录的解释还存在着不确定性.本文整合青藏高原不同空间位置上的10支冰芯δ18O记录,以研究其空间集成的序列与区域温度的关系,来论证青藏高原冰芯稳定同位素指标的温度代用性.将青藏高原北部和南部各5支冰芯及整个青藏高原面上的这10支冰芯δ18O记录经Z-score标准化处理后,与相应区域的器测气温标准化序列进行统计分析.结果发现,无论是高原北部、高原南部还是整个高原面上,冰芯δ18O与气温的标准化序列均存在显著的相关关系.在此统计分析基础上,将冰芯δ18O标准化序列延伸至1900年,从而重建了20世纪青藏高原地区气温变化,该气温序列与北半球气温变化具有较好的相似性.如上分析表明,青藏高原冰芯δ18O记录是区域气温变化的良好代用指标,多支冰芯δ18O记录的综合集成能更好地揭示过去气候变化特征.  相似文献   

4.
焦洋  游庆龙  林厚博  闵锦忠 《冰川冻土》2014,36(6):1385-1393
基于青藏高原地区1960-2010年高分辨率(0.5°×0.5°)的逐日地面气温格点资料以及 1960-2010年NCEP/NCAR全球月平均海平面气压场、高度场、风场的再分析格点资料(2.5°×2.5°), 通过计算青藏高原(74.75°~104.25° E, 26.75°~40.25° N)冬季地面温度平均值经标准化处理后得到的区域冬季气温强度指数, 分析了冬季北极涛动(AO)、西伯利亚高压与同期青藏高原地面气温的特征和关系. 结果表明: AO为负(正)相位时, 中高纬西风气流偏弱(强), 有(不)利于极地冷空气向南输送, 西伯利亚地区源地冬季风偏强(弱), 青藏高原冬季气温指数减小(增大), 地面气温偏低(高). 对AO作M-K突变分析, 发现其突变年份为1975年, 通过对突变年份前后高度场和风场作差值场分析, 结果显示: 冬季AO处于高指数时期, 500 hPa上, 欧洲东部槽变浅, 青藏高原北部的高压脊减弱, 环流呈纬向发展, 青藏高原上盛行偏南风, 气温偏高, 青藏高原地区为暖冬期; 200 hPa 上, 青藏高原东部的槽明显加深, 使得青藏高原地区对流层顶至平流层底的环流趋势以经向发展为主, 该区域主要受到偏北的急流控制, 易导致降温.  相似文献   

5.
利用氧同位素作为古高度计重建造山带的古高度是近年发展起来的应用比较广泛的方法。本文通过对青藏高原河水δ18Ow(SMOW)的空间分布特征分析,表明高原南北δ18Ow(SMOW)由于水汽来源和水汽循环方式不同存在显著差异。以中央分水岭山脉为界,南部δ18Ow(SMOW)平均值为-15.6‰左右,北部为-8.6%左右;   南部氧同位素值随高度的平均变化率为-0.24‰/100m,北部为-0.15‰/100m。分别建立了藏北地区和藏南地区河水氧同位素和高度的关系,同时应用可可西里及昆仑山口现代食草动物牙齿釉质、尼玛盆地现代土壤碳酸盐的氧同位素值对所建立的经验模型进行了检验,表明这两个模型分别应用于藏北和藏南地区古高度的恢复是可行的,为今后青藏高原古高度研究工作的开展提供了定量的计算方法。  相似文献   

6.
本次研究选取南海南部"太阳号"95航次17961-2柱状样(8°30.4′N,112°19.9′E,水深1795m,柱长10.3m)的175块样品进行浮游(Globigerinoides ruber)和底栖有孔虫(Cibicidoides wuellerstorfi)的氧碳稳定同位素及浮游有孔虫G.ruber壳体的Mg/Ca比值测定,再造了距今约140ka以来时间分辨率约800年的表层海水温度(SST)变化,揭示末次冰期南海南部的SST曾降温达约5℃,且存在类似Dansgaard-Oeschger(D/O)事件的千年尺度波动。将南海南部的研究结果与极地冰芯古气候记录进行对比,发现在千年时间尺度上南海南部SST的变化特征与南极冰芯的古气候变化相一致,而与格陵兰冰芯δ18O所展示的锯齿状形态D/O事件的变化不一样,且最近的两个末次冰消期南海南部SST与代表高纬冰盖体积大小的底栖有孔虫δ18O几乎同步变化,反映南海南部热带海区古气候变化的特殊性,为进一步研究低纬热带海区在全球古气候变化中的作用提供了新证据。  相似文献   

