首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The September 24, 1999 Ahram Earthquake in southwestern Iran was moderate in energy (M = 5.0–5.5 from different sources) and did not entail significant destruction and casualities. The tectonic position of the source zone, surficial seismic dislocations, and results of macroseismic and seismological study of this seismic event in the junction zone of the Zagros Fold System and the piedmont plain are described in the paper, including data on rejuvenated ancient ruptures exposed in two trenches excavated across the strike of the regional Kazerun-Borazjan Fault. One of the trenches was driven a few months before and the other a year after this seismic event. The conclusion is drawn that new deformations in the Quaternary near-surface sediments observed at the walls of both trenches may be regarded as unusual seismic ruptures of the Ahram earthquake. These ruptures, described as proved primary seismic dislocations of such a moderate seismic event, are a unique phenomenon in the world seismotectonic practice. The localization of the earthquake source zone in the Kazerun-Borazjan Fault Zone with complex kinematics makes it possible to study the internal structure of one of the most important tectonic lines of the Zagros Fold Region.  相似文献   

2.
Typification of tectonic structures is one of the important lines of tectonic research. Recently, I have published several articles, which are concerned with deepwater oceanic basins. This paper is focused on tectonic typification of deepwater basins of the North Atlantic. They are attributed to three types: perispreading, central thalassogenic, and pericontinental. The first type comprises the Irminger, Iceland, Greenland, and Lofoten basins. The first two basins are associated with the Reykjanes Ridge and the two others, with the Mohns Ridge. The central thalassogenic type is exemplified in the Norwegian Basin, while the pericontinental type in the Rockall Trough. Two systems of basins are distinguished by morphostructural and historical-geological features: the northern system of the Oligocene-Quaternary structures and the southern system of the Paleocene-Quaternary structures. The Greenland-Faroe tectonovolcanic zone serves as their tectonic interface. In the tectonic typology of their deepwater basins, the North Atlantic is closer to the Indian than to other oceans. The present-day configuration of the northern basins is determined by neotectonics. The tectonic movements in the northern system of basins at this stage were more contrasting than in the southern system. This explains the greater depth of the former basins. The spatial position of the deepwater basins belonging to different types determines the tectonic segmentation of the oceanic bottom. The southern, central, and northern latitudinal segments correspond to different geodynamic states of the Earth’s interior.  相似文献   

3.
The Manyas fault zone (MFZ) is a splay fault of the Yenice Gönen Fault, which is located on the southern branch of the North Anatolian Fault System. The MFZ is a 38 km long, WNW–ESE-trending and normal fault zone comprised of three en-echelon segments. On 6 October 1964, an earthquake (Ms = 6.9) occurred on the Salur segment. In this study, paleoseismic trench studies were performed along the Salur segment. Based on these paleoseismic trench studies, at least three earthquakes resulting in a surface rupture within the last 4000 years, including the 1964 earthquake have been identified and dated. The penultimate event can be correlated with the AD 1323 earthquake. There is no archaeological and/or historical record that can be associated with the oldest earthquake dated between BP 3800 ± 600 and BP 2300 ± 200 years. Additionally, the trench study performed to the north of the Salur segment demonstrates paleoliquefaction structures crossing each other. The surface deformation that occurred during the 1964 earthquake is determined primarily to be the consequence of liquefaction. According to the fault plane slip data, the MFZ is a purely normal fault demonstrating a listric geometry with a dip of 64°–74° to the NNE.  相似文献   

