首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Geochemical and isotopic studies showed that the Late Cretaceous-Early Paleocene magmatic rocks of northern Kamchatka were formed in different geodynamic zones of a Late Cretaceous-Early Paleocene suprasubduction system: from a volcanic front to a back-arc rift basin. Suprasubduction magmas were derived from upper mantle garnet or spinel lherzolites variably depleted in terms of Nd isotopic composition or enriched in HFSE and showing varying Th/La, Th/Ta, Zr/Nb, and Nb/U ratios. Subduction-related fluids played an active role in this process. The suprasubduction mantle melts were not contaminated by crustal materials enriched in radiogenic Nd. A weak imprint of contamination was identified only in the lavas of Karaginsky Island.  相似文献   

2.
This paper reports the results of an investigation of the geochemical and isotopic compositions of rocks formed during the Eocene suprasubduction magmatism in the Olyutorsky tectonic block. The contribution of various suprasubduction components to the formation of magmatic melts was estimated; the characteristics of the Eocene and Miocene-Quaternary suprasubduction magmatism of the Olyutorsky tectonic block were compared; and relations of the Cenozoic magmatism to the tectonic development of the block were evaluated. The Eocene-early Oligocene suprasubduction magmas were derived from geochemically and isotopically heterogeneous garnet lherzolites in a mantle wedge. The initially depleted lherzolites of the mantle wedge were probably locally and variably enriched by OIB-type mantle melts before the generation of island-arc magmas and then again depleted below the MORB level by the extraction of magmatic materials from them. In the Eocene, a considerable amount of quartz-feldspar sediments enriched in radiogenic Nd was consumed in the subduction zone, which resulted in a strong contamination of magmas derived from the garnet lherzolites of the mantle wedge. The later stages of subduction were accompanied by active generation of adakite magmas with depleted Nd isotope signatures and HFSE-rich melts showing no evidence for their contamination by sialic sediments. It was supposed that the Late Cenozoic subduction zone plunged northward beneath the Olyutorsky tectonic block. It was shown that the established characteristics of the suprasubduction magmatism of the Olyutorsky tectonic block could be related to Cenozoic spreading processes in the proto-Komandorsky basin of the Bering Sea.  相似文献   

3.
The isotope-geochemical study of the Eocene-Oligocene magmatic rocks from the Western Kamchatka-Koryak volcanogenic belt revealed a lateral heterogeneity of mantle magma sources in its segments: Western Kamchatka, Central Koryak, and Northern Koryak ones. In the Western Kamchatka segment, magmatic melts were generated from isotopically heterogeneous (depleted and/or insignificantly enriched) mantle sources significantly contaminated by quartz-feldspathic sialic sediments; higher 87Sr/86Sr (0.70429–0.70564) and lower 143Nd/144Nd(ɛNd(T) = 0.06–2.9) ratios in the volcanic rocks from the Central Koryak segment presumably reflect the contribution of enriched mantle source; the high positive ɛNd(T) and low 87Sr/86Sr ratios in the magmatic rocks from the Northern Koryak segment area indicate their derivation from isotopically depleted mantle source without significant contamination by sialic or mantle material enriched in radiogenic Sr and Nd. Significantly different contamination histories of the Eocene-Oligocene mantle magmas in Kamchatka and Koryakia are related to their different thermal regimes: the higher heat flow beneath Kamchatka led to the crustal melting and contamination of mantle suprasubduction magmas by crustal melts. The cessation of suprasubduction volcanism in the Western Kamchatka segment of the continentalmargin belt was possibly related to the accretion of the Achaivayam-Valagin terrane 40 Ma ago, whereas suprasubduction activity in the Koryak segment stopped due to the closure of the Ukelayat basin in the Oligocene time.  相似文献   