7.
德吉  姚檀栋  姚平  陈昱凝 《冰川冻土》2013,35(6):1382-1390
气候冷暖变化问题是全球科学家研究的一个聚焦点,但高海拔地区的气候变化过程尚不十分清楚,作为全球气候变化的敏感区的青藏高原更是如此. 以青藏高原北部的古里雅冰芯、唐古拉冰芯和南部的达索普冰芯、宁金岗桑冰芯δ18O记录作为温度代用指标,同时结合青藏高原西北缘的吉尔吉斯斯坦Naryn站长期气象记录和北半球同时期的气温变化进行比较,研究了过去100 a来青藏高原北部和南部的温度变化. 结果显示:青藏高原过去100 a来共出现1910年左右、1920年左右、1950年左右、1970年代4个冷期,各冷期之间对应出现4次暖期,并且变冷的程度越来越弱而变暖的程度越来越强. 其次,青藏高原气候的变冷变暖在不同地区和不同时段差异很大:从空间尺度上看,青藏高原北部变暖过程比南部更强烈;从时间尺度上看,1910年左右和1920年左右的两次变冷十分明显,但1950年左右和1970年代的两次变冷不明显. 另外,虽然有发生在1990年代早期的短暂降温过程,但与其说是一个冷事件,还不如说是一次变暖过程中的短暂停顿,随后表现为持续升温.  相似文献   

8.
根据湖相沉积碳氧同位素估算青藏高原古海拔高度   总被引:18,自引:0,他引:18       下载免费PDF全文
青藏高原湖相沉积碳氧同位素、海拔高度与年均气温存在函数关系。对青藏高原南部14个不同海拔高度的第四纪湖相沉积露头,在剖面不同部位采集了35个湖相沉积样品,结合海拔高度与年均气温的相关分析,建立了湖相沉积碳氧同位素古海拔高度计。再对青藏高原南部、青藏高原北部、东昆仑南部和柴达木盆地不同地点出露的渐新世、中新世早中期、上新世—早更新世湖相沉积地层,分别取样进行碳氧同位素分析,计算不同时期的古年均气温和古海拔高度。结果表明,青藏高原大部分地区中新世早中期整体隆升至海拔约4000m高度,五道梁—东昆仑南部中新世早中期整体隆升至海拔约3500m高度,柴达木盆地中新世早中期隆升至海拔约2500m高度。这些资料对认识青藏高原隆升时代和气候环境演化具有重要意义。  相似文献   

9.
位于青藏高原与黄土高原过渡带的甘肃武都万象洞石笋WXSM51和WXSM52提供了MIS 5(118~79kaB.P.)高分辨率的δ18 O记录。研究表明, 万象洞石笋δ18 O值与夏季风强度呈负相关关系, 与我国西南部的贵州董歌洞石笋δ18 O记录有良好的对应关系, 并与高纬度的格陵兰NGRIP冰芯δ18 O记录和65°N太阳辐射强度有很好的一致性, 说明万象洞石笋δ18 O记录了118~79kaB.P.期间亚洲季风强度的变化, 同时也说明东亚季风强度的变化和全球气候变化同步, 而且主要受控于北半球太阳辐射强度的变化。同时它与地中海碳酸盐记录有很好的相似性, 和巴西石笋δ18 O记录在千年尺度上表现出相反的变化趋势, 说明东亚季风区、地中海地区以及巴西季风区之间存在密切的联系, 指示了南北半球气候在千年尺度上存在"跷跷板"(seesaw)现象。万象洞石笋δ18 O记录的MIS 5b与MIS 5a突发性转换, 与NGRIP冰芯δ18 O记录相似, 而与神农架记录存在差异, 说明万象洞地区对亚洲季风强度的响应更为敏感。  相似文献   

