首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
干旱区融雪径流模拟的研究进展与展望   总被引:2,自引:2,他引:0  
融雪径流模拟是干旱区水文水资源研究的热点问题,对干旱区春季融雪洪水风险评估和流域水资源管理至关重要。结合文献查询及资料分析,重点讨论了不同类型融雪径流模型的特征和发展情况,比较了不同融雪径流模型在干旱区一些典型河流的应用情况,并对其功能及优缺点进行了评估。结合对目前流域融雪径流模拟研究中存在的问题的分析,提出未来融雪径流模拟要注重提高数据分辨率的观点。借助多源遥感数据驱动获取更为精确的输入数据,在数据获取难度减小、精度提高的基础上山区融雪径流模拟将更多地以基于能量平衡的物理性模拟为主。模型的构建要充分考虑由气候变暖所带来的其它参数的变化,精确描述山区融雪过程,以提高对融雪径流的模拟精度。  相似文献   

2.
针对流域内气象观测站点稀少和融雪径流过程的特点,利用APHRODITE降水数据进行插值,应用日有效活动温度改进度日数;依据季节性冻土受有效活动积温影响的特点,建立有效活动积温与径流系数的关系,提高模型中融雪速率和径流系数的计算精度。结合气象、水文资料和MODIS遥感积雪产品,应用改进的融雪径流模型(SRM)对开都河流域2000年与2006年融雪期的径流进行了率定和验证模拟。改进模型在率定期和验证期的模拟结果远远优于用日平均温度作为度日数的结果。结果表明,用APHRODITE降水数据及改进的度日数和径流系数作为SRM模型参数输入,能够较好模拟开都河流域融雪径流过程,大大提高模型模拟精度。  相似文献   

3.
针对流域内气象观测站点稀少和融雪径流过程的特点,利用APHRODITE降水数据进行插值,应用日有效活动温度改进度日数;依据季节性冻土受有效活动积温影响的特点,建立有效活动积温与径流系数的关系,提高模型中融雪速率和径流系数的计算精度。结合气象、水文资料和MODIS遥感积雪产品,应用改进的融雪径流模型(SRM)对开都河流域2000年与2006年融雪期的径流进行了率定和验证模拟。改进模型在率定期和验证期的模拟结果远远优于用日平均温度作为度日数的结果。结果表明,用APHRODITE降水数据及改进的度日数和径流系数作为SRM模型参数输入,能够较好模拟开都河流域融雪径流过程,大大提高模型模拟精度。  相似文献   

4.
孟现勇  乔鹏  刘志辉  陈凯 《水文》2013,33(4):10-15
以新疆天山北坡军塘湖河流域作为研究区,基于物理机制构建双层分布式融雪径流模型,利用研究区数字高程模型(DEM)提取流域信息,运用GIS技术与遥感技术获取积雪、植被、土壤等与融雪径流模型有关的地表信息,并结合WRF中尺度数值预报模式作为该模型气象驱动数据,对研究区融雪期进行模拟,结果显示:2009、2010年峰值模拟期间,实测与模拟径流过程线拟合度高,QR合格率分别达87%、90.85%。该模型适用性较好,对融雪洪水预警具有一定的参考价值。  相似文献   

5.
气候变化对中国西北地区山区融雪径流的影响   总被引:22,自引:16,他引:22  
选择祁连山黑河流域作为中国西北地区山区积雪流域的典型代表,分析了1956-1995年40a以来气候,积雪变化的状况和特点以及春季融雪径 波动趋势,利用融雪径流模型(Snowmelt Runoff Model-SRM)和卫星遥感数据模拟气温上升框架上的融雪径流变化情势,结果表明,中国西北地区山区的气候变化主要表现在年平均气温的缓慢上升而降水基本平稳,年内气温的上升幅度以1-2月份比较强烈,而3-6月融雪期的气温并没有大的变化,导致融雪期在时间尺度上的扩大,融雪径流呈慢增加趋势且受径流周期变化控制,融雪径流峰值的时间上前移。  相似文献   

6.
SRM融雪径流模型在黑河流域上游的模拟研究   总被引:11,自引:4,他引:7  
以黑河流域上游作为典型干旱区流域, 探讨了SRM(Snowmelt Runoff Model)融雪径流模型的可操作性. 在论述模型结构、参数意义的基础上, 重点研究以MODIS雪产品为基础的积雪面积衰减曲线的获取方法, 细化了退水系数的获取, 并分析了其中存在的问题. 通过利用WinSRM1.10版本对黑河上游2004年融雪期进行径流量模拟, 结果表明: SRM模型在以融雪水为主要补给的黑河流域上游有着较好的径流量模拟精度, 拟合优度确定系数R2为0.020, 体积差Dv为7.124%. 在实际应用中应最大限度利用已有的气象水文资料, 以更为准确地描述融雪径流过程. 针对数据稀缺的问题, 需要加强小流域的观测, 改进SRM模型以更适用于以融雪为主的我国西北山区流域.  相似文献   