4.
A comparative analysis of within-plate (intracontinental) and orogenic magmatic series formed during various evolution stages of the East European Craton (EEC) was performed using geological-petrological, geochemical, and isotopic data. The example of Baltic shield indicates that the compositions and tectonic settings of mantle melts in the Early Precambrian (Archean and Early Paleoproterozoic) significantly differed from those in the Phanerozoic. The Early Precambrian magmas were dominated by high-Mg low-Ti melts of the komatiite-basaltic and boninite-like series; this tectonomagmatic activity was determined by the ascent of mantle superplumes of the first generation, which originated in the depleted mantle. In the interval of 2.3–2.0 Ga, high-Mg mantle melts gradually gave place to the Fe-Ti picrites and basalts that are typical of within-plate Phanerozoic magmatism; at ~2 Ga, plume tectonics of the Early Precambrian gave way to plate tectonics. This is considered to be linked to the activity of mantle superplumes of the second generation (thermochemical), which originated from the liquid metallic core/mantle interface. Owing to the presence of fluid components, these superplumes reached much higher levels, where spreading of their head portions led to the active interaction with overlaying thinned rigid lithosphere. Sm-Nd isotopic studies showed that orogenic Neoarchean and Middle Paleoproterozoic magmatism of the Baltic shield was connected to the melting of the lithospheric mantle and crust; the melting of crustal sources gave rise to felsic members of the considered complexes. The systematic geochemical variations observed in these rocks with time presumably reflect a general trend toward an increase of the thickness of the continental crust serving as the basement for orogens. Beginning at ~2 Ga, the Meso, Neoproterozoic, and Phanerozoic including, no systematic variations were observed in the isotopic-geochemical characteristics of within-plate magmatism. All considered age sections demonstrate that isotopic-geochemical characteristics of parental mantle melts were strongly modified by crustal contamination. Mesoproterozoic magmatism of EEC was unique in the development of giant anorthosite-rapakivi granite complexes. Kimberlites and lamproites were repeatedly formed within EEC in the time interval from 1.8 to 0.36 Ga; their maximal development was noted in the Late Devonian. It was shown that only kimberlites derived from weakly enriched mantle are diamondiferous in the Arkhangelsk province; in the classic diamond provinces (Africa and Yakutia), diamondiferous kimberlites were derived from both depleted and enriched mantle.  相似文献   

5.
Geological, petrochemical, and geochemical data are reported for volcanic rocks of a Cretaceous pull-apart basin in the Tan Lu strike-slip system, Asian continental margin. A comparison of these volcanic rocks with magmatic rocks from typical Cenozoic transform margins in western North America and rift zones of Korea made it possible to distinguish some indicator features of transform-margin volcanic rocks. Magmatic rocks from strike-slip extension zones bear island-arc, within-plate, and, occasionally, depleted MORB geochemical signatures. In addition to calc-alkaline rocks, there are bimodal volcanic series. The rocks are characterized by high K2O, MgO, and TiO2 contents. They show variable enrichment in LILE relative to HFSE, which is typical of island-arc magmas. At the same time, they are rich in compatible transition elements, which is a characteristic of within-plate magmas. The trace-element distribution patterns normalized to MORB or primitive mantle usually display a negative Ta-Nb anomaly typical of suprasubduction settings. Their Ta/Nb ratio is lower, whereas Ba/Nb, Ba/La, and La/Yb are higher than those of some MORB and OIB. In terms of trace-element systematics, for example, Ta-Th-Hf, Ba/La-(Ba/La)n, (La/Sm)n-La/Hf, and others, they fall within the area of mixing of magmas from several sources (island arc, within plate, and depleted reservoirs). The magmatic rocks of transform settings display a sigmoidal chondrite-normalized REE distribution pattern, with a negative slope of LREE, depletion in MREE, and an enriched or flat HREE pattern. The magmas with mixed geochemical characteristics presumably originated in a transform margin setting in local extension zones under the influence of mantle diapirs, which caused metasomatism and melting of the lithosphere at different levels, and mixing of melts from different sources in variable proportions. Original Russian Text ? V.P. Simanenko, V.V. Golozubov, V.G. Sakhno, 2006, published in Geokhimiya, 2006, No. 12, pp. 1251–1265.  相似文献   