4.
西秦岭北缘断裂带漳县—车厂断层的结构及构造演化   总被引:2,自引:0,他引:2  
西秦岭北缘断裂带是青藏高原东北缘主要构造边界断裂带之一, 其构造变形历史和运动学特征研究可以为西秦岭中新生代构造过程和印度—亚洲板块碰撞动力学的远程构造响应提供约束。漳县—车厂断层是西秦岭北缘断裂带的重要组成部分, 通过对工程开挖所揭露的断层带内丰富构造现象的观测与分析, 至少可以辨别出3期性质、规模、运动学特征各异的构造变形事件。第一期为向北北东陡倾的伸展正断层作用; 第二期为向南南西倾的由南向北的逆冲断层作用; 第三期为沿近直立断面左旋走滑作用。尽管每期变形的时代尚缺乏构造物质测年的约束, 但根据其与白垩系、新近系的空间关系以及已有第四纪以来沿断层地貌位错和相关沉积物测年以及地震活动历史研究对断层左旋走滑作用的时代约束, 认为第一期伸展正断层作用起始于早白垩纪, 可能持续到渐新世; 第二期向北逆冲断层作用起始于渐新世初, 可能持续到早第四纪; 第三期左旋走滑断层作用起始于晚第四纪, 持续至今。漳县—车厂断层是一条典型的多期变形的脆性断层, 其变形特征与历史, 如果代表了西秦岭北缘断裂带特征与构造变形过程, 那么现今西秦岭北缘断裂带仅是起始于早白垩纪、新生的脆性断裂带, 并非是印支主造山期大规模韧性逆冲推覆作用的边界断层。  相似文献   

5.
At 08:02 on April 20, 2013, a Ms7.0 earthquake occurred in Lushan, Ya'an, in the Longmenshan fault zone, Sichuan. The epicenter was located between Taiping Town and Shuangshi Town, Lushan County and the maximum earthquake intensity at the epicenter reached class IX. Field investigations in the epicenter area found that, although buildings were seriously damaged, no obvious surface rupture structure was produced, only some ground fissures and sand blows and water ejection phenomena being seen. An integrated analysis of high-resolution remote sensing image interpretation, mainshock and aftershock distribution, and focal mechanism solutions indicated that this earthquake was an independent rupturing event in the southwestern segment of the Longmenshan fault zone, belonging to the thrust-type earthquake. Ruptures occurred along the south-central segment of the Shuangshi-Dachuan fault and the principal rupture plane dipped SW at 33-43°. It is inferred that the Lushan earthquake might be related to the ramp activity of the basal detachment zone (13-19 km) of the Longmenshan fault zone. Historically, there occurred at least two Ms6-6.5 earthquakes along the Shuangshi-Dachuan fault zone; thus it is thought that the Lushan earthquake, different from the Wenchuan earthquake, was a characteristic one in the southwestern segment of the Longmenshan fault zone. In-situ stress measurements indicated the Lushan earthquake was the result of stress release of the southwestern segment of the Longmenshan fault zone after the Wenchuan earthquake. This paper analyzes the tectonic setting of the seismogenic structure of this earthquake.  相似文献   

6.
在区域地质构造研究中,龙门山断裂带也称为龙门山褶皱-冲断带或推覆构造带。许多研究者认为,2008年汶川8级地震的发震构造是这条断裂带或其中央映秀—北川断裂。笔者在深入分析龙门山断裂带的构造演化和岩石圈结构构造特征的基础上,着重探讨8级地震的发震构造,提出不同的认识。龙门山断裂带经历了松潘—甘孜造山带的前陆褶皱-冲断带(T3-J)、造山带(K-E)和青藏高原边缘隆起带(N-Q)3个动力学条件不同的演化阶段,在前两个阶段断裂带递进发展,第三阶段断裂带则被改造。从三维空间看,龙门山断裂带位于松潘—甘孜地块东南缘的上地壳内,并被推覆到扬子陆块上;而松潘—甘孜地块的中—下地壳和岩石圈地幔发生韧性增厚,而且向扬子陆块壳下俯冲,从而使浅、深部构造在垂向上形成"吞噬"扬子地块的"鳄鱼嘴"式结构。虽然在平面上汶川8级地震的主余震分布与映秀—北川断裂一致,但从剖面上看其震源所构成的震源破裂体位于龙门山断裂带之下的扬子陆块内。这种不一致性表明,8级地震的发震构造不是龙门山断裂带,而是扬子陆块内新生的高角度断裂,其走向基本与龙门山断裂带一致。推测这一震源断裂的形成过程是:当松潘—甘孜地块向东南推挤时,其前缘"鳄鱼嘴"构造咬合并错断被吞噬的扬子陆块部分,形成具有右旋逆平移性质的新断裂,导致汶川8级地震的发生。  相似文献   

