首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 730 毫秒
1.
2.
The groundwater of Pomona, California, is contaminated with perchlorate (ClO4-). This water is treated to reduce the ClO4- concentration to less than 6 μg L1 for compliance with California Department of Public Health drinking water regulations. A study of the isotopic composition of oxygen and chlorine in ClO4- has been conducted to determine the source of the contamination. Isotopic compositions were measured for ClO4- samples extracted from 14 wells, yielding ranges of δ18O values from −10.8‰ to −8.0‰, Δ17O values from +4.6‰ to +7.5‰, and δ37Cl values from −12.8‰ to −8.9‰. Evaluation of mixing proportions using published isotopic data for three ClO4- end-members (synthetic, Atacama, and indigenous natural ClO4-) indicates that contamination is dominantly (85–89%) Atacama ClO4- derived from past use of imported Chilean nitrate fertilizer in citrus cultivation. This interpretation is consistent with (1) aerial photography archives showing extensive citrus fields surrounding Pomona in the early- to mid-20th century, (2) mass-balance estimates for ClO4-, and (3) numerical hydrologic models yielding travel-times for ClO4- from fields to wells that are in the range of 15 to >100 years. The hydrologic models predict that ClO4- contamination of Pomona groundwater will persist for decades into the future.  相似文献   

3.
4.
This study reports changes in coal-mine drainage constituent concentrations through an anaerobic SO4-reducing bioreactor monitored over a 3-a period. The purpose of the study was to identify and monitor over time the biogeochemical mechanisms that control the attenuation of toxic compounds in the mine drainage. This information is needed to investigate bioreactor performance and longevity. The water treated at the case example site, the Tab-Simco Mine, was highly acidic with an average pH of 2.9, a net acidity of 1674 mg/L CaCO3 equivalent-CCE, and high levels of dissolved SO42-, Al, Fe and Mn. The results of this study indicated that the treatment system increased the pH of the acid mine drainage (AMD) to 6.2 and decreased the median acidity to 22.7 mg/L CCE, SO42- from 2981 to 1750 mg/L, Fe from 450.6 to 1.76 mg/L, Al from 113 to 0.42 mg/L, and Mn from 36.4 to 23.3 mg/L. Geochemical modeling indicates that the bioreactor discharge is saturated with respect to the minerals alunite, gibbsite, siderite, rhodochrosite, jarosite, and Fe hydroxide precipitates. The observed trends also include seasonal variations in SO42- reduction and a general decline in the amount of alkalinity produced. The average δ34S value of the SO42- in the untreated AMD was +7.3‰. In the bioreactor, δ34S value of SO42- increased from an average of +6.9‰ to +9.2‰, suggesting the presence of bacterial SO4 reduction processes. Preliminary results of a bacterial community analysis show that DNA sequences corresponding to bacteria capable of SO4 reduction were present in the bioreactor outflow sample. However, these sequences were outnumbered by sequences similar to bacteria capable of reoxdizing reduced sulfur species. This study illustrates the dynamic nature of metal removal in SO4-reducing bioreactor-based treatment systems.  相似文献   

5.
6.
7.
8.
9.
Pyrolysis of two kerogens isolated from the E2-3s33 and E2-3s41 source rocks in the Niuzhuang sag, Dongying Depression, Bohai Bay Basin, China, was performed in a confined system. The products were extracted with solvent and separated using micro-column chromatography into group-type fractions (saturates, aromatics, resins and asphaltenes) with the kerogen residue in each case undergoing swelling with a variety of solvents. The kinetics for generation and retention of crude oil and its group-type fractions from the kerogens were studied and the kinetic parameters applied to modeling generation and retention of crude oil and its fractions from the E2-3s33 and E2-3s41 source rocks on the basis of burial and thermal history of the Niuzhuang sag. The results show that the “normal oil” was generated at about 4.26 Ma and 24.85 Ma ago, but expelled at about 3.96 Ma and 17.46 Ma ago, respectively, from E2-3s33 and E2-3s41 source rocks. The current proportions of the expelled saturates, aromatics and NSOs are about 60%, 15% and 25%, respectively.  相似文献   