6.
A number of Paleoproterozoic mafic dykes are reported to intrude volcano-sedimentary sequences of the Mahakoshal supracrustal belt. They are medium to coarse-grained and mostly trend in ENE-WSW to E-W. Petrographically they are metadolerite and metabasite. Geochemical compositions classify them as sub-alkaline basalts to andesites with high-iron tholeiitic nature. Both groups, i.e. metabasites and metadolerites, show distinct geochemical characteristics; high-field strength elements are relatively higher in metadolerites than metabasites. This suggests their derivation from different mantle melts. Chemistry does not support any possibility of crustal contamination. Trace element modeling advocates that metabasite dykes are derived from a melt originated through ∼20% melting of a depleted mantle source, whereas metadolerite dykes are probably derived from a tholeiitic magma generated through <10% melting of a enriched mantle source. Chemistry also reveals that the studied samples are derived from deep mantle sources. HFSE based discrimination diagrams suggest that metabasite dykes are emplaced in tectonic environment similar to the N-type mid-oceanic ridge basalts (N-MORB) and the metadolerite dykes exhibit tectonic setting observed for the within-plate basalts. These inferences show agreement with the available tectonic model presented for the Mahakoshal supracrustal belt. The Chitrangi region experienced N-MORB type mafic magmatism around 2.5 Ga (metabasite dykes) and within-plate mafic magmatism around 1.5–1.8 Ga (metadolerite dykes and probably other alkaline and carbonatite magmatic rocks).  相似文献   

7.
The hypabyssal rocks of the Omgon Range, western Kamchatka, that intrude Upper Albian-Lower Campanian deposits of the Eurasian continental margin belong to three coeval (62.5–63.0 Ma) associations: (1) ilmenite gabbro-dolerites, (2) titanomagnetite gabbro-dolerites and quartz microdiorites, and (3) porphyritic biotite granites and granite-aplites. The Early Paleocene age of the ilmenite gabbro-dolerites and biotite granites was confirmed by zircon and apatite fission-track dating. The ilmenite and titanomagnetite gabbro-dolerites were produced by the multilevel fractional crystallization of basaltic melts with, respectively, moderate and high Fe-Ti contents and the contamination of these melts with rhyolitic melts of different compositions. The moderate-and high-Fe-Ti basaltic melts were derived from mantle spinel peridotite variably depleted and metasomatized by slab-derived fluid prior to melting. The melts were generated at variable depths and different degrees of melting. The biotite granites and granite aplites were produced by the combined fractional crystallization of a crustal rhyolitic melt and its contamination with terrigenous rocks of the Omgon Group. The rhyolitic melts were likely derived from metabasaltic rocks of suprasubduction nature. The Early Paleocene hypabyssal rocks of the Omgon Range were demonstrated to have been formed in an extensional environment, which dominated in the margin of the Eurasian continent from the Late Cretaceous throughout the Early Paleocene. Extension in the Western Kamchatka segment preceded the origin of the Western Koryakian-Kamchatka (Kinkil’) continental-margin volcanic belt in Eocene time. This research was conducted based on original geological, mineralogical, geochemical, and isotopic (Rb-Sr) data obtained by the authors for the rocks.  相似文献   

8.
The paper presents new data on physico-chemical parameters of the Neoproterozoic–Early Cambrian plume magmatism in the Paleo-Asian Ocean. The data on clinopyroxenes show the plume-related plateaubasalt magmatic systems of the Katun’ paleoseamounts, which interacted with mid-ocean ridge (MOR) magmas. The Kurai paleoseamount consists mainly of plateaubasalt systems, and the Agardag ophiolites represent products of OIB–type “hot-spot” within-plate magmatism. Our study of inclusions showed that the melts of the Katun’ and Kurai paleoseamounts crystallized at lower temperatures (1130–1190 °C) compared to the Agardag ophiolites (1210–1255 °C). The petrochemical analysis of the melt inclusions showed that the Katun’ and Kurai magmatic systems are different from the Mg- and Ti-richer melts of the Agardag ophiolites: the former are similar to the magmas of the Nauru Basin and Ontong Java Plateau (western Pacific), whereas the latter possess geochemical affinities to OIB-type magmatism. The rare-element compositions of the melts of the Katun’ and Kurai paleoseamounts correspond to those of the Ontong Java Plateau and Nauru Basin lavas. The numerically simulated parameters of the Katun’ paleoseamount primary magmas agree with the data on the magmatic systems of the Siberian Platform and Ontong Java Plateau. For the Kurai paleoseamount, the simulated results suggest interaction of deep-seated OIB-type magmatic systems with MOR ones. The Agardag ophiolites were formed in relation to mantle plume activity at the initial stages of paleo-oceanic complexes formation.  相似文献   

