首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of ground vibration measurements carried out in Hisarcik Boron open pit mine located on the west side of central Anatolia near Kütahya province in Turkey. Within the scope of this study to predict peak particle velocity (PPV) level for this site, ground vibration components were measured for 304 shots during bench blasting. In blasting operations, ANFO (blasting agent), gelatin dynamite (priming), and delay electric detonators (firing) were used as explosives. Parameters of scaled distance (charge quantity per delay and the distance between the source and the station) were recorded carefully and the ground vibration components were measured for all blast events using two different types of vibration monitors (one White Mini-Seis and one Instantel Minimate Plus Model). The absolute distances between shot points and monitor stations were determined using GPS. The equation of square root scaled distance extensively used in the literature was taken into consideration for the prediction of PPV. Then, the data pairs of scaled distance and particle velocity obtained from the 565 event records were analyzed statistically. At the end of statistical evaluation of the data pairs, an empirical relation which gives 50% prediction line with a reasonable correlation coefficient was established between PPV and scaled distance.  相似文献   

2.
Excavation of coal, overburden, and mineral deposits by blasting is dominant over the globe to date, although there are certain undesirable effects of blasting which need to be controlled. Blast-induced vibration is one of the major concerns for blast designers as it may lead to structural damage. The empirical method for prediction of blast-induced vibration has been adopted by many researchers in the form of predictor equations. Predictor equations are site specific and indirectly related to physicomechanical and geological properties of rock mass as blast-induced ground vibration is a function of various controllable and uncontrollable parameters. Rock parameters for blasting face and propagation media for blast vibration waves are uncontrollable parameters, whereas blast design parameters like hole diameter, hole depth, column length of explosive charge, total number of blast holes, burden, spacing, explosive charge per delay, total explosive charge in a blasting round, and initiation system are controllable parameters. Optimization of blast design parameters is based on site condition and availability of equipment. Most of the smaller mines have predesigned blasting parameters except explosive charge per delay, total explosive charge, and distance of blast face from surface structures. However, larger opencast mines have variations in blast design parameters for different benches based on strata condition: Multivariate predictor equation is necessary in such case. This paper deals with a case study to establish multivariate predictor equation for Moher and Moher Amlohri Extension opencast mine of India. The multivariate statistical regression approach to establish linear and logarithmic scale relation between variables to predict peak particle velocity (PPV) has been used for this purpose. Blast design has been proposed based on established multivariate regression equation to optimize blast design parameters keeping PPV within legislative limits.  相似文献   

3.
Umit Ozer   《Engineering Geology》2008,100(1-2):82-90
This paper presents the results of ground vibration analysis induced by blasting during the construction of the Istanbul Kadıköy–Kartal metro tunnel. Different rock formations in this tunnel route were encountered during the excavation with blasting. As a first stage, the test site is divided into 6 main regions with respect to lithology changes in the rock units and Hoek's Geological Strength Index value of these rock units. During the excavation, a total of 659 events were recorded in 260 shots by vibration monitors. Scaled distance and peak particle velocity data pairs belonging to these shots were carefully recorded and analyzed statistically. As a result of this analysis, empirical relationships between scaled distance and peak particle velocity were established with higher correlation coefficients specific to each region. Finally, the particle velocities and frequency values of all blast events were evaluated according to Turkish Environmental Regulation, the United States Bureau of Mines (USBM) and the German DIN 4150 Norms in order to predict the influence level to the neighboring buildings and structures.  相似文献   

4.
Ground vibrations arising from excavation with blasting is one of the fundamental problems in the mining industry. Therefore, the prediction of ground vibration components plays an important role in the minimization of environmental complaints. In this study, 582 events were recorded during limestone production at a quarry (Akyol Quarry) during a period of time. The blasting parameters of these shots were also carefully recorded. During the statistical analysis of the collected data, three predictor equations proposed by the United States Bureau of Mines (USBM), Ambraseys–Hendron and Langefors–Kihlstrom were used to establish a relationship between peak particle velocity and scaled distance described by these prediction equations. As a result of this analysis, the most powerful relationship was determined and proposed to be used in this site. And also, this equation was used in the derivation of the practical blasting charts specific to this site as a practical way of predicting the peak particle velocity and maximum charge amount per delay for future blasting.  相似文献   