10.
《Applied Geochemistry》2006,21(4):656-674
Stable isotopes of O (δ18O) in water and N (δ15N) in NO3- have been used as natural indigenous groundwater tracers for sources of water and of NO3- at two riverbank filtration (RBF) water supply systems. Both RBF systems (Skorkov and Sojovice) have wells in unconsolidated Quaternary sediments close to the Jizera River (Czech Republic) that have been affected by increasing NO3- concentrations. The area is underlain by Turonian sandstones and marls that form a deeper bedrock aquifer. Sources of NO3- are local sewerage systems and landfills (point sources) and seasonal application of manure and inorganic fertilizers (diffuse sources).At RBF Skorkov recharge to wells can be modelled using a two-component model with 60% river water contribution and 40% of very shallow groundwater with an average residence time of one month. During periods of abundant precipitation, groundwater originates entirely from the unsaturated zone of the Quaternary aquifer; extensive pumping for over 40 a has created new, bypassing flow paths that preferentially drain the contaminated unsaturated zone. During dry periods, wells are recharged by longer residence time groundwater from the Quaternary aquifer.At RBF Sojovice there is an additional recharge component of groundwater from the Turonian aquifer, which is sandier at this locality; this contains denitrified NO3- with highly positive δ15N values.  相似文献   

11.
12.
In order to better understand the reactivity of plant phytoliths in soil solutions, we determined the solubility, surface properties (electrophoretic mobilities and surface charge) and dissolution kinetics of phytoliths extracted from fresh biomass of representative plant species (larch tree and elm, horsetail, fern, and four grasses) containing significant amount of biogenic silica. The solubility product of larch, horsetail, elm and fern phytoliths is close to that of amorphous silica and soil bamboo phytoliths. Electrophoretic measurements yield isoelectric point pHIEP = 0.9, 1.1, 2.0 and 2.2 for four grasses, elm, larch and horsetail phytoliths respectively, which is very close to that of quartz or amorphous silica. Surface acid–base titrations allowed generation of a 2-pK surface complexation model (SCM) for larch, elm and horsetail phytoliths. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 1  pH  8, were found to be very similar among the species, and close to those of soil bamboo phytoliths. Mechanistic treatment of all plant phytoliths dissolution rates provided three-parameters equation sufficient to describe phytoliths reactivity in aqueous solutions:R(mol/cm2/s)=6?10?16?aH++5.0?10?18+3.5?10?13?aOH?0.33Alternatively, the dissolution rate dependence on pH can be modeled within the concept of surface coordination theory assuming the rate proportional to concentration of > SiOH2+, > SiOH0 and > SiO? species. In the range of Al concentration from 20 to 5000 ppm in the phytoliths, we have not observed any correlation between their Al content and solubility, surface acid–base properties and dissolution kinetics.It follows from the results of this study that phytoliths dissolution rates exhibit a minimum at pH ~ 3. Mass-normalized dissolution rates are similar among all four types of plant species studied and these rates are an order of magnitude higher than those of typical soil clay minerals. The minimal half life time of larch and horsetail phytoliths in the interstitial soil solution ranges from 10–12 years at pH = 2–3 to < 1 year at pH above 6, comparable with mean residence time of phytoliths in soil from natural observations.  相似文献   

13.
《Applied Geochemistry》2006,21(6):887-903
The chemical compositions of the surface/ground water of Guiyang, the capital city of Guizhou Province, China are dominated by Ca2+, Mg2+, HCO3-andSO42-, which have been derived largely from chemical weathering of carbonate rocks (limestone and dolomite). The production of SO42- has multiple origins, mainly from dissolution of sulfate evaporites, oxidation of sulfide minerals and organic S in the strata, and anthropogenic sources. Most ground water is exposed to soil CO2 and, therefore, the H2CO3 which attacks minerals contains much soil C. In addition, the H2SO4 produced as a result of the oxidation of sulfides in S-rich coal seams and/or organic S, is believed to be associated with the chemical weathering of rocks. The major anthropogenic components in the surface and ground water include K+, Na+, Cl, SO42-andNO3-, with Cl and NO3- being the main contributors to ground water pollution in Guiyang and its adjacent areas. The seasonal variations in concentrations of anthropogenic components demonstrate that the karst ground water system is liable to pollution by human activities. The higher content of NO3- in ground water compared to surface water during the summer and winter seasons, indicates that the karstic ground water system is not capable of denitrification and therefore does not easily recover once contaminated with nitrates.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号