9.
A number of large areas of igneous provinces produced in North Asia in the Late Paleozoic and Early Mesozoic include Siberian and Tarim traps and giant rift systems. Among them, the Central Asian Rift System (CARS) has the most complicated structure, evolved during the longest time, and is a large (3000 × 600 km) latitudinally oriented belt of rift zones extending from Transbaikalia and Mongolia to Middle Asia and including the Tarim traps in western China. CARS was produced in the Late Carboniferous, and its further evolution was associated with the lateral migration of rifting zones; it ended in the Early Jurassic and lasted for approximately 110 Ma. CARS was produced on an active continental margin of the Siberian continent and is noted for largest batholiths, which were emplaced simultaneously with rifting. The batholiths are surrounded by rift zones and compose, together with them, concentrically zoned magmatic areas, with crustal (granitoid) magmatism focused within their central portions, whereas mantle (rift-related) magmatism is predominant in troughs and grabens in peripheral zones. The batholiths show geological and isotopic geochemical evidence that their granitoids were produced by the anatexis of the host rocks at active involvement of mantle magmas. Zonal magmatic areas of the type are viewed as analogues of large igneous provinces formed in the environments characteristic of active continental margins. Large within-plate magmatic provinces in North Asia are thought to have been generated in relation to the overlap of at least two mantle plumes by the Siberian continent during its movement above the hot mantle field. In the continental lithosphere, mantle plumes initiated within-plate magmatic activity and facilitated rifting and the generation of traps and alkaline basite and alkali-salic magmatic associations. Because of the stressed states during collision of various type in the continental margin, the mantle melts did not ascend higher than the lowest crustal levels. The thermal effect of these melts on the crustal rocks induced anatexis and eventually predetermined the generation of the batholiths.  相似文献   

10.
This paper is aimed at studying the chronological evolution of the Neogene–Quaternary volcanic activity within the Çald?ran plain and its mountainous framing (Eastern Turkey). It is shown that the last pulse of continental-margin magmatism related to the subduction and closure of Neotethys oceanic basin occurred in the Middle Miocene (13.5–12.5 Ma). The post-collision volcanism proceeding simultaneously with large-scale regional tectonic rearrangement and initiation of the long-term Çald?ran fault began in the Late Miocene (7–6 Ma), and reached maximum activity in the Middle Pliocene (4.7–3.6 Ma). The Quaternary period in the region evolution was marked by the abundant within-plate magmatic activity restricted to the regional SW–NE trending zone, and the formation of Eastern Turkey’s largest Tendürek shield volcano (Late Pleistocene–Holocene). Petrological-geochemical data indicate that magmas during the overall evolution of young volcanism of the Çald?ran plain was generated from a single mantle reservoir, whose composition gently one-way evolved with time. Calculations show that melting occurred in the upper part of the asthenosphere (immediately near the boundary with thinned lithospheric mantle), which was metasomatized by pre-existing long-continued subduction. The chemical variations of mantle source with time (from the Middle Miocene to Quaternary) were mainly determined by a decrease of subduction component and the presence of aqueous phases, with a general trend from E-MORB to OIB-type for generated magmas. The composition of Late Quaternary basic lavas of Tendürek Volcano in terms of most petrological-geochemical characteristics corresponds to within-plate alkaline basalts. The main trend of geochemical evolution of mantle source is correlated with a systematic change of the predominant serial affinity of igneous rocks from calcalkaline through moderately alkaline to Na-alkaline varieties. Discrete character of young magmatism within the Çald?ran plain, and its subsequent evolution (sulrasubduction → post-collision → within-plate) were mainly determined by periodical large-scale changes in geotectonic setting within the Eurasian–Arabian collision zone: (1) cessation of subduction, (2) break-up and deepening of oceanic slab with its subsequent break off, (3) inferred emergence of incipient rift setting under conditions of intense submeridional compression.  相似文献   