5.
Far-field peak particle velocity (PPV) measurements were made in the roof while blasting in coal development drivages at Tandsi Mine, Western Coalfields Limited, India. The roof was fragile at this mine and was posing constant support problems for mining, resulting in low productivity. The PPV measurements have been used to decipher the damage zone in the roof. The extent of damage obtained has been compared to establish the threshold limits for the damage zone. Conversely, the maximum charge per delay that can be exploded is calculated and a suitable blast design has been recommended for maintaining the roof stability and pull. A roof vibration predictor equation has been developed that shows a consistent trend indicating that it may have future use in a similar geo-mining setup. The blast pattern recommended has reduced the damage extent, though marginally, but helped in improving pull. Critical PPV for incipient rock damage in underground coal mine development drivages under fragile roof were computed. The PPV level for incipient crack growth was found to vary from 500 to 800 mm/s while for overbreak it varied from 800 to 1200 mm/s. It was also observed that the location of cut holes, charge concentration and firing sequence were found to be responsible for the difference in their damage potential.  相似文献   

6.
This study evaluates the impacts resulting from quarry-blasting operation on nearby buildings and structures as it generates ground vibration, air blast, and fly rocks. In this paper, first blasting operation and its possible environmental effects are defined. Then the methods of blast-vibration prediction and commonly accepted criteria to prevent damage were introduced. A field experimental work was conducted to minimize the vibration effects at Saribayir quarry as it is an identical case for the many quarries situated in and around Istanbul, Turkey. Although the local surrounding geology and rock mechanics have great influence on vibrations as uncontrollable parameter, the charge weight per delay, delay period, geometric parameters of the blasts were changed to solve the existing vibration problem in the studied quarry. To obtain a realistic result, 10 blasts were carried out and 30 seismic records were made in different places mainly very close the buildings and the other vulnerable structures around the quarry. The evaluation is performed whether the vibration level are within safe limits or not. The prediction equation based on scaled distance concept is also determined, however, it is a site-specific model and need to be updated when the quarry advances. The safe blast parameters which minimize the environmental effect were determined for the Saribayir quarry.  相似文献   

7.
隧洞开挖重复爆炸荷载作用下围岩累积损伤特性   总被引:1,自引:0,他引:1  
杨建华  卢文波  胡英国 《岩土力学》2014,299(2):511-518
隧洞毫秒爆破开挖推进过程中,预留岩体在重复爆炸荷载作用下产生不可逆的损伤叠加。而现有的岩体爆破损伤数值模拟基本都是针对单孔装药和单段爆破,很少涉及实际工程中的重复爆炸。基于LS-DYNA程序的用户自定义材料接口,将统计损伤演化模型嵌入到弹塑性本构材料中,模拟圆形隧洞全断面毫秒爆破过程中重复爆炸荷载作用下的岩体累积损伤效应,并考虑地应力对岩体爆破损伤的影响。计算结果表明,围岩损伤范围和损伤程度随重复爆炸荷载次数而增加,在一个爆破进尺内,围岩损伤的临界峰值质点振动速度较单段爆破降低了12%;爆炸荷载作用下,围岩主要表现为拉损伤,围岩地应力对爆破张拉效应起到非常敏感的"抑制"作用,在210 MPa应力水平时,围岩爆破累积损伤范围随着应力增加而明显减小,围岩损伤的临界峰值质点振动速度增加24%10 MPa应力水平时,围岩爆破累积损伤范围随着应力增加而明显减小,围岩损伤的临界峰值质点振动速度增加24%57%。  相似文献   

8.
This paper analyses results of trial, construction and quarry blasting, carried out in sediment rock deposits, mainly limestone and dolomite. Based on results of seismic measurements and engineering geological observations in sedimentary formation, an empirical relationship was established between ground vibration and geological strength index (GSI). The charge weight of explosive that may be detonated per delay for any given distance of nearby structures from the blast is approximately determined by using the concept of the scaled distance (SD) along with the DIN 4150 standard.  相似文献   

9.
岭澳核电站二期工程基岩爆破安全阈值分析   总被引:2,自引:1,他引:1  
夏祥  李海波  李俊如  朱莅  刘博  王晓炜 《岩土力学》2008,29(11):2945-2951
核电站基础爆破开挖过程中必须严格控制岩体爆破损伤深度,确保建基面安全。以广东岭澳核电站二期工程基础爆破开挖为例,通过现场爆破振动监测、岩体声波试验以及数值模拟,综合分析了岩体爆炸振动衰减规律和损伤特征,研究了距爆源一定距离处岩体振动速度与损伤特征的关系,提出了岭澳核电站二期工程岩体爆炸损伤深度的控制方法,确定了相应的安全阈值。分析结果表明,岭澳核电站二期工程基础爆破开挖时,当距爆源30 m处的岩体质点振动速度不超过5 cm/s时,可保证下卧基岩的损伤深度小于2 m,确保建基岩完整性。  相似文献   