7.
Planar structures (foliations and fractures) around the Tombel graben (southwestern end of the Central African Shear zone system) have been investigated and analyzed with the aim of unraveling the tectonic evolution of the basement. The foliations show two major trends, an older N-S-trending gneissose layering of uncertain agereworked by a later Pan-African (600 + 50 Ma) NE-SW ductile trend that is contemporaneous with sinistral shearing and mylonitization. The brittle phase characterized by NW-SE-trending open and partially filled fractures is younger than the mylonitization event and although it has not been dated, it is suggested that the origin of these fractures is linked to the onset of volcanism along the Cameroon volcanic line-31 m.y. ago.The mylonitic foliation is recognized for the first time and supports a tectonic evolution model for the Tombel graben in which ductile non-coaxial deformation was succeeded by brittle failure.  相似文献   

8.
基于1999~2018年GPS水平运动速度场数据,解算并分析了四川“Y”形构造区各周期网格速度场、地壳应变率场,并讨论了近20年尺度的地壳应变场演化过程。研究表明:1)2008年汶川地震前1999~2007期GPS速度场相对稳定,整体“Y”型构造区地壳运动变化不大,但汶川地震后龙门山断裂带发生较大变化,由4.0 mm/a增至10.0 mm/a。2)1999~2007年,整个四川“Y”型构造区应变场演化特征微弱,而汶川地震之后的两个周期,最大剪应变自龙门山山前断裂向西到汶川一带,形成了由高到低、平行于龙门山断裂带走向的高密度梯度带。龙门山断裂带以ES或EES向的主压应变为主,其量值变化范围为 5.0×10-8 /a~12.0×10-8 /a;鲜水河断裂由震前主拉应变,改为震后近EW向的主压应变特征。面膨胀结果则显示龙门山断裂带由震前低密度梯度带瞬间变为平行于龙门山断裂带走向的高密度变化区。3)2008年汶川地震和2013年芦山地震是最为重要的时刻分割点。近20年的应变率场变化,更似一个“时间—地壳构造运动”的大轮回,目前四川“Y”型构造区整体处于2008年汶川地震前较为稳定的活动周期。龙门山断裂带仍值得我们做出更为深入的研究。  相似文献   

9.
Some degree of tectonic stress within the earth originates from gravity acting upon density structures. The work performed by this “gravitational tectonics stress” must have formerly existed as gravitational potential energy contained in the stress-causing density structure.According to the elastic rebound theory (Reid, 1910), the energy of earthquakes comes from an elastic strain field built up by fairly continuous elastic deformation in the period between events. For earthquakes resulting from gravitational tectonic stress, the elastic rebound theory requires the transfer of energy from the gravitational potential of the density structures into an elastic strain field prior to the event.An alternate theory involves partial gravitational collapse of the stress-causing density structures. The earthquake energy comes directly from a net decrease in gravitational potential energy. The gravitational potential energy released at the time of the earthquake is split between the energy released by the earthquake, including work done in the fault zone and an increase in stored elastic strain energy. The stress associated with this elastic strain field should oppose further fault slip.  相似文献   