11.
This paper focuses on the occurrences of tholeiitic magmatism in the northeastern Fennoscandian shield. It was found that numerous dolerite dikes of the Pechenga, Barents Sea, and Eastern Kola swarms were formed 380–390 Ma ago, i.e., directly before the main stage of the Paleozoic alkaline magmatism of the Kola province. The isotope geochemical characteristics of the dolerites suggest that their primary melts were derived from the mantle under the conditions of the spinel lherzolite facies. The depleted mantle material from which the tholeiites were derived shows no evidence for metasomatism and enrichment in high fieldstrength and rare earth elements, whereas melanephelinite melts postdating the tholeiites were generated in an enriched source. It was shown that the relatively short stage of mantle metasomatism directly after the emplacement of tholeiitic magmas was accompanied by significant mantle fertilization. In contrast to other large igneous provinces, where pulsed intrusion of large volumes of tholeiitic magmas coinciding or alternating with phases of alkaline magmatism was documented, the Kola province is characterized by systematic evolution of the Paleozoic plume–lithosphere process with monotonous deepening of the level of magma generation, development of mantle metasomatism and accompanying fertilization of mantle materials, and systematic changes in the composition of melts reaching the surface.  相似文献   

12.
西太平洋分布了全球大部分的洋内俯冲带,也是全球沟-弧-盆体系最发育的地区。勘察加(Kamchatka)半岛位于俄罗斯远东地区,地处太平洋西北部(51°~60°N、155°~164°E),是全球环太平洋岛弧的重要组成部分。前人对勘察加岛弧岩石地幔源区性质、熔融过程、岩浆结晶分异及熔/流体交代过程进行了详细的研究,并获得了丰硕的成果。最新的研究进展表明:(1)勘察加岛弧前缘火山和中部火山的源区主要为亏损地幔,而弧后区域则存在较为富集的地幔贡献;(2)勘察加岛弧不同区域的地幔源区流体性质具有一定的差异,导致从前缘火山至中部火山,地幔熔融程度逐渐降低;(3)勘察加岛弧不同区域岩石地球化学成分存在差异,而且,沿穿弧剖面某些元素或同位素(如δ11 B)表现出系统变化的特征,反应了俯冲板片流体通量和流体性质的差异;(4)勘察加半岛部分多期次火山(如Klyuchevskoy火山)地球化学成分复杂,可能反应了源区熔融条件的不同和岩浆结晶分异过程;(5)勘察加岛弧北部与阿留申岛弧近直角相交,导致异常的构造背景,促使该区域形成了具有埃达克质特征的岛弧岩浆。  相似文献   

13.
Original authors’ data on the mineralogy and composition of melt inclusions in two samples show that the Early Eocene magmatic rocks at Cape Khairyuzova were formed by mixing melts of mafic, intermediate, and acid composition, which were derived from different sources. The mafic melt was rich in MgO, and its temperature was 1100–1150°C. The temperature of the acid melt varied from 1070 to 1130°C. The melts are also different in concentrations of trace elements and in their ratios. All three melt types are enriched in LILE and LREE and depleted in HFSE and were likely derived in suprasubductional environments. The mafic and intermediate magmas were formed by melting a mantle wedge and subsequent fractionation of the melts. The acid melts could be formed by melting crustal rocks when they were overheated in the newly formed orogen of significant thickness. When ascending, the mantle melts could mix in variable proportions with acid melts in crustal chambers.  相似文献   