7.
为了开展寒旱山区典型流域融雪径流过程的研究,提高融雪径流模型(SRM)在山区融雪地区的水文过程模拟精度,本文选取新疆提孜那甫河流域作为典型研究区,在SRM径流计算基础上,加入合适的基流数据并进行不确定性分析。考虑4种常见的基流分割方法(数字滤波法、加里宁法、BFI法(滑动最小值法)和HYSEP(hydrograph separation program)法),基于贝叶斯理论,采用马尔科夫链蒙特卡洛(MCMC)模拟进行参数不确定性分析,对使用不同基流数据SRM的融雪径流模拟表现进行综合评价。分析结果表明,基于加里宁基流分割方法的模型(SRMK)能够最佳地模拟研究区融雪径流过程(纳什系数NSE在识别期和验证期分别为0.866和0.721,大于其他对比模型)。MCMC模拟能够较好地识别SRM参数,获得可靠的参数后验概率分布。当实测降水资料缺乏或其代表性较差时,TRMM(tropical rainfall measuring mission)卫星数据能够描述研究区的降水过程特征。  相似文献   

8.
融雪水在水资源利用中扮演着及其重要的角色,遥感技术的发展使得大面积监测雪盖成为河能,选择Alps意大利境内的Rienza流域,利用SRM模型模拟春季融雪径流,区别传统对SRM模型的描述,参数选择和应用的研究方式,研究环境因素对这些参数的影响尤其是对度-日因子的影响以及它们之间的内在关系,重点讨论利用GIS和遥感数据获取SRM模型中的关键参数和因子,结论显示SRM模型模拟春季融雪径流的关键是精确地输入模型参数;遥感数据在提取雪盖面积的过程中,消除地形影响是必要的;从SRM模型的应用状况分析,精确地获取雪盖面积是影响模拟结果的关键。  相似文献   

9.
李建梅  刘海隆  王辉  赵文宇 《水文》2017,37(2):14-19
山区融雪是内陆河流域重要的径流补给来源,融雪径流模拟是干旱区水文预报的研究热点。针对山区积雪消融的不确定性过程,根据能量平衡原理,以乌鲁木齐河源区融雪性洪水多发期为研究时段(2010年3月14日~4月12日),结合MODIS积雪产品和气象观测数据,采用GIS空间分析平台,阐述了融雪过程中能量平衡各收支通量变化的计算过程,并分析了融雪水量空间分布特征。模拟计算结果表明:乌鲁木齐河源区显热通量和潜热通量的日空间变化波动相似,但方向相反;日融雪量数值波动不大,但日融雪量空间分布不均,日平均融雪水量约为8.6 kg/m~2;融雪产流模拟结果和同期出山口水文站监测结果相吻合,Nash-Sutcliffe系数(R~2)和径流体积差分析(D_v)分别为0.76和6.72%,满足精度要求。该研究结果对干旱区内陆河流域融雪型洪水预报具有参考意义。  相似文献   

10.
闫玉娜  车涛  李弘毅  秦越 《冰川冻土》2016,38(1):211-221
随着寒区水文模拟研究的深入,春季融雪径流模拟误差大这一问题越来越明显.针对此问题,以八宝河流域为研究区,利用积雪衰减曲线将MODIS积雪面积比例产品转化为雪水当量,并用其更新分布式水文模型GBHM(Geomorphology-Based Hydrological Model)中模拟的雪水当量,达到提高春季融雪径流模拟精度的目的.利用GBHM模型对八宝河流域2005-2007年进行了模型预热,参数率定,同时选择2008年进行模型检验.结果表明:GBHM模型在八宝河流域有较好的径流模拟精度,年均纳什效率系数(NSE)达到0.64.但模型对春季融雪过程的模拟效果较差,通过引入积雪遥感数据,这一问题得到很大改善.加入积雪遥感数据后,2008年3-6月径流模拟精度NSE和相对偏差Bias分别由-1.0、-0.45改进为0.58、0.06,单点雪水当量模拟精度获得提高,流域水量平衡也更加合理.  相似文献   

11.
Snowmelt runoff is a valuable water resource in Northwest China. In the past few decades, progress has been achieved in snowmelt runoff simulation in mountainous areas, including observation and simulation of snow melt process, improvement and development of distributed snow melt runoff model, and ability for application of snow melt runoff model with temporal and spatial distribution driving data. The development of interpolation algorithm, remote sensing and data assimilation technology provides data support for the widespread application of distributed snowmelt runoff model in northwest mountainous regions of China. Climate warming and economic and social development will further aggravate the contradiction between supply and demand of water resources in the arid regions of Northwest China, which requires higher precision and detail spatial and temporal resolution of snowmelt runoff simulation. Based on the progress and challenges on snowmelt runoff simulation in mountainous regions of Northwest China, following studies need more attention:the mechanism of snow accumulation and ablation, snow cover spatial and temporal distribution monitoring and high precision of snow distribution data acquisition, quantitative climate change impact on river basin snowmelt runoff. © 2022 The authors.  相似文献   