10.
植物化石和土壤中的有机质碳同位素指标常用来反映古气候的变化,然而碳同位素这个指标在特定地区反映气候的定量关系缺乏检验。研究剖面选择自中国的秦岭(34°14'24″N,106°55'30″E)到蒙古人民共和国北部,接近贝加尔湖地区(51°35'08″N, 100°45'49″E)的研究剖面线,选择了3种C3植物(Artemisia scoparia, Ajania achilleides 和 Artemisia frigida),在剖面线上沿南北方向上每隔4'到5'采取一个样点,共选取161个C3植物茎叶样品进行了δ13 C值测定。同时收集了剖面线附近气象站的降水、气温等资料,用插值方法得到每个采样点的气温、降水数据。分析表明:C3植物的δ13 C值分布范围为-30 ‰ ~-22 ‰ ,其平均值为-26.81 ‰ ,该平均值较全球C3植物δ13 C平均值偏正。通过对比C3植物δ13 C与年均温、年均降水量、生长季节的干燥度等随纬度的变化规律,发现C3植物δ13 C、年均降水量、生长季节的干燥度有非常一致的变化趋势,而C3植物δ13 C和年均温不具有一致性。通过一元回归分析也同样发现C3植物δ13 C与年均降水量呈线性负相关关系(y=-0.0077x-24.838,n=161,R2=0.4418,p=0.01),与生长季节的干燥度呈线性正相关关系(y=0.7328x-28.806,n=161,R2=0.3685,p=0.01),而与年均温度没有明显的相关关系(y=-0.0461x-26.756,n=161,R2=0.0232,p=0.01)。在本研究区C3植物δ13 C对年均降水量和生长季节的干燥度响应十分显著,而对温度的响应不明显。研究区具有明显的降水和温度的梯度分布特征,是验证植物碳同位素与气候关系的理想场所,而土壤中的有机质碳同位素与其地面上的植物碳同位素息息相关。研究也说明,在本研究区或其他气候植物组合相似的地区可以利用古土壤中的有机质碳同位素来定量或半定量地反映古气候的变化。  相似文献   

11.
青藏高原地区过去2000年来的气候变化   总被引:14,自引:0,他引:14  
杨保 《地球科学进展》2003,18(2):285-291
依据冰芯、树轮、沉积物分析和冰川波动等各单点古气候代用资料,以及重建的综合温度变化曲线,分析了近 2000年青藏高原温度变化的整体性和区域性特征。全青藏高原综合温度曲线显示中世纪暖期(1150-1400年)、小冰期(1400-1900年)以及公元 3~5世纪冷期的存在。青藏高原温度变化具有明显的区域性特征。在 9~11世纪,青藏高原东北部以温暖为特征,而青藏高原南部和西部表现为寒冷。青藏高原南部和西部分别于1150-1400年(此时段在高原东北部表现为弱暖期)和1250-1500年经历了气候变暖。与中国东部文献记录的最新综合研究结果比较,高原东北部与中国东部的温度变化最为一致。而且,许多重大气候事件,如1100-1150年、1500-1550年、1650-1700年和1800-1850年的冷事件在高原和中国东部同时出现,而后 3次冷期与小冰期期间中国西部发生的冰川前进相匹配。  相似文献   

12.
王宁练 《第四纪研究》2009,29(5):913-919
通过青藏高原可可西里马兰冰芯记录,重建了 1887~1998年时期的净积累量变化,揭示出在研究时段内其变化呈弱的上升趋势。谱分析结果表明,马兰冰芯净积累量变化存在10.8a的显著周期。这表明太阳黑子活动对马兰冰芯净积累量变化存在一定的影响。统计分析发现,在20世纪80年代中期之前马兰冰芯净积累量变化与太阳黑子相对数变化之间存在显著的负相关关系,而在20世纪80年代中期之后却呈正相关关系。  相似文献   