14.
Despite the exposures of Precambrian and Paleozoic rocks and the accretionary tectonic history of the northern Pacific (northeastern Asia, Alaska, and Kamchatka), it is likely that a considerable portion of the lower crust of the continental margins is much younger and was generated by Cretaceous postaccretion magmatic events. Data on xenoliths suggest that Late Cretaceous and Paleocene mafic intrusions and cumulates of calc-alkaline magmas may become more important with increasing depth. This conclusion is based on the petrological and geochronological investigation of lower-middle crustal xenoliths borne by mantlederived alkali basalt lavas and U-Pb dating of zircon cores from the igneous rocks of the region. We studied deep mafic xenoliths of granulites and gabbroids (accounting for <2% of the general xenolith population) from the Late Neogene alkali basalt lavas of the Enmelen and Viliga volcanic fields (Russia) and the Imuruk volcanic field in the Seward Peninsula, St. Lawrence Island, and Nunivak Island (Alaska). Depleted MORB-like varieties and relatively enriched in radiogenic isotopes and LREE rocks were distinguished among plagioclase-bearing xenoliths. The most representative collection of Enmelen xenoliths was subdivided into three groups: LREE enriched charnockitoids and mafic melts, pyroxene-plagioclase cumulates with a positive Eu anomaly, and LREE depleted garnet gabbroids. Mineral thermobarometry and calculated seismic velocities (P = 5–12 kbar, T = 740–1100°C, and V p = 7.1 ± 0.3 km/s) suggest that the xenoliths were transported from the lower and middle crust, and the rocks show evidence for their formation through the magmatic fractionation of calc-alkaline magmas and subsequent granulite-facies metamorphism. The U-Pb age of zircon from the xenoliths ranges from the Cretaceous to Paleocene, clustering mainly within 107–56 Ma (147 crystals from 17 samples were dated). The zircon dates were interpreted as reflecting the magmatic and metamorphic stages of the growth and modification of the regional crust. The distribution of the obtained age estimates corresponds to the main magmatic pulses in two largest magmatic belts of the region, Okhotsk-Chukchi and Anadyr-Bristol. The absence of older inherited domains in zircons from both the xenoliths and igneous rocks of the regions is a strong argument in favor of the idea on the injection of juvenile material and underplating of calc-alkaline magmas in the lower crust during that time interval. This conclusion is supported by isotope geochemical data: the Sr, Nd, and Pb isotope ratios of the rocks and xenolith minerals show mantle signatures (87Sr/86Sr = 0.7040–0.70463, 143Nd/144Nd = 0.51252–0.51289, 206Pb/204Pb = 18.32–18.69) corresponding to an OIB source and are in general similar to those of the Cretaceous calc-alkaline basalts and andesites from continental-margin suprasubduction volcanoplutonic belts. Xenoliths from Nunivak Island and Cape Navarin show more depleted (MORB-like) geochemical and isotopic characteristics, which indicates variations in the composition of the lower crust near the southern boundary of the Bering Sea shelf.  相似文献   

15.
In recent years extensive data have been obtained on all geologically important intrusive complexes in the Central and Southern Urals by U-Pb zircon geochronologic high spatial resolution techniques (LA ICP MS, NORDSIM, and SHRIMP II). This made it possible to revise the current concepts for the magmatic activity of the Ural Paleozoic orogen.Intrusive magmatism that occurred early in the evolution of the Ural orogen was focused mostly in the Tagil megazone, was characterized by several common features, and took place nearly simultaneously within both of its zones: the Platinum Belt and the Tagil volcanic zone.The composition of the parental magmas of all complexes of this age corresponded to an ultramafic or mafic source; i.e., the magma was derived from a mantle source. The gabbroids most closely approximating the composition of the parental magmatic melts show geochemical features of suprasubduction melts, such as negative HFSE (Nb, Ti, and Zr) and positive Ba and Sr anomalies. The REE patterns of these rocks display variable La/Lu ratios, which are usually higher than 1. These geochemical features suggest that this magmatic source was a metasomatized mantle wedge, above which (at a depth of 40–25 km) a block of the pre-Ural basement occurred in Ordovician-Silurian time. The Tagil megazone started to develop on this block. By the Devonian, i.e., by the time when the Magnitogorsk zone began to evolve (~400 Ma) and continental-margin gabbro-tonalite-granodiorite magmatism was initiated (360 Ma), this basement had been destroyed by orogenesis. The major phases of Paleozoic magmatism in the Urals likely corresponded to global epochs of tectono-magmatic activity, because they correlate well with known data on the evolution of the 87Sr/86Sr ratio in Paleozoic seawater.  相似文献   