12.
中国西北高山、 高原广泛分布着冻土和积雪, 春季融雪和冻土融化是该地区重要的水文过程.基于模块化的寒区水文建模环境CRHM, 根据流域水文过程特征和观测数据约束, 选取描述不同寒区子水文过程的模块构建寒区水文模型, 并基于长期观测的两个典型寒区小流域来验证模块化的寒区水文模型.在冰沟流域, 主要模拟雪的积累/消融、 雪的升华、 融雪下渗和融雪径流过程. 结果显示: 冰沟流域积雪升华占降雪量(145.5 cm)的48%, 其中风吹雪引起的升华损失量(35 cm)占积雪升华(69 cm)的一半, 风速和辐射引起的积雪升华是该地区积雪物质平衡的重要组成; 构建的寒区水文模型可以再现春季积雪消融引起的径流过程.在左冒孔冻土流域, 主要模拟冻土下渗过程、 冻土坡面产流过程和土壤冻融对径流的影响. 结果显示: 构建的寒区水文模型可以捕捉到春季主要的冻土融化径流过程.两个流域的验证结果揭示: 模块化的建模方法在搭建模型结构的时候减少了模型的不确定性, 所以在未经率定的情况下, 具有在无资料和资料缺少地区模拟寒区水文要素和水文过程的能力.  相似文献   

13.
中国西部大尺度流域建立分带式融雪径流模拟模型   总被引:16,自引:6,他引:10  
王建  李文君 《冰川冻土》1999,21(3):264-268
针对中国西部大尺度流域利用遥感信息进行的融雪径流模拟模型建立过程,提供以数字地形因子分析为手段的分区,分带方法。在NOAA/AVHRR卫星云图为主要监测信息源的前提下,应用支持软件,解决了图像纠正,图形转为图像后再与图像匹配等问题。同时,根据研究得出雪象元之阈值,使用监督分类的训练样本方法统计出流域内雪盖面积及各带的雪盖面积百分比。作为应用和检验,对黄河上游的曲什安流域进行样本操作,分3个垂直带各  相似文献   

14.
Snowmelt runoff is an important source of water resources in the arid mountain area. Modelling snowmelt runoff for cold regions remains a problematic aspect because of the lack of data by gauges in large basins. In order to overcome the shortage of measured data in the snowmelt runoff modelling, the temperature interpolation method would greatly help in improving the simulation accuracy and describing the snow-hydrological behaviours of the study catchments. In this study, the temperature is the principal variable used to estimate the importance of the melting of snow cover using the snowmelt runoff model. Five different temperature interpolation attempts were performed over the Kaidu River Basin for the snowmelt season of the year 2000. Three temperature inputs were taken directly from the individual weather stations in or near the study area, and the other two temperature inputs were interpolated from the three weather stations. The results indicated that the temperature estimated from different methods could result in quite a difference in runoffs in comparison with the observed ones. The simulation results using average temperature from the three stations showed good results; the simulation run with the weighted average temperature generated a lower R 2 than the average temperature of three stations and using temperature directly adopted from three individual stations gave various results. The weather stations used to perform the snowmelt runoff simulation should be located in the place which is most representative of the mountain weather conditions, and the land cover and topography that those stations represented also play an important role in the snowmelt runoff simulation.  相似文献   

15.
Snow cover depletion curve (SDC) is one of the important variables in snow hydrological applications, and these curves are very much required for snowmelt runoff modeling in a snowfed catchment. Remote sensing is an important source of snow cover area which is used for preparation of SDC. Snow cover maps produced by Moderate Resolution Imaging Spectroradiometer (MODIS) satellites are one of the best source of satellite-based snow cover area at a regular interval. Therefore, in this study, snow cover maps have been prepared for the years 2000?C2005 using MODIS data. The study area chosen viz. Beas basin up to Pandoh dam falls in western Himalayan region. For snowmelt runoff modeling, catchment is divided into number of elevation zones and SDC is required for each zone. When sufficient satellite data are not available due to cloud cover or due to some other reasons, then SDC can to be generated using temperature data. Under changed climate conditions also, modified SDC is required. Therefore, to have SDC under such situations, a relationship between snow cover area and cumulative mean temperature has been developed for each zone of the catchment. This procedure of having snow cover maps has two main purposes. First, it could potentially be used to generate snow cover maps when cloud-free satellite data are not available. Second, it can be used to generate snow-covered area in a new climate to see the impact of climate change on snowmelt runoff studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号