10.
Investigating the propagation and attenuation of blast vibration in rock slopes is the key point to assess the influence of underground mine blasting on overlaying open pit slopes stability and determining the potential risk. In this paper, Daye Iron Mine in China has been chosen as the case to study the effect of blast vibrations on overlaying open pit slopes due to underground mine blast. Firstly, the characteristics of blast loadings are analyzed by the dynamic finite element method. Then, a three dimensional (3D) numerical model of the open pit and the underground mine is made, which is verified by the field monitoring data to prove its reliability. The effect of blast vibration on overlaying open pit slope due to underground mine blasting are discussed based on the peak particle velocity (PPV) and the peak effective tensile stress (PETS) distribution characteristics which are calculated and analyzed by inputting the obtained blast vibration data into the numerical model. The results show that the effect of present mining blasting on the stability of pit slopes are limited because the simulated maximum PPV and PETS of monitoring point on slopes are all < 0.747 cm/s and 0.738 MPa. At last, according to numerical simulations of the underground mine blasting, the PPV predicting formulas for the slopes in Daye Open Pit Iron Mine is proposed based on the classic Sadaovsk formula.  相似文献   

11.
Ground vibrations generated by commercial explosives in tunnel construction may cause structural damage in urban areas. Therefore, suppressing the vibration effects and mitigating the possible hazard after blasting is important. We present a new method of controlled blasting that is environmentally friendly, and easy to utilize for tunnel construction. Small charges in this method are detonated sequentially to produce minimum side effects. The efficiency of the charges may be increased based on the previously monitored shots. This method is utilized in a tunnel construction in Istanbul with five experimental shots. In these experiments, the duration and also the quantity of explosives were carefully controlled. We were able to obtain better results with short durations (480 ms) instead of long durations (9,000 ms) although the vibration levels defined as peak particle velocity (PPV) became bigger while the quantity of the explosive charge increased from 3.088 to 9.264 kg.  相似文献   

12.
A new site-specific vibration prediction equation was developed based on site measurement performed in a sandstone quarry. Also, several vibration prediction equations were compiled from the blasting literature and used to predict ground vibration for the studied quarry. By this way, site-specific equation created by regression analysis and the equations obtained from the blasting literature were compared in terms of prediction accuracy. Some of the equations obtained from the literature made better predictions than the site-specific equation created for the studied quarry. The prediction equations were grouped, and the effects of the rock formation and mine type on the prediction accuracy were investigated. Suitable error measures for evaluation of ground vibration prediction were examined in detail. A new general prediction equation was created using site factors (K, β) of the examined studies. The general equation was created using 17 prediction equations reported by blast researchers. Prediction capability of the general equation was found to be strong. Diversity of the blast data is one of the strongest features of the general equation.  相似文献   

13.
Ground vibration due to blasting causes damages in the existence of the surface structures nearby the mine. The study of vibration control plays an important role in minimizing environmental effects of blasting in mines. Ground vibration regulations primarily rely on the peak particle velocity (PPV, mm/s). Prediction of maximum charge weight per delay (Q, kg) by distance from blasting face up to vibration monitoring point as well as allowable PPV was proposed in order to perform under control blasting and therefore avoiding damages on structures nearby the mine. Various empirical predictor equations have proposed to determine the PPV and maximum charge per delay. Maximum charge per delay is calculated by using PPV predictors indirectly or Q predictor directly. This paper presents the results of ground vibration measurement induced by bench blasting in Sungun copper mine in Iran. The scope of this study is to evaluate the capability of two different methods in order to predict maximum charge per delay. A comparison between two ways of investigations including empirical equations and artificial neural network (ANN) are presented. It has been shown that the applicability of ANN method is more promising than any under study empirical equations.  相似文献   

14.
为了研究岩石在循环爆破作用下的动力学响应,本文对黑云母花岗岩试块进行了小型爆破试验,利用加速度传感器和声波测试仪,分别对循环爆破荷载下质点振动衰减规律与累积损伤演化机理进行了探析,并对不同装药量下花岗岩试块的裂纹扩展与断裂形态进行了比较。结果表明:萨道夫斯基公式对室内花岗岩试块的爆破振动衰减规律具有较好的适用性,拟合相关参数都处于0.90以上;花岗岩的爆破损伤随着爆破次数的增加而增加,且损伤值随着距爆心距离(爆心距)的增加而降低,近区损伤值迅速降低,降幅约为1.46/m,而中区和远区损伤值降低相对缓慢,约为0.57/m和0.13/m;花岗岩的破坏程度和装药量有较高的关联度,当药量较低时,岩块致裂所需要的爆破次数就越大;随着药量增加到一定程度,岩块在低爆破次数下就会发生破坏;此外,还发现随着装药量的增加,试块爆后破裂的块数呈现增加趋势,如较低药量时试样破裂成2块,较高药量下破裂成3~4块。  相似文献   