16.
Rock complexes composing the Daribi Range were produced in Late Vendian, Early Cambrian, and Early Paleozoic suprasubduction systems. All of the studied mafic and ultramafic magmatic mantle rocks (the post-Vendian ophiolite complex, Early Cambrian pillow basalts, and Early Paleozoic picrobasalts of the sill-dike complex) have geochemical characteristics typical of early evolutionary episodes of island arcs: low LILE concentrations, horizontal REE patterns or patterns close to those of N-MORB, and HFSE minima. The magmas were derived from depleted mantle sources of variable isotopic composition with ?Nd(T) from +2.5 to +10. The Early Paleozoic rocks of the sill-dike complex were likely produced by a complicated interaction of melts derived from different sources. The rocks of group 1 resulted from the mixing of low-K picrite and tonalite melts. The picrite melts with ?Nd(T) from +6 to +8 were melted out of garnet lherzolite in the mantle wedge. The tonalite melts with ?Nd(T) = ?3 seem to have been formed by the partial melting of mafic oceanic rocks of a subducted slab or the bottom of an island arc. The trondhjemite melts of group 2 with ?Nd(T) varying from 2.5 to 7.5 could be formed via the melting of subducted metapelites or amphibolites with low sulfide concentrations. Massifs of sodic Early Paleozoic granites also occur elsewhere in western Mongolia, Tuva, and the Altai territory. The generation of sodic silicic melts was likely a common process in supra-subduction systems in CAFB. The potassic granites (group 4) could be formed by the melting of subducted pelites or by the fractionation of mantle magmas. The genesis of the basaltic andesites (group 5) was likely related to Mesozoic-Cenozoic intraplate processes.  相似文献   

17.
The results of isotope-geochronological and petrological-geochemical study are reported for Neogene mafic intrusive rocks distributed in the northern part of the Lesser Caucasus (Georgia). It is shown that the young plutonic bodies were formed here in two magmatic stages: in the Middle Miocene (around 15.5 Ma) and in the terminal Miocene (9-7.5 Ma). The first age group includes a microsyenitic massif in Guria (Western Georgia), which was formed in a setting of active continental margin related to the subduction of oceanic part of the Arabian plate beneath the Transcaucasus. The Late Miocene intrusive magmatism already records the incipient within-plate activity: small polyphase bodies of alkaline gabbroids and lamprophyres of Samtskhe (South Georgia) dated around 9-8.5 Ma and teschenite intrusions of Guria dated at 7.5Ma. Petrological-geochemical and isotope-geochemical data indicate that the parental melts of the rocks of all studied Neogene plutonic bodies of the Lesser Caucasus were derived from a single mantle source. Its characteristics are close to those of a Common hypothetical reservoir, which is usually regarded as a source of oceanic and continental hot spot basalts (OIB) but shows some regional peculiarity. The role of crustal assimilation and crystallization differentiation in the genesis of the Miocene rocks of Guria was limited, which is related to the rapid ascent of deep melts to the surface (in a setting of local extension) without intense interaction with host sequences under the absence of consolidated continental lithosphere beneath this part of the Transcaucasus. The parental mantle-derived magmas of the Neogene gabbroids of Samtskhe were strongly contributed by upper crustal material, which caused a change in their isotope (87Sr/86Sr up to 0.70465, ?Nd up to + 2.8) and geochemical characteristics relative to the regional mantle source. In addition, the crustal contamination of mantle basic melts during the late phases of the Samtskhe plutonic bodies formation led to their intense fractionation with precipitation of mainly olivine and pyroxene. The larger scale mantle-crustal interaction during formation of the Samtskhe intrusions was probably related to the fact that the upper lithosphere in this sector of the Transcaucasus contained large Paleozoic blocks, which were made up of granite-metamorphic complexes and prevented a rapid ascent of mantle melts to the surface. The rocks of these blocks were presumably assimilated by mantle magmas in the intermediate chambers at the upper crustal levels.  相似文献   

18.
The study of magmatism and tectonic structure of the East Indian or Ninetyeast Ridge (NER) reveals the geochemical similarity of mantle sources for the NER and Kerguelen Plateau melts. Magmas related to the Kerguelen plume were derived from an enriched mantle source, whereas the NER tholeiitic basalts originated from a source contaminated by a depleted material. While, depleted basalt varieties were not found within the NER basalts. It was shown that magmatic rocks forming the NER were generated by high degrees (30%) of partial melting within the ancient Wharton spreading ridge due to the activity of the Kerguelen plume, which was located at this time in the vicinity of the ridge. The most significant impact of the plume on the NER structures was recorded at 70–50 Ma ago.  相似文献   