10.
Locally recorded data for eighteen aftershocks of a magnitude(mb) 4.6 earthquake occurring near Ukhimath in the Garhwal Himalaya were analysed. A master event technique was adopted to locate seventeen individual aftershock hypocentres relative to the hypocentre of the eighteenth aftershock chosen as the master event. The aftershock epicentres define an approximately 30 km2 rupture zone commensurate with the magnitude of the earthquake. The distribution of epicentres within this zone and the limited amount of first motion data support the view that a group of parallel, sub-vertical, sinistral strike-slip faults oriented N46°, transverse to the regional NW-SE trend of the Garhwal Himalaya, was involved in this seismic episode. Since the estimated focal depth range for aftershocks of this sequence is 3–14 km, we infer that this transverse fault zone extends through the upper crustal layer to a depth of 14 km at least.  相似文献   

11.
On 24 March 1970 an earthquake of magnitude ML 6.7 took place in the eastern Canning Basin. The earthquake was unusual because it occurred in a region where no previous earthquake had been reported and where there was no evidence of recent tectonic activity. First motion results indicate a thrusting type focal mechanism with the pressure axis approximately northeast‐southwest and dipping about 24° to the southwest. The main shock was followed, over the next two years, by many earthquakes in a zone covering 140 km by 20 km. The longitudinal axis of this zone is approximately parallel to the north‐northwest striking nodal plane determined from the first motion results, and to the trend of intrabasin faulting.

It is suggested that continental crust may be sensitive to small changes in stress pattern and consequently seismic activity may be interrelated over large distances.  相似文献   

12.
沿班公湖—怒江结合带中西段出露的早—中侏罗世木嘎岗日群,自创名以来,其代表的年代地层各异,岩石组合宏观上较固定,内部为总体无序局部有序的一套组成成分复杂的构造混杂地层体。通过对木嘎岗日群沉积组合、盆内沉积层序、岩石地球化学、岩相、物源区、碎屑模型、盆地分类及其构造演化分析,将沉积盆地视作一个整体进行地球动力学综合研究。康托地区中特提斯洋盆早—中侏罗世为深海—次深海沉积环境,属被动大陆边缘型弧前深水盆地复理石碎屑沉积组合。沉积构造演化可分为2个阶段:盆地扩张阶段和盆地双向俯冲阶段,包含3个活动期:扩张期、向南俯冲期与双向俯冲期,并将该地区木嘎岗日群地层划分为3个岩性组。  相似文献   

13.
The Hope Slide, which occurred on January 9, 1965, involved an estimated 47-Mm3 of meta-volcanics and intrusive rocks. Previous workers reported the presence of tectonic structures (faults and shear zones) along the failure surface at the Hope Slide. These tectonic features were investigated in detail to assess their effects on rock-mass quality and the related implications for slope stability. This paper integrates basic field and laboratory concepts from structural and engineering geology. Subdividing the failure area into structural domains allowed distinct discontinuity sets to be associated with specific tectonic structures. The Geological Strength Index (GSI) was used to estimate the rock-mass damage related to the tectonic structures. Low GSI values were seen to outline tectonic damage zones. Point-load tests were used to characterise the compressive strength of rocks adjacent to the tectonic structures. Strength anisotropy, tentatively attributed to damage caused by a large shear zone, was observed in greenstone samples. Seepage zones along the failure surface were observed preferentially along shallow discontinuities that dipped downslope and in rock masses of good quality (GSI > 40). An alternative morphology of the slope failure is proposed by distinguishing between the extent of the surficial damage due to the rock-slope failure and the zone of failed material (depletion zone). For the first time, a kinematic mechanism for the Hope Slide is proposed, based on a preliminary 3-dimensional block model. A pre-1965 DEM was produced from estimates of material lost and gained as reported by previous workers. The pre-1965 DEM revealed that the tectonic structures recognised during fieldwork bounded the material that failed in the 1965 event.  相似文献   