15.
This paper presents a numerical model for predicting the dynamic response of rock mass subjected to large‐scale underground explosion. The model is calibrated against data obtained from large‐scale field tests. The Hugoniot equation of state for rock mass is adopted to calculate the pressure as a function of mass density. A piecewise linear Drucker–Prager strength criterion including the strain rate effect is employed to model the rock mass behaviour subjected to blast loading. A double scalar damage model accounting for both the compression and tension damage is introduced to simulate the damage zone around the charge chamber caused by blast loading. The model is incorporated into Autodyn3D through its user subroutines. The numerical model is then used to predict the dynamic response of rock mass, in terms of the peak particle velocity (PPV) and peak particle acceleration (PPA) attenuation laws, the damage zone, the particle velocity time histories and their frequency contents for large‐scale underground explosion tests. The computed results are found in good agreement with the field measured data; hence, the proposed model is proven to be adequate for simulating the dynamic response of rock mass subjected to large‐scale underground explosion. Extended numerical analyses indicate that, apart from the charge loading density, the stress wave intensity is also affected, but to a lesser extent, by the charge weight and the charge chamber geometry for large‐scale underground explosions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Blasting constitutes a beneficial industrial technology, used in quarries and mining production processes, which ensures the achievement of the expected results in a short period of time with relatively low cost. Nevertheless, a significant part of the used blasting energy is wasted in the form of ground vibration and air blast. Hence, blasting-induced ground vibrations are one of the fundamental problems in the mining industry which may cause severe damage to structures and plants nearby. Therefore, a vibration control study plays an important part in the minimization of the environmental effects of blasting in mines. This study represents an investigation reporting ground motion (measured in terms of peak particle velocity (mm/s)) and air blast overpressure measurements around the open-pit phosphate mine near Metlaoui area (southwestern Tunisia). It aimed to calculate the site’s constants: K (ground transmission coefficient) and n (site attenuation curve slope). The obtained site parameters allowed determining the propagation equation of the blast-induced seismic waves in the study area. The scope of this study was to predict the peak particle velocity when the amount of explosive charge and/or the distance were altered with minimum spoil to the environment. Also, a frequency overview of the study area revealed the dominance of low frequencies (>?40 Hz). Such values can cause damage to the nearby structures when a specific peak particle velocity value is reached by blasting. Moreover, this study demonstrated that all overpressure magnitudes were less than 134 dB, which is the safe limit of air blast level.  相似文献   

17.
Ever since development of human civilization, mining and agriculture has been the backbone of growth. Today the most developed countries of the world are the ones focused on core economical development, be it power generation, steel making, oil and gas production, or agriculture. Mining has been gaining importance over the years both from the economic perspective and as an area of sustained research. With the advent of globalization, things have changed very fast and today it is an industry that is driving the economies of several nations. Global competition has propelled countries to reach higher production levels through better techniques of drilling and blasting, excavation and mineral processing. We now have bigger and faster drill machines and excavators. In Explosives technology too significant progress has been made towards having safer explosives and accurate initiating systems that have increased overall control over blasting in terms of vibration, fragmentation, throw, fly rock and overall blast economics. Explosives and Rock Blasting Technology has advanced so much in the last few decades that blasting can now be precisely performed, controlled and predicted. Development of new tools like electronic blasting systems and advanced simulation software has made it possible to customize blasting results as per requirement. These developments have helped mining engineer worldwide in reaping huge productivity benefits besides making it possible to meet the environmental norms even in most demanding conditions. Inability to blast large size shots on account of proximity of mines to human habitation have always constrained mine management in fully leveraging the strength of large size production equipments. Mine managers have been forced to conduct small blasts on increased frequency to provide feed to large capacity shovels while compromising on Shovel productivity on account of undesirable movement of shovels during blasting. This paper deals with a case study at SEB quarry of Tata Steel wherein it was difficult to fire a big blast due to existing nearby structures. A critical scientific study was conducted before successfully firing of one of the biggest shot of 83 tonnes in the history of quarry. The paper discusses the issues being faced, alternate solutions opted and the final outcome.  相似文献   