19.
The Qinling Orogenic Belt (QOB) located between the North China Craton (NCC) and the Yangtze Craton (YZC) is composed of the North Qinling Belt (NQB), the South Qinling Belt (SQB) and the northern margin of the YZC. Detailed geological and geochronological investigations have revealed distinct Neoproterozoic blocks of various scales in the middle and western segments of the SQB, including the Madao block (MDB), Mihunzhen intrusion (MHI), Zhenggou block (ZGB), and Lengshuigou block (LSB) which constitute an east-west trending Neoproterozoic uplift zone of the basement continental blocks. These blocks are mainly composed of four lithological groups. Group #1 consists mainly of diorites in the LSB, the zircons from which yield a weighted mean 206Pb/ 238U age of ca. 941 Ma. Group #2 is chiefly composed of hornblende gabbros and diorites in the MHI and LSB, which were formed at ca. 885 Ma. Group #3 comprises massive diorites, quartz diorite, tonalites, granodiorites, and monzogranites in the MDB, MHI, ZGB and LSB, which were emplaced during ca. 785–740 Ma. Group #4 is composed of hornblende gabbros with an emplacement age of ca. 667 Ma in the ZGB.Detailed whole-rock geochemical and zircon Hf isotopic studies reveal the following: (1) The diorites of Group #1 were produced by partial melting of depleted mantle which was enriched by slab-derived melts, with the parental magmas contaminated by crustal materials. (2) The gabbros of Group #2 were derived from the partial melting of depleted mantle enriched by slab-derived melts and the diorites are the fractional crystallization products of the gabbroic magmas. (3) Group #3 which can be further sub-divided based on lithological assemblages and zircon Hf isotopic features into two subgroups, one representing massive diorites, quartz diorite, tonalites, granodiorites, and monzogranites (DTGMs) and the other composed of gneissic quartz diorites and granodiorites. Among these, the DTGMs were derived through magma mixing between melts derived from the depleted mantle wedge altered by slab-derived fluids and melts from juvenile sources, which subsequently underwent amphibole-dominated fractionation, whereas the gneissic granitoids formed through partial melting of thickened lower crust contaminated by depleted mantle melts. (4) The gabbros of Group #4 originated from a depleted lithospheric mantle that was enriched by slab-derived melts and fluids with contribution of asthenospheric mantle-derived materials. In conjunction with data from previous studies on the Neoproterozoic blocks in the SQB and basement blocks in the northern margin of the YZC, our new geological, geochronological and geochemical data suggest a large Neoproterozoic uplift zone in the SQB, which was destructed by Paleozoic to Mesozoic magmatism and deformation. The Neoproterozoic uplift zone of the SQB might have been separated from the northern margin of the YZC during the formation of the Mianlue Ocean, and might have evolved under an active continental margin setting and subsequent continental rift setting accompanied by significant crustal growth. The magmatism also resulted in the formation of important Neoproterozoic ore deposits and supplied the material sources for some of the major Mesozoic ore deposits.  相似文献   

20.
New petrological and geochemical data were obtained for basalts recovered during cruise 24 of the R/V “Akademik Nikolay Strakhov” in 2006. These results significantly contributed to the understanding of the formation of tholeiitic magmatism at the northern end of the Knipovich Ridge of the Polar Atlantic. Dredging was performed for the first time both in the rift valley and on the flanks of the ridge. It showed that the conditions of magmatism have not changed since at least 10 Ma. The basalts correspond to slightly enriched tholeiites, whose primary melts were derived at the shallowest levels and were enriched in Na and depleted in Fe (Na-TOR type). The most enriched basalts are typical of the earlier stages of the opening and were found on the flanks of the ridge in its northernmost part. Variations in the ratios of Sr, Nd, and Pb isotopes and lithophile elements allowed us to conclude that the primary melts generated beneath the spreading zone of the Knipovich Ridge were modified by the addition of the enriched component that was present both in the Neogene and Quaternary basalts of Spitsbergen Island. Compared with the primitive mantle, the extruding magmas were characterized by positive Nb and Zr anomalies and a negative Th anomaly. The formation of primary melts involved melting of the metasomatized depleted mantle reservoir that appeared during the early stages of opening of the Norwegian-Greenland Basin and transformation of the paleo-Spitsbergen Fault into the Knipovich spreading ridge, which was accompanied by magmatism in western Spitsbergen during its separation from the northern part of Greenland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号