14.
Linking earthquakes of moderate size to known tectonic sources is a challenge for seismic hazard studies in northwestern Europe because of overall low strain rates. Here we present a combined study of macroseismic information, tectonic observations, and seismic waveform modelling to document the largest instrumentally known event in the French northern Alps, the April 29, 1905, Chamonix earthquake. The moment magnitude of this event is estimated at Mw 5.3 ± 0.3 from records in Göttingen (Germany) and Uppsala (Sweden). The event of April 29 was followed by several afterschocks and in particular a second broadly felt earthquake on August 13, 1905. Macroseismic investigations allow us to favour a location of the epicentres 5–10 km N–NE of Chamonix. Tectonic analysis shows that potentially one amongst several faults might have been activated in 1905. Among them the right lateral strike-slip fault responsible for the recent 2005 Mw = 4.4 Vallorcine earthquake and a quasi-normal fault northeast of the Aiguilles Rouges massif are the most likely candidates. Discussion of tectonic, macroseismic, and instrumental data favour the normal fault hypothesis for the 1905 Chamonix earthquake sequence.  相似文献   

15.
综合前人资料分析了川—滇构造带及其邻区地壳-上地幔速度结构与地震分布的关系。结果表明,川—滇构造带具有同青藏高原地壳-上地幔结构相似的某些特征;地震活动主要沿安宁河断裂带和小江断裂带分布。震源以永仁、渡口和会理三地所在区域最浅,向四周渐深  相似文献   

16.
2008年5月12日汶川特大地震震害调查及分析表明,目前以活动断裂和历史地震调查为重点的工程区域构造稳定性评价方法存在漏判与误判特大地震问题,从而为工程安全埋下重大安全隐患。以龙门山活动推覆体为例,在已有研究成果基础上,利用岩体结构控制论、拜尔利定律等普适性原理对龙门山地壳岩体结构力学特征、控震结构面的抗剪强度与地震震级的线性相关性、地震震级与抗震设防烈度的关系进行了定量研究,对评价区域构造稳定性的关键问题进行了探讨。结果表明,推覆体型活动地块边界带中的滑脱层是对推覆体区域构造稳定性起主要控制作用的构造结构面--控震结构面,地震震级与滑脱层的埋深、抗剪切强度存在显著相关性:8级地震的震源深度接近20 km、7级地震的震源深度接近14 km、6级地震的震源深度接近10 km,据此对研究区及邻近的古地震进行了深度核定,圈定了龙门山活动推覆体-岷山地块的6级以上强震可能发生的范围、对应Ⅶ-Ⅺ度的抗震设防烈度范围。此研究成果弥补了以往根据活动断裂-发震断裂-历史最大震级与对应地震烈度评价工程区域构造稳定性,因历史地震资料疏漏不全、活动断裂带研究平面与深度范围局限以及忽视区域构造稳定性的岩体力学实质而导致评价结果常常出现误判与漏判的诸多缺陷。  相似文献   

17.
Evaluating the hazard potential of the Makran subduction zone requires understanding the previous records of the large earthquakes and tsunamis. We address this problem by searching for earthquake and tectonic proxies along the Makran Coast and linking those observations with the available constraints on historical seismicity and the tell-tale characteristics of sea floor morphology. The earthquake of Mw 8.1 of 1945 and the consequent tsunami that originated on the eastern part of the Makran are the only historically known hazardous events in this region. The seismic status of the western part of the subduction zone outside the rupture area of the 1945 earthquake remains an enigma. The near-shore shallow stratigraphy of the central part of Makran near Chabahar shows evidence of seismically induced liquefaction that we attribute to the distant effects of the 1945 earthquake. The coastal sites further westward around Jask are remarkable for the absence of liquefaction features, at least at the shallow level. Although a negative evidence, this possibly implies that the western part of Makran Coast region may not have been impacted by near-field large earthquakes in the recent past??a fact also supported by the analysis of historical data. On the other hand, the elevated marine terraces on the western Makran and their uplift rates are indicative of comparable degree of long-term tectonic activity, at least around Chabahar. The offshore data suggest occurrences of recently active submarine slumps on the eastern part of the Makran, reflective of shaking events, owing to the great 1945 earthquake. The ocean floor morphologic features on the western segment, on the contrary, are much subdued and the prograding delta lobes on the shelf edge also remain intact. The coast on the western Makran, in general, shows indications of progradation and uplift. The various lines of evidence thus suggest that although the western segment is potentially seismogenic, large earthquakes have not occurred there in the recent past, at least during the last 600?years. The recurrence period of earthquakes may range up to 1,000?years or more, an assessment based on the age of the youngest dated coastal ridge. The long elapsed time points to the fact that the western segment may have accumulated sufficient slip to produce a major earthquake.  相似文献   