13.
古里雅冰芯近2000年来气候环境变化记录   总被引:45,自引:11,他引:45       下载免费PDF全文
古里雅冰芯高分辨率地连续记录了近2000年来的气候环境变化。以δ18O和冰川积累量为指标的气候变化记录的重建表明,温度的波动频率大于降水波动频率,但每次干湿变化中的幅度却又大于温度变化幅度。同时,可以明显看出降水变化滞后温度变化的特征。以Na,Mg2+,Cl-,SO2-4等阴、阳离子为指标的大气成分和环境变化记录的重建,揭示了青藏高原地区大气成分和环境变化与气候变化的密切关系。  相似文献   

14.
长江三角洲千年冬温序列与古里雅冰芯比较   总被引:9,自引:5,他引:4  
利用长江三角洲史料优势,重建公元820年代以来,年代级冬温序列.为测试古里雅冰芯记录的影响力,与之作比较研究.结果显示:其年代级变化背景有很好的对应关系,年代级变化有大同小异的复杂情况.舍弃量级,就年代级温度,降水升降,约有一半是同步的,且有大致对应的温湿组合.说明两地虽远隔数千公里,环境生态条件悬殊,年代级气候变化仍有响应.最后就形成响应的成因机制作初步分析。  相似文献   

15.
2500多年来的太阳活动与温度变化   总被引:15,自引:2,他引:15       下载免费PDF全文
利用Schove推算出的2500多年太阳黑子极值出现的年份得到了2500多年来的太阳黑子周期长度,将其与北半球部分地区温度对比,发现太阳黑子周期长时北半球温度低,太阳黑子周期短时北半球温度高;快周期持续时间越长暖期持续时间也越长,反之亦然。最后,利用太阳黑子周期长度和万年尺度的温度变化趋势拟合了2500多年来的温度变化,它与我国温度和极区温度有一定的可比性。  相似文献   

16.
《Quaternary Science Reviews》2007,26(13-14):1810-1817
Long high-resolution proxy records are valuable for understanding Asian Southwest Monsoon (ASM) dynamics on decadal to centennial timescales. A millennium long δ18O ice core record from the central Himalayas provides an opportunity to study the ASM variability on decadal to centennial timescales. The Dasuopu ice core δ18O record indicates that a relatively warm period corresponding with the Medieval Warm Period lasted from AD 1140s to 1390s, a notable warming trend is apparent from 1800s to 1990s, and several cool periods occurred between AD 1010–1130s, 1290–1330s, 1400–1460s, 1520s, 1590–1630s, 1740s, and 1770–1790s. Comparisons with other high-resolution monsoon proxy records from the Arabian Sea, south Oman, and southern China reveal a high correspondence between temperature changes in the central Himalayas and the ASM variability during the last 1000 years. A pronounced warming trend since AD 1670 coincides with an abrupt transition from a weak to a strong intensity of the ASM. The thermal conditions in the Himalayas and on the Tibetan Plateau and associated glacial boundary conditions may have been predominantly responsible for variations of the ASM intensity and for a latitudinal movement in the mean position of the ITCZ on decadal to centennial timescales.  相似文献   

17.
Late Holocene temperature fluctuations on the Tibetan Plateau   总被引:3,自引:0,他引:3  
Proxy data of palaeoclimate, like ice cores, tree rings and lake sediments, document aspects of climate changes on the Tibetan Plateau during the last 2000 years. The results show that the Tibetan Plateau experienced climatic episodes such as the warm intervals during AD 800–1100 and 1150–1400, the “Little Ice Age” between AD 1400 and 1900, and an earlier cold period between the 4th and 6th centuries. In addition, temperatures varied from region to region across the plateau. A warm period from AD 800 to 1100 in the northeastern Tibetan Plateau was contemporaneous with cooling in the southern Tibetan Plateau, which experienced warming between AD 1150 and 1400. Large-scale trends in the temperature history from the northeastern Tibetan Plateau resemble those in eastern China more than the trends from the southern Plateau. The most notable similarities between the temperature variations of the Tibetan Plateau and eastern China are cold phases during AD 1100–1150, 1500–1550, 1650–1700 and 1800–1850.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号