18.
Blasting is a widely used technique for rock fragmentation in opencast mines and tunneling projects. Ground vibration is one of the most environmental effects produced by blasting operation. Therefore, the proper prediction of blast-induced ground vibrations is essential to identify safety area of blasting. This paper presents a predictive model based on gene expression programming (GEP) for estimating ground vibration produced by blasting operations conducted in a granite quarry, Malaysia. To achieve this aim, a total number of 102 blasting operations were investigated and relevant blasting parameters were measured. Furthermore, the most influential parameters on ground vibration, i.e., burden-to-spacing ratio, hole depth, stemming, powder factor, maximum charge per delay, and the distance from the blast face were considered and utilized to construct the GEP model. In order to show the capability of GEP model in estimating ground vibration, nonlinear multiple regression (NLMR) technique was also performed using the same datasets. The results demonstrated that the proposed model is able to predict blast-induced ground vibration more accurately than other developed technique. Coefficient of determination values of 0.914 and 0.874 for training and testing datasets of GEP model, respectively show superiority of this model in predicting ground vibration, while these values were obtained as 0.829 and 0.790 for NLMR model.  相似文献   

19.
Vibrations due to production blasting can induce damage to the rock mass at large distances by altering larger geological structures, fault areas or other structures, where the orientation with respect to the mine geometry is unfavorable and can cause displacement of large rock volumes. Past occurrences of this nature in Escondida Mine placed geomechanical safety restrictions as to maximum allowable blast size in the northeast area of the mine. These restrictions limited the efficiency of drilling and blasting operations seriously limiting daily production. This is what prompted this study to attempt to increase shot size while reducing stability problems. This would permit keeping stable the slope over which the ore extraction belts are located, as well as the main access ramp to the mine. Using a rigorous and systematic instrumentation and monitoring effort of blasting vibrations at multiple locations with respect to an unstable location allowed the development of a database to establish acceptable vibrations limits. A parallel effort was the development and gauging of a mechanistic model for the prediction and simulation of blasting vibrations. Excellent results were obtained from a comparison between the measured and predicted results. This allowed the use of the gauged model to verify the practicality of increasing the shot size in the restricted blasting zones, without exceeding safe vibration limits. The practical success achieved using this research approach resulted in increased blasting size, with a consequent increase of blasted material per shot, and contributed to more flexible mining operations.  相似文献   

20.
Tunnels are required to be constructed for meeting different human needs such as power generation, transportation, underground storage, sewage etc. The predominant method of excavation, world over, is drilling and blasting owing to its capability to meet changing geo-technical conditions. Irrespective of the purpose for which the tunnels are driven, all are plagued by overbreak problems. Tunnels driven for water conveyance in hydroelectric power projects, in particular, need to be excavated with minimum overbreak to minimise cost of permanent concrete lining. Thus, predicting overbreak assumes significant importance to design site-specific blasts for minimizing rock damage. This paper presents a brief review of existing PPV (Peak Particle Velocity) based blast-induced rock damage estimation criteria and attempts to outline the ground vibration threshold levels for overbreak/rock damage in a tunnel driven through compact basalt. Rock damage manifested as overbreak is measured and correlated with the possible threshold levels of PPV. Also, the PPV levels for crack initiation and widening are proposed. The case pertains to a lake tap horizontal tunnel of Koyna Hydro-electric Power Project, India which is a water feeder tunnel for a fully underground hydroelectric power project. The tunnel was driven under a shallow rock cover of average depth ranging from 20 to 25m beneath a fully charged water body. The parting rock is mainly compact basalt. Blasting was carried out in two rounds in a controlled manner, i.e., by limiting the maximum charge per delay based on ground vibration monitoring. Ground vibration generated with free face (in second round) has been modeled and a new ground vibration propagation equation is proposed for tunnel blasting including the effect of an extra free face. The threshold limits of PPV for different degrees of overbreak/rock damage are proposed from extrapolated vibration predictor equation. The actual overbreak in the tunnel, measured using a Planimeter, varied from 2.45 per cent to 17.75 per cent of the finished tunnel area. The predicted overbreak from extrapolated PPV measurements is compared against the measured overbreak to validate the proposed blast-induced rock damage (BIRD) assessment model. The PPV level for overbreak was found to exceed 2050 mm/s in compact basalt. A linear relationship between the overbreak and maximum charge per delay is also established to design a tunnel blast in similar formations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号