18.
In the Delgo basement area of northern Sudan, low to medium grade metamorphosed volcanic, sedimentary and plutonic rocks are surrounded by high grade gneisses. A NNE-SSW trending suture zone can be defined by the lithological, chemical and structural characteristics of several distinct units. The early Proterozoic gneiss terrain is overlain by metasedimentary units, the metamorphism of which has been dated by the Sm-Nd whole rock-mineral technique (702 ± 27 Ma in the west, 592 ± 16 Ma in the east). In the central part, the Abu Sari volcanic rocks show geochemical signatures of formation at an arc, with a protracted tholeiitic, calc-alkaline and shoshonitic evolution. The overlying El Hamri ophiolite contains chemical features of a back-arc tectonic environments. The ophiolite was dated by the Sm-Nd whole rock method on metagabbros at 752 ± 48 Ma. The further extension of this oceanic basin into the Jebel Rahib in the south-west was dated at 707 ± 54 Ma (Sm-Nd whole rock and minerals).Widespread suite of syn-tectonic granitoid intrusives displays subduction-related characteristics. They where emplaced between 650 to 760 Ma (Pb-zircon evaporation method). Their Nd and Sr isotopic compositions indicate a changing pattern of island arc to active continental margin character along an east-west transect and suggest a west to north-west dipping subduction zone. All units were juxtaposed at the minimum age of 600 Ma and rearranged during an extensional event, which was dated by the Rb-Sr thin slab technique (546 ± 19 Ma) on a migmatite. The Delgo suture provides evidence of a complex terrane pattern in north-east Africa and crustal growth during the Pan-African event by the addition of oceanic material to pre-existing continental crust.  相似文献   

19.
和林格尔地震地震地质特征的初步分析   总被引:1,自引:0,他引:1       下载免费PDF全文
1976年4月6日0时54分,在我国内蒙古自治区和林格尔县境内,发生了6.3级地震。宏观震中位置和仪器震中基本一致(北纬40°14′,东经112°12′)。  相似文献   

20.
大陆地表温度场的时空变化与现今构造活动   总被引:5,自引:0,他引:5  
试图利用地表温度场数据获取中国西部的构造活动信息。在建立热与应变关系的基础上,对中国西部MODIS/Terra地表温度产品进行分析处理。研究发现:(1)地表温度在一些地区发生偏离年变现象,这种年变偏离与一些活动构造带的活动有关;(2)在扣除年变基准场等主要气候因素后,年变残差(ΔT)中长周期成分(LSTLOW)更接近构造活动所引起的热信息,能为构造活动提供一定的指示信息。研究发现,一个地震的发生对周围不同构造区的影响不同,有的地区升温,有的地区降温。2004年印尼地震最大的影响是引起青藏高原中部巴颜喀拉—松潘地块的降温;(3)与前者相对应,发生在中国周边地区的不同地震引起的温度变化格局不同,对同一地区的影响也不同,例如2001年东昆仑8.1级地震引起龙门山断裂带升温,而2003年斋桑泊7.9级地震和2004年印尼9级地震却引起该带的降温;(4)不同地区地温变化的时间过程不同。这些现象均对构造变形过程有一定的启示。在上述现象的基础上,笔者结合GPS观测结果,不同深度的地温信息以及地震活动等资料,对地表温度场中包含构造活动信息进行了初步检验,并对地表温度场反映的区域构造变形